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Abstract—Parallel I/O is a critical technique for moving data
between compute and storage subsystems of supercomputing sys-
tems. With massive amounts of data being produced or consumed
by compute nodes, high performant parallel I/O is essential. I/O
benchmarks play an important role in this process, however, there
is a scarcity of I/O benchmarks that are representative of current
workloads on HPC systems. Towards creating representative I/O
kernels from real world applications, we have created h5bench
a set of I/O kernels that exercise HDF5 I/O on parallel file systems
in numerous dimensions. Our focus on HDF5 is because of the
parallel I/O library’s heavy usage in a wide variety of scientific
applications running on supercomputing systems. The various
dimensions of h5bench include I/O operations (read and write),
data locality (arrays of basic data types and arrays of structures),
array dimensionality (1D arrays, 2D meshes, 3D cubes) and I/O
modes (synchronous and asynchronous). In this paper, we present
the observed performance of h5bench executed along several of
these dimensions on a Cray system: Cori at NERSC using both
the DataWarp burst buffer and a Lustre file system and Summit
at Oak Ridge Leadership Computing Facility (OLCF) using a
SpectrumScale file system. These performance measurements are
using find performance bottlenecks, identify root causes of any
poor performance, and optimize I/O performance. As the I/O
patterns of h5bench are diverse and capture the I/O behaviors
of various HPC applications, this study will be helpful not only
to the CUG community but also to the broader supercomputing
community.
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I. INTRODUCTION

Applications using high-performance computing (HPC) re-
sources are highly dependent on storing data to and retrieving
previously stored data from file systems. I/O libraries such as
HDF5 [1], [2], netCDF [3], ROOT [4], etc. play a critical role
in providing access to and from file systems. Of these, parallel
I/O libraries, such as HDF5 and PnetCDF [5], and MPI-IO [6],
which allow multiple processes or ranks from MPI programs
access data concurrently from file systems need to be efficient.

Parallel I/O benchmarks that are representative of real world
HPC applications play an important role in evaluating I/O
libraries and removing any performance bottlenecks. Several
parallel I/O benchmarks are available that measure perfor-
mance of parallel file systems with various I/O libraries.

IOR1 is the most popular parallel I/O benchmark used for
testing the performance of parallel file systems [7]. IOR allows
usage of multiple file access patterns (read and write, single
shared file, and file per process) and multiple I/O library

1IOR: https://github.com/hpc/ior

interfaces (POSIX, MPI-IO, and HDF5). IOR also provides
various distributed computing interfaces, such as S3, HDFS,
etc. MDtest, now integrated to IOR, is often used for evalu-
ating the metadata performance of POSIX-compliant parallel
file systems. In specific, MDtest evaluates the performance of
creation, stat, and removal of files, directories, and hierarchy
of directories of a given depth.

While IOR can be configured to represent a significant
number of file access patterns, there is still a need for I/O
kernels that are representative of real world applications that
use high-level I/O libraries, such as HDF5. These I/O kernels
would be helpful to represent not only various in memory data
models and file access patterns, but also to test new features
and to identify performance inefficiencies. For instance, HDF5
has recently developed asynchronous I/O feature that overlaps
I/O overhead with computation phases, which is unexplored
by existing I/O benchmarks [8], [9]. Similarly, performance
evaluation of compression in I/O libraries is another unex-
plored area. In the metadata performance evaluation, MDtest’s
focus is on file system performance in operating with files and
directories. Self-describing formats, such as HDF5, also have
user-defined metadata to be added to describe data. Evaluation
and optimization of user-level metadata access costs is another
important requirement for parallel I/O kernels.

