Real-Time Data Analysis at NERSC: a Trial Run of Nascent Exascale Experimental Data Analysis

Johannes Blaschke¹, Aaron Brewster¹, Daniel Paley¹, Derek Mendez¹, Nicholas Sauter¹, Wilko Kroeger², Murali Shankar², Bjoern Enders¹, Deborah Bard¹

> ¹Lawrence Berkeley National Lab ²SLAC National Accelerator Lab

CUG, May 5, 2021

Serial Crystallography

EXASCALE COMPUTING PROJECT

PSII 2Fo-Fc and Fo-Fc at 2.07 Å, S3 state

Kern et al., 2018 Nature 563:421

When should I move onto the Next Sample?

- Beamtime is scarce!
- Critical live feedback:
 - Does the beam hit the sample?
 - Do we see crystals?
 - Does the data make sense?
 - What is the quality of the data?
- Can I move on to the next sample?

Experimentalists Are In The Driver's Seat Live Data Analysis for Experiments in 2020, and Beyond!

Click anywhere on this screen to play video

Deploying CCTBX at NERSC

Data Movement XRootD clusters

Data Analysis

- Data analysis follows sequential stages:
 - spotfinding
 indexing Bragg spots

Reprocessing

0

0

- model refinement
- integrating Bragg spots

ustre Filesystem

- Computational Weatherplot:
 - Each line shows work done by one MPI rank
 - There is no "the cctbx.xfel workload"

Start-Up and I/O (PSANA)
Spot Detection (DIALS)
Indexing (DIALS)
Refinement (DIALS)
Integrating (DIALS)

- Computational Weatherplot:
 - Each line shows work done by one MPI rank
 - There is no "the cctbx.xfel workload"

Start-Up and I/O (PSANA) Spot Detection (DIALS) Indexing (DIALS) Refinement (DIALS) Integrating (DIALS)

- Computational Weatherplot:
 - Each line shows work done by one MPI rank
 - There is no "the cctbx.xfel workload"

Start-Up and I/O (PSANA) Spot Detection (DIALS) Indexing (DIALS) Refinement (DIALS) Integrating (DIALS)

- Computational Weatherplot:
 - Each line shows work done by one MPI rank
 - There is no "the cctbx.xfel workload"

Start-Up and I/O (PSANA) Spot Detection (DIALS) Indexing (DIALS) Refinement (DIALS) Integrating (DIALS)

Workflow Coordination using NERSC Spin

- Home-grown workflow manager cctbx.xfel
 - mySQL database hosted on Spin (NERSC microservice platform)
 - Each worker commits progress to DB
 - o cctbx.xfel determines new analysis runs and "assembles" jobs (input files, job scripts, ...)
 - cctbx.xfel monitors slurm and DB, reporting live progress

XFEL as a Proxy for HPC Data Analysis Why is XFEL relevant to other "Data Analysis for Science" projects?

: collecting/transferring

: processing

: no live results

Reservation with 3 nodes, each run takes 1 unit of time to collect and process \Rightarrow can only process 3 yellow squares at once

Wallclock time \rightarrow

: collecting/transferring

: processing

: no live results

Reservation with 3 nodes, each run takes 1 unit of time to collect and process \Rightarrow can only process 3 yellow squares at once

NERSC

Wallclock time \rightarrow

20

: collecting/transferring

: processing

: no live results

Reservation with 3 nodes, each run takes 1 unit of time to collect and process \Rightarrow can only process 3 yellow squares at once

Wallclock time \rightarrow

Wallclock time \rightarrow

Bringing Science Solutions to the W

22

S. DEPARTMENT OF

• Reservation:

- 32 64 Haswell nodes for live data processing
- Can be used for preemptible jobs in the future (avoid idle nodes)

• Realtime QOS:

Flexibly add up to 20 Haswell nodes for reprocessing

Challenge 2: High-Speed Data (Network and I/O)

- In data analysis workflows, file systems and network can become bottlenecks
- I/O Optimization:
 - Optimize python logger for high-frequency parallel I/O
 - Write logs to Burst Buffer
- Experience:
 - Transfers ran smoothly, can switch redirect destination
 - FS performance limited the transfer rate
- Improvements:
 - Use SSD storage at LCLS to speed up transfers
 - Improve write performance at NERSC
 - Allow users to initiate the remote transfers
 - Better monitoring and alerting

Challenge 2: High-Speed Data (Network and I/O)

- In data analysis workflows, file systems and network can become bottlenecks
- I/O Optimization:
 - Optimize python logger for high-frequency parallel I/O
 - Write logs to Burst Buffer
- Experience:
 - Transfers ran smoothly, can switch redirect destination
 - FS performance limited the transfer rate
- Improvements:
 - Use SSD storage at LCLS to speed up transfers
 - Improve write performance at NERSC
 - Allow users to initiate the remote transfers
 - Better monitoring and alerting

Challenge 3: Realtime Monitoring and Workflow Coordination

- Need to identify and deal with variable performance (e.g. rank getting "stuck" on I/O)
- Weatherplots good for identifying load imbalance
- Ongoing research: How to integrate with workflow manager? How to automate?

Looking Forward: (Standardized) Facility APIs

What can an API do?

Vision: all NERSC interactions are callable; backend tools assist large or complex operations.

Endpoints prototyped or in prep:

/account	data about the user's projects, roles, groups and usage information.
/compute	run batch jobs, query job and queue statuses on compute resources.
/task	get info about asynchronous tasks (eg. from /compute or /storage).
/status	query the status of NERSC component system health
/storage	move data with Globus or between NERSC storage tiers
/reservations	submit and manage future compute reservations (in prep)
/utilities	traverse the filesystem, upload and download small files,
	and execute commands on NERSC systems

Airflow DAG's can make JID calls

Conclusion

Successful Realtime Data Analysis at NERSC

- Live Feedback:
 - 10 mins from end of run to the molecular structures
 - Enable real-time feedback to beamline staff
 - No babysitting from NERSC staff needed
- XFEL Flexes the following "HPC Muscles":
 - Urgent Computing Resources
 - High-Speed Data (Network and I/O)
 - Realtime Monitoring and Workflow Coordination
- Beamtime is scarce! Fast feedback is critical! github.com/cctbx/cctbx_project
 - G. Winter *et al.* DIALS: implementation and evaluation of a new integration package. *Acta Crystallogr D Struct Biol* **74**, 85-97 (2018)

Structure of Tethrene (determined during LV95 beamtime)

