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Agenda

● Brief intro to HDF5
● Existing HDF5 benchmarks
● Issues and requirements
● h5bench
● Evaluation on Cori

○ Write benchmark
○ Read benchmark



HDF5 - I/O API, self-describing file format

● Self-describing file format, API, and tools designed 
to store, access, analyze, share, and preserve 
diverse, complex data in continuously evolving 
heterogeneous computing and storage environments
○ Maintained and developed by The HDF Group in 

collaboration with the ECP ExaIO team
○ https://github.com/HDFGroup/hdf5

● Heavily used library on DOE supercomputing 
systems

● Many ECP AD & ST teams have critical dependency 
on HDF5

https://github.com/HDFGroup/hdf5


Existing HDF5 performance benchmarks

● h5perf
● Application specific benchmarks

○ Flash-IO benchmark
○ HACC-IO
○ … 

● I/O patterns
○ IOR has a HDF5 output
○ MinIO
○ PIOK (Parallel I/O kernels)

■ VPIC-IO, BD-CATS-IO, VORPAL-IO, GCRM-IO
○ … 



Issues with existing benchmarks 

● Coverage of access patterns is sparse
● New HDF5 optimizations are not 

implemented 
○ Asynchronous I/O
○ Caching 
○ I/O between GPU and storage

● Other tuning parameters are not exercised
○ MPI-IO aggregation strategies (collective 

buffering settings)
○ File system-specific tuning parameters 

(alignment, striping, etc.)

Requirements
● Coverage of 

representative app I/O 
patterns (read / write, 
data / metadata, locality)

● Scalable
● Exercise new HDF5 

features
● Tuning parametersI/O 

software layers
○ File system layer



h5bench - A suite of HDF5 benchmarks

● Captures various I/O patterns
○ Locality in memory and in files

■ Contiguous, strided, compound data types (structures)
○ Array dimensionality - 1D, 2D, and 3D

● I/O modes 
○ Synchronous
○ Asynchronous - Implicit and explicit

■ to overlap I/O time between successive compute phases
● Processor type - CPUs and GPUs
● MPI-IO modes

○ Collective buffering on or off
● File system configuration

○ Alignment and striping



Other configurable options in h5bench

● Several configurable parameters
○ Scale -- number of MPI processes
○ Data size per MPI rank
○ Dimensionality
○ For read benchmark - read all data, partial data, random data
○ Emulated computation phase time
○ Memory limit for double-buffering in asynchronous I/O
○ MPI-IO collective buffering

● Metadata stress testing benchmarks



Code repository and usage instructions

● Available on GitHub for public access
○ https://github.com/hpc-io/h5bench
○ README.md has instructions to install, configure, and use
○ Contact: sbyna@lbl.gov / koziol@lbl.gov

● GPU benchmarks are in a separate branch
○ PR and code review in progress

● Open source to add new benchmarks or to fix current code
○ Communicate with us about any new benchmarks to add
○ Fork, add new HDF5 benchmarks / modify / bug fixes, and submit 

a PR

https://github.com/hpc-io/h5bench
mailto:sbyna@lbl.gov
mailto:koziol@lbl.gov


Early evaluation on Cori

● Cori - Cray XC40 system at NERSC
● Configuration used in early evaluation

○ Haswell partition with 32 cores per node
○ Lustre parallel file system

● I/O Patterns
○ Write benchmarks at various scales 

■ Dimensionality - 1D, 2D, and 3D
■ Locality - memory and file offsets
■ Synchronous and asynchronous I/O

○ Read benchmarks
■ Reading the entire data - synchronous and asynchronous
■ Reading a subset of data



Write benchmarks - 1D, 2D, 3D

● Contiguous in memory and in file
● 8 million particles per MPI rank 

(weak-scaling)
● 8 variables per particle
● Organized as 1D, 2D, and 3D

Initial results show similar 
performance for contiguous writes 
(in memory and in file) of 1D, 2D, and 
3D arrays
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Write benchmarks - Memory and file patterns
● Memory and file contiguity
● Contiguous - Memory buffers map 

to HDF5 file datasets directly
● Noncontiguous 

○ Memory buffer is a C struct 
○ HDF5 dataset is a compound 

datatype (C struct-like)

Constructing a compound datatype achieves 
poor performance

Direct mapping of memory and file data 
structures achieves good performance
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Write benchmarks - Sync vs. Async I/O

● Writing 5 time steps of data
● Computation phases between I/O 

phases
● Workloads similar to simulations 

that periodically checkpoint or 
write their memory state

I/O time is effectively overlapped 
by computation phases



Read benchmarks - Full data access

● Reading all HDF5 datasets that 
write benchmark stored

● 8 variables, 8 million particles per 
rank

● Single time step
● Synchronous and asynchronous 

modes
○ Read right after writing
○ Caching effects have not been 

isolated
○ Further testing is in progress



Read benchmarks - Partial 

● Read partial amount of data
○ First 10% particle data in 

each variable
● Reading full data achieves 

better I/O rate
○ Contiguous and large 

accesses
○ Further testing is in progress



Conclusions

● h5bench 
○ Provides a wide variety of I/O patterns
○ Allows weak-scaling and strong scaling
○ Exercises new HDF5 features
○ Configurable options for tuning parameters

● Evaluation to understand I/O behavior is in progress (Full paper)
● Future work

○ Add more HDF5 features -- caching on node-local storage, metadata 
buffering, new file system features (Lustre progressive file layouts, etc.)

○ Add more I/O kernels or RW patterns from ECP and EOD applications -
- variable length, streaming, ML / AI workloads

Thanks to ECP, and to the ExaIO HDF5 team (The HDF Group, ANL, LBL)