In this paper, we focus on the HDF5 API and parallel
I/O library due to its heavy usage at supercomputing systems
[10]. A few HDF5 benchmarks exist to represent application-
specific I/O patterns that support different I/O interfaces.
For instance, MACSio (Multi-purpose, Application-Centric,
Scalable I/O Proxy Application) [11] provides various kernels
that test and evaluate I/O performance in different data models.
MACSio allows using different I/O library interface plugins in
addition to HDF5, such as PDB, TyphonIO, Exodus, etc. and
parallel I/O patterns. While MACSio is covering a significant
number of patterns, new features such as asynchronous I/O
needs further benchmarking. We have previously developed
Parallel I/O Kernel (PIOK) suite that included simple HDF5
I/O operations such as reads and writes with basic array data
types. There are a number I/O patterns that are not covered
by PIOK, such as multi-dimensionality of the array data,
asynchronous I/O, etc. There are a few HDF5 I/O benchmarks
that are based on application I/O, such as FLASH-IO [12],
ChomboIO [13], and AMReX [14]. These benchmarks are
specific to the patterns of the applications and there is still
a need for benchmarks that can exercise various configurable



options that are generic to cover a variety of patterns and the
latest I/O optimization features.

In our effort, we focus on bringing together a set of HDF5
benchmarks, called h5bench and making them available for
a broader audience. We focus in this paper on discussing basic
I/O kernels in different dimensions including I/O operations
(read, write, and HDF5 metadata), data locality (arrays of
basic data types and arrays of structure representations both
in memory and in file), array dimensionality (1D arrays, 2D
meshes, 3D cubes), and different I/O modes (synchronous and
asynchronous). We focus on HDF5 in this work based on
the library’s heavy usage on HPC systems. Defining HDF5
benchmarks that are representative of HDF5 applications and
tuning them on HPC systems will benefit broadly.

We evaluate these different dimensions of read and write
kernels on Cori (a Cray XC40 system at The National En-
ergy Research Scientific Computing Center (NERSC)) and
on Summit (an IBM system at The Oak Ridge Leadership
Computing Facility (OLCF)). On Cori, we use a Lustre parallel
file system that uses hard disk drives (HDDs), and a DataWarp
[15] file system on solid state drives (SSDs). We evaluate
the performance of h5bench by comparing synchronous and
asynchronous read and write operations on Cori and Summit.
We study the impact of data locality (contiguity of data) in
memory and in file, using various dimensions for arrays. On
Cori, we compare read and write performance of Lustre and
the DataWarp Burst Buffer. We also show improved perfor-
mance of asynchronous I/O in the case of reading data when
I/O phases are fully overlapped with emulated computation
time compared to partially overlapped I/O phases.

The remainder of the paper is organized as follows. In
Section II, we briefly introduce HDF5 and asynchronous I/O
with HDF5. In Section III, we describe different modes of
the basic I/O operations introduced in h5bench. In the
following sections (§IV and §V), we describe experimental
setup and performance evaluation, respectively. In Section VI,
we conclude the paper with a brief discussion of future work.

II. BACKGROUND

A. A brief introduction to HDF5

HDF5 (Hierarchical Data Format Version 5) is a self-
describing file format and an I/O library [1] that provides
flexibility, extendibility, and portability. It supports a variety
of data structures across science domains and stores data and
the corresponding metadata (e.g., data type, data size) within
a single HDF5 file. HDF5 relieves the user from manual file
management such as file space allocation and seeking specific
offsets to access data.

Due to its longevity and robustness, HDF5 is used widely
in many science domains as a de facto standard to manage
various data models and is used for efficient parallel I/O
in HPC simulation and analysis applications. For instance,
HDF5 is among the top five libraries loaded by applications at
NERSC and OLCF [10]. Because of this popularity, ensuring
HDF5’s parallel I/O performance is efficient is critical for HPC
facilities. Providing benchmarks and tuning I/O patterns in

them paves the path for achieving the goal of efficiency and
good overall performance for applications.

B. Asynchronous I/O with HDF5

Asynchronous I/O allows overlapping the I/O time with
computation and communication, which can significantly re-
duce the overall application runtime. Scientific applications
with interleaved computation and I/O phases may observe
their I/O time partially or fully hidden with asynchronous
I/O. HDF5 provides the Virtual Object Layer (VOL) [16]
that allows intercepting the HDF5 I/O routines and applying
optimizations for better data management, and is transparent
to the application. An asynchronous I/O VOL connector [8]
is developed to enable asynchronous I/O for HDF5 operations
using background threads. This implementation can be com-
piled as a dynamically linked library (DLL) and can be linked
to a user’s application directly, remaining separate from the
installed version of HDF5 and making it easy to adopt. The
background threads are managed by Argobots, a lightweight
low-level threading framework [17].

There are two modes of asynchronous I/O in HDF5: implicit
and explicit mode. The implicit mode needs minimal code
changes but has performance limitations (e.g., all read opera-
tions are synchronous), and the user can enable it by running
the application with a few environment variables set. The
explicit mode requires some code changes such as replacing
the HDF5 APIs with the EventSet APIs; it gives more control
to applications over when to execute asynchronous operations
and a better mechanism for detecting errors. More details of
the asynchronous I/O implementation in HDF5 are available
in [8], [9].

III. H5BENCH I/O KERNEL SUITE

With the goal of providing a comprehensive set of HDF5
I/O kernels that are representative of applications using the
HDF5 API and of tuning their I/O performance using novel
features introduced in HDF5, we developed h5bench2.

In the current release of h5bench, we provide a set of read
and write kernels. We started the development of h5bench
by taking previously available I/O kernels for writing (called
VPIC-IO [18]) and for reading (called BD-CATS-IO [19]).
VPIC-IO was originally derived from a plasma physics simu-
lation that was designed to understand magnetic reconnection
phenomena, which often occurs in space weather events such
as solar flares interacting with the Earth’s magnetosphere
[20]. BD-CATS-IO was derived from a parallel DBSCAN
algorithm’s reading particle data, such as that generated by
VPIC [21] or Nyx [22] simulations. Both these write and read
patterns are simple in the data structures in memory and in
file. In VPIC, we recently implemented a new particle and
file data write strategies that writes data from a user-defined
data structure (similar to struct in C or a “compound
data structure” in HDF5) form either 1-dimensional arrays
or “compound data structure” in HDF5. This data structure

2h5bench: https://github.com/hpc-io/h5bench



is also commonly referred to as “array of structures” in
literature. In h5bench, we added these new memory buffers
and in file layout to the original VPIC-IO kernel. In addition
to the locality in memory and in file, we then expanded
the write and read benchmarks to add multiple I/O modes
and patterns – such as asynchronous I/O, multi-dimensional
arrays, file system-specific configurations, and MPI-IO specific
configurations. In h5bench, we provide configurable options
that users can provide to exercise various I/O patterns. We
describe each of these configurations in the following.

The h5bench benchmark suite assumes simulation or
analysis done in many time steps with multiple subsequent
computation and I/O phases. This is a typical pattern in physics
simulations that performs number crunching over a large num-
ber of time steps that emulates a physical phenomenon under
study [23]–[25]. The state of a simulation is written to storage
frequently either to study the progression of the simulation or
to checkpoint for handling any failures. For instance, the VPIC
simulation studying the magnetic reconnection phenomenon
[20] computes ≈20,000 time steps and dumps the data ≈2,000
time steps, i.e., a total of 10 time steps. In the benchmark,
we do not use real computations, hence, use sleep () to
emulate the computation time. The produced data in the write
benchmarks is random using the current time as the seed.
The read benchmarks use the data written using the write
benchmarks and emulate data analysis time using sleep ()
function. A user can specify the emulated compute time in the
configuration file to be used by the write and read benchmarks.

The h5bench benchmark reports the total emulated com-
pute time and data size read/written, which are set by users.
The performance metrics reported by h5bench include data
preparation time (i.e., time to initialize memory buffers in the
case of the write benchmarks), metadata read or write times,
other file operations (create, flush, and close times), raw read
or write times, raw read or write rates, and observed read/write
times, and observed read/write rates. The raw rates are the
wall clock times for performing a read or write operations.
These times are obtained by measuring the elapsed times of
H5Dwrite and H5Dread functions. In case of asynchronous
I/O operations, these times are measured, however, because
this time is overlapped with the emulated compute time, the
overall benchmark runtime does not observe this time. The
observed times only report the time that the overall benchmark
observes. The I/O rates (raw and observed) are calculated as
the ratio of the size of data and the times (raw and observed,
respectively). The rates are currently reported as MB/s, but
we will be changing them to GB/s or KB/s depending on the
sizes of the data.

A. I/O modes

The h5bench currently supports write and read operations
with various patterns. The benchmark defines HDF5 datasets
and writes or reads metadata of the datasets. The metadata
includes the dimensions of the datasets and their names. The
basic HDF5 write and read APIs we use are H5Dwrite
and H5Dread, that write to or read from HDF5 datasets,

respectively. Both write and read benchmarks currently use
weak scaling, where the number of particles per rank is
specified by the user in a configuration file. As the number
of the MPI ranks increase, the data size increases.

The ranks select non-overlapping partitions of the HDF5
datasets using hyperslab selections in HDF5. In h5bench,
we support three types of hyperslab selections: contiguous,
strided, and partial. In the contiguous access pattern, each
MPI rank accesses a single contiguous partition of the data.
In the strided pattern, hyperslabs selections have gaps with a
stride that is set in the configuration file. The strides can be in
multiple dimensions as well. The partial pattern only applies to
read operation, where only a subset of data is read by analysis
applications. Analysis applications often read a subset of data
[19], [26]. For example, in big data clustering [27], the analysis
application reads the top k% of the particle data to analyze,
where k is variable. In [26], patterns include reading slides of
1D, 2D, or 3D datasets. In h5bench, we currently support
the first k% data elements in arrays. We plan to expand this
functionality in future to reading arbitrary slides in different
dimensions using offsets in defining HDF5 hyperslabs.

We support three modes of reads and writes: synchronous,
implicit asynchronous, and explicit asynchronous. As ex-
plained briefly in Section II-B, HDF5 supports asynchronous
I/O in two ways – implicit and explicit. In the synchronous
mode, at the completion of a computation phase, the I/O phase
starts. The subsequent computation phase starts after the I/O
phase is complete. With both asynchronous I/O modes, the
subsequent computation phase starts after the I/O operations
are posted to the background threads and without waiting for
the data to be written to or read from a file on the storage
device. The background threads can use memory or node-local
storage to cache the data. In h5bench, a user can set a limit
on the memory that the background threads can use as a cache.

B. Locality

The data structures applications use in memory and the
data layout in files on file systems a have significant impact
on performance. To evaluate the performance of these data
structures, we provide contiguity of data structures in memory
and in files. The contiguous in memory pattern means that
there are multiple arrays that are of the same basic data types
such as integer, float, double, etc. The non-contiguous pattern
in memory is also known as “array of structures” or “derived
data type”, where the datatype is derived from basic data types.
HDF5 allows storing arrays of basic data types and derived
data types. In storing basic data types each array is stored as
a dataset. The derived data types are stored as a “compound
datatype” dataset. One can construct a compound datatype in
HDF5 by using H5Tcreate for each basic data type in the
derived data type. We show these four basic patterns in Figure
1, where we use “contiguous” to represent arrays in memory
and HDF5 datasets in file that are of basic data types. We use
“compound” to describe array of structures in memory and
compound datatypes in HDF5 files.
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Figure 1: In memory data structure and in HDF5 file data
layout mappings. For simplicity, we illustrate data structures
as 1-dimensional arrays. Arrays are stored as HDF5 datasets.
We do not depict the metadata (attributes of the datasets).

C. Additional options

Dimensions of arrays: In scientific datasets, multidimensional
arrays are the common data structures. To support the dimen-
sionality, h5bench supports reading and writing 1D, 2D,
and 3D datasets. A user can specify the dimensions in the
configuration file.
File locations: The HDF5 files can be written to various
POSIX-based parallel file systems, such as Lustre, GPFS,
and DataWarp. Users can set the location of the files in
the configuration file. We have applied file system specific
optimizations in h5bench. For instance, we set the alignment
for HDF5 file requests, that align a block of data to file system
block. This optimization benefits I/O performance on GPFS.
For Lustre, we are currently relying on users to set the stripe
size and stripe count using lfs setstripe command. In
future work, we plan to set these from the benchmark.
MPI-IO Options: MPI-IO provides various optimizations to
improve performance. In h5bench, we allow turning on or
off the collective buffering [6]. In future work, we plan on
providing support for setting the collective buffer size, etc.

IV. EXPERIMENTAL SETUP

We evaluated h5bench on Cori at NERSC and Summit
at Oak Ridge Leadership Computing Facility (OLCF).

A. Cori

Cori located at NERSC is a Cray XC40 system with a
peak peerformance of 30PF. It contains two main computation
partitions, i.e., Haswell and KNL. In all our tests in this paper,
we used the Haswell partition with 2,388 compute nodes. Each
Haswell node has two sockets, and each socket has a 16-core
Haswell processor. Each core supports 2 hyper-threads and
each node has 128 GB DDR4 memory shared by the two
sockets.

Lustre scratch: Cori provides a 30 PB Lustre file system
as temporary scratch space for files. The file system has a
peak performance of 700 GB/s I/O bandwidth. The Lustre file
system is equipped with 248 Object Storage Targets (OSTs),
with a default striping settings of 1 MB stripe size and 1 OST
as stripe width. Users can change the striping on Lustre using

lfs setstripe command with options for stripe size and
stripe width.

SSD-based burst buffer: NERSC provides an SSD-based
burst buffer that uses Cray DataWarp. The peak bandwidth
of the burst buffer is 1.7 TB/s, where each burst buffer node
(server) has 6.5 GB/s. To request the burst buffer, a user has
to request the required capacity. Each 20 GB capacity request
provides one burst buffer server. For instance, a request for
100 GB of burst buffer allocates 10 burst buffer servers.

B. Summit

The Summit supercomputer deployed at the Oak Ridge
Leadership Computing Facility (OLCF) is based upon the
IBM AC922 system. It is comprised of 4,608 compute nodes,
each equipped with 2 IBM POWER9 (P9) processors and 6
NVIDIA Tesla V100 (Volta) GPUs. Also, each node has 512
GB of DDR4 CPU memory, and each GPU has 16 GB of
HBM2 memory. An NVLink 2.0 bus connects each P9 CPU
to 3 V100 GPUs. An InfiniBand EDR network with a fat-
tree topology connects the nodes. A 1.6 TB NVMe device is
present on each compute node to be used as node-local storage.

Summit’s compute nodes are connected to the central-wide
Alpine parallel file system, a 250 PB IBM Spectrum Scale
(GPFS) deployment. The file system of Summit offers a peak
performance of 2.5 TB/s for sequential I/O.

C. h5bench configurations

In this work, we test the configurations of h5bench shown
in Table I to demonstrate a sample of the capabilities of
the benchmark suite. On Cori, we used 16 MPI ranks per
node, and on Summit, 32 MPI ranks per node for these runs.
On Cori Lustre, we used a stripe count of 244 and a stripe
size of 16 MB. On the burst buffer of Cori, we requested 8
TB, which allocates all available 270 burst buffer servers. On
Summit’s GPFS, we have set HDF5 alignment of 16 MB,
which is equal to the block size of GPFS. In HDF5, the
H5Pset_alignment call sets the properties of a file access
to allow any file object larger than a given threshold to be
aligned on an offset address on file system that is a multiple
of the set alignment size. Because the block size of GPFS in
Summit is 16 MB, we set the alignment property with 16 MB
for file objects that are greater than 4KB. Each benchmark run
also uses five iterations of compute and I/O phases, where the
compute phase is emulated with sleep functions. We used
up to 15 seconds of emulated compute phase. We varied this
emulated compute time to overlap the I/O latency efficiently.
The data related to each phase are organized in a different
HDF5 group in the same file. For asynchronous I/O mode,
we have used “explicit” I/O mode, where the benchmark is
modified to use the HDF5 event sets that give more control to
users when to perform the I/O operations using background
threads. Users can also use “implicit” I/O mode, which does
not require code modifications, and asynchronous I/O mode is
enabled by setting environment variables. One can try many
more combinations of configurations for the benchmark suite.



IO operations IO Modes Scale Platforms
(powers of 2)

Write Sync I/O and 16 to 2048 Cori and
Async I/O Summit

Read Sync I/O and 16 to 2048 Cori and
Async I/O Summit

Read Full and 16 to 2048 Cori
Partial

Write Locality 256 to 2048 Cori

Write Array 16 to 2048 Cori and
dimensions Summit

Read Array 16 to 2048 Cori and
dimensions Summit

Write Burst buffer vs. 16 to 2048 Cori
and read Lustre

Table I: Experimental setup used in this paper.

V. PERFORMANCE EVALUATION

In evaluating h5bench, we ran each configuration at least
three times and report the best performance. Since the three
runs of a configuration were executed consecutively, the per-
formance reported may have some variability due to the jobs
running concurrently and sharing the file system. We report
the observed I/O rate, which is the ratio of the amount of
data written or read and the sum of the wall clock time taken
to perform all the write or read operations, respectively. In the
plots, we show the observed I/O rate in MB/s. In a few plots,
we also show the elapsed time in performing an I/O operation.

A. Write performance, scalability, and asynchronous I/O

In Figure 2, we compare the observed I/O rate for writing
data in asynchronous and synchronous I/O modes on Cori, and
in Figure 3, the rate for the same operations on Summit. We
used a contiguous pattern in memory and in file, where the 8
1D arrays are written as 8 HDF5 datasets. As can be seen, the
observed write rate of asynchronous I/O mode is significantly
higher than that of synchronous I/O mode. This is achieved by
overlapping write operations while the benchmark’s computa-
tion phase (using an emulated compute time by applying the
sleep() functions). As the number of MPI ranks increase,
the benchmark achieved higher write rates. At the scale of
2K MPI ranks, the observed asynchronous I/O rate is ≈220
GB/s on Cori and ≈560 GB/s on Summit. One abnormality
we observed is on Summit at the scale of 4K cores, where the
I/O rated dropped down to ≈290 GB/s. This may be due to
interference in the file system during the time these jobs ran.
However, we need to investigate further if there are any other
potential reasons for this performance drop.

B. Read performance, scalability, and asynchronous I/O

In Figures 4 and 5, we compare the performance of the read
benchmark that was run on Cori and on Summit, respectively,
with synchronous and asynchronous I/O modes. We used the
same data we wrote by the write benchmark (from Section
V-A), which are contiguous 1D arrays from HDF5 datasets. To
avoid caching effects of reading, the read benchmark was also
run on different days after the write benchmark’s generation
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Figure 2: A comparison of synchronous and asynchronous
write performance on Cori with varying number of MPI ranks.
We used 16 cores per compute node.

0

100000

200000

300000

400000

500000

600000

32 64 128 256 512 1024 2048 4096

W
ri

te
 ra

te
 (M

B/
s)

Number of MPI ranks

Summit - Write performance in MB/s - Sync vs. Async

Sync Async

Figure 3: A comparison of synchronous and asynchronous
write performance on Summit with varying number of MPI
ranks. We used 32 cores per compute node.

of the files. We also used 15 seconds of emulated compute
time between consecutive time steps in these runs to overlap
the read time completely with the (emulated) compute phase.
With asynchronous I/O, at 2K cores, the observed I/O rate
is ≈1TB/s on Cori and ≈700 GB/s on Summit. On Cori,
although the peak I/O bandwidth is 700 GB/s, the observed I/O
rate is much higher because the elapsed time by the benchmark
is overlapped by the computation phase. In ideal scenarios, if
the I/O phase is completely overlapped with the computation
phase, the observed I/O rate can be infinite. However, in the
write tests, data for the last time step to be written to file
does not have a computation phase to follow. Hence, the file
write phase is not overlapped with computation. Similarly,
for the first read phase in the read tests does not precede a
computation phase and there was no overlapping. Because of
these non-overlapped I/O phases, the observed I/O rates are
not infinite, but high. Another observation is that in the read
case, we do not see a performance drop from 2K to 4K MPI
ranks on Summit.

When data analysis applications read data, it is common-
place to read a partial amount of data or slices of data instead
of the entire data [19], [26]. As mentioned earlier, a big data
clustering application [27] reads the top k% of the particle
data to analyze, where k is variable. We mimic this pattern by



Figure 4: Cori - read - sync vs. async

Figure 5: Summit - read - sync vs. async

reading the top 10% of the 1D array data written by h5bench
write benchmark and comparing it with reading the entire data.
In both, “full read” and “partial read”, cases, we partition the
entire 1D array across all MPI ranks. In the “full read” case,
each MPI rank reads its entire partition, and in the “partial
read” case, each rank reads 10% of its partition.

In Figure 6, we compare the observed I/O time for reading
a partial amount of data and reading the entire dataset by a
various number of MPI ranks. Note that this is a weak scaling
test, where for each set of bars in the plot (from 16 to 512 ranks
on x-axis), the size of the 1D array increases. The number of
particles in each rank’s partition is equal to 16 x 21̂024 (16M).
As a result, the observed time is equal for both the partial and
full read cases, showing efficient scaling. Although each MPI
rank is reading only 10% of the data, the “partial read” time
is nearly 45% of the ‘full read” time. The observed time is
a combination of reading the metadata of all the datasets and
then reading the actual data, the metadata reading overhead is
common in both cases. In the “partial read” case, the time is
only reduced in reading the data, but not the metadata. Further
analysis of this time is needed to profile the metadata and the
data read times separately to identify any other inefficiencies.
We also compare the observed read rate for these two cases,
which understandably shows higher rates for reading the full
data as the amount of data transferred is 90% more than that
in the “partial read” case.

C. Impact of locality

In Figure 8, we compare the write rates on Cori for various
numbers of MPI ranks when the memory layout and file
layout are contiguous or compound data types. This plot shows
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Figure 7: A comparison of observed I/O rate for reading the
entire dataset and reading 10% of the dataset by each MPI
rank on Cori.

that when the memory layout and file layout are matching,
i.e., individual memory 1D arrays written as separate HDF5
datasets in the file (CC) and compound datatype in memory
written as an HDF5 compound datatype (II), the observed
write rates are superior. Since there is no difference in mapping
and no overhead of converting memory buffer to file layout,
these result in contiguous transfers of data and hence a good
write rate of 400 GB/s at the scale of 1024 MPI ranks and
more than 550 GB/s at the scale of 2048 MPI ranks. In the
other two cases, i.e., individual 1D arrays have to be converted
to an HDF5 compound datatype (CI) and an array of structures
in memory to individual HDF5 datasets (IC), the conversion
overhead is impacting performance and resulting in lower
than writing contiguous data. An interesting observation is
that forming an HDF5 compound datatype layout in a file
from individual 1D arrays (CI) causes significant overhead
and performs the worst of all these four patterns. Writing
individual HDF5 1D datasets by extracting data from an array
of structures achieves respectable write rates of more than 200
GB/s at 2048 MPI ranks.

D. Impact of the shape of arrays

In Figures 9 and 10, we show the performance when writing
data of different array dimensions on Cori and on Summit,
respectively. In Figures 11, we depict the observed read rates
for different array dimensional data on Cori. In these tests,
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Figure 8: Cori - write - patterns

we use configurations that write or read individual arrays
in memory to or from separate HDF5 datasets. In other
words, we did not use any array of structures or compound
datatypes. Our main observation is that writing or reading
the same amount of data in different dimensions achieved
relatively similar performance. Earlier studies demonstrated
that 3D decomposition achieves poor I/O performance [26].
However, other than the usual variance in performance, we
observed similar write and read performance with varying
dimensions. We have further studied the code used in [26]3.
We confirmed that the overhead in initializing the fill value in
NetCDF4 was the actual cause of poor performance than the
actual I/O latency. On Summit, we were observing the write
rates dropping at the scale of 4K cores, which needs further
investigation.
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Figure 9: Observed write rate on Cori with varying dimensions
of arrays (1D, 2D, and 3D) being written to Lustre with
different numbers of MPI ranks.

E. Burst Buffer vs. Lustre on Cori

In Figures 12 and 13, we compare the write and read
performance of writing data to the Lustre file system and the
DataWarp Burst Buffer on Cori. In these tests, we configured
the benchmarks to write or read 1D arrays into individual
HDF5 datasets in a file. As expected, we observed higher
I/O rates with using the Burst Buffer compared to those with
Lustre. However, when we consider performance beyond 64

3https://github.com/gflofst/e2e-hpdc2011
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Figure 10: Observed write rate on Summit with varying
dimensions of arrays (1D, 2D, and 3D) being written to GPFS
with different numbers of MPI ranks.
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Figure 11: Observed read rate on Cori with varying dimensions
of arrays (1D, 2D, and 3D) being read from Lustre with
different numbers of MPI ranks.

MPI ranks, the Burst Buffer performance 2.45× faster than
Lustre for writes on average. The read performance speedup
of the Burst Buffer over Lustre is 1.7×.
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Figure 12: Observed write rates of the DataWarp Burst Buffer
and Lustre on Cori.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduce h5bench, a suite of benchmarks
for performing writing and reading data in various I/O patterns
using the HDF5 API. These patterns represent I/O operations
considering data structures in memory and file layout, and
multi-dimensional arrays (1D, 2D, and 3D). We have also
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Figure 13: Observed read rates of the DataWarp Burst Buffer
and Lustre on Cori.

added new HDF5 functionality such as asynchronous I/O that
overlaps I/O phases with computation phases and can hide a
significant portion of I/O latency when there are multiple I/O
phases. Users can use the h5bench benchmark by setting
various configuration parameters. Our performance evaluation
of the benchmark on Cori (a Cray XC40 platform) and on
Summit at OLCF shows superior performance improvements
using asynchronous I/O. We also demonstrate the impact of in
memory and file layout data structures – i.e., I/O that doesn’t
require any transformation of data structure between memory
and file layouts achieve good performance. The benchmark is
available at https://github.com/hpc-io/h5bench
with a BSD-like license that allows external contributions
as well as using the code publicly. In the future, we plan
to integrate various benchmarks to the suite by adding new
features in HDF5, such as caching using memory and node-
local storage, compression, etc. We also packaged metadata
stress testing benchmarks in the h5bench suite, that were
developed by external developers. We will evaluate these
benchmarks as well after further optimizations.
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Kalé, S. Krishnamoorthy, J. Lifflander, H. Lu, E. Meneses, M. Snir,
Y. Sun, K. Taura, and P. Beckman, “Argobots: A Lightweight Low-Level
Threading and Tasking Framework,” IEEE Transactions on Parallel and
Distributed Systems, vol. 29, no. 3, pp. 512–526, 2018.

[18] K. Wu, S. Byna, B. Dong, and USDOE, “VPIC IO Utilities,” 12 2018.
[Online]. Available: https://www.osti.gov/biblio/1487266

[19] S. Byna, “BD-CATS-IO, Version 00,” 4 2017. [Online]. Available:
https://www.osti.gov/biblio/1459439

[20] S. Byna, J. Chou, O. Rübel, Prabhat, H. Karimabadi et al., “Parallel
I/O, Analysis, and Visualization of a Trillion Particle Simulation,” in
Supercomputing, 2012, pp. 59:1–59:12.
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