

Acceptance Testing the Chicoma HPE Cray EX Supercomputer

Presented by: Jennifer K. Green, Scientist

Prepared by: K. Everson, P. Ferrell, J. Green, F. Lapid, D. Magee, J. Ogas, C. Seamons, N. Sly **Programming & Runtime Environments Team High Performance Computing Environments Los Alamos National Laboratory**

May 3, 2021 Presented to the CUG 2021 Virtual Conference

LA-UR-21-24209

Managed by Triad National Security, LLC., for the U.S. Department of Energy's NNSA

Background

- Los Alamos National Laboratory (LANL) remains at the forefront of addressing global crises using state-of-the-art computational resources to accelerate scientific innovation and discovery
- LANL is supplying high-performance computing (HPC) resources to contribute to the recovery from the impacts of SARS-CoV-2 (Coronavirus Pandemic)
- Chicoma is an HPE Cray EX Supercomputer recently installed at LANL to specifically serve as a platform to supply molecular dynamics simulation computing cycles for epidemiological modeling, bioinformatics, and chromosome/RNA simulations as part of the 2020 Coronavirus Aid, Relief, and Economic Security (CARES) Act

Overview of Presentation

- Chicoma HPE Cray EX System Description
- Acceptance Testing Approach
- Testing Tools Description
- Test Suite Contents
- Results
- Conclusions
- Future Work

The Chicoma Supercomputer

System Details

- Chicoma is an early deployment of HPE Cray EX
- Has a large-scale system architecture
- Brand new **Shasta** system software stack
- Features direct-to-chip liquid cooling
- HPE Slingshot interconnect
- AMD EPYC 7H12 processor
- In total
 - \circ more than 73,000 cores
 - \circ 300 TB of system memory

Testing Motivation and Context

- Preparing an Acceptance Testing Plan involves:
 - \circ $\$ Develop an understanding of the intended workloads for the system
 - Identify the specifications and expectations of performance and reliability for supporting the science
 - Develop a testing plan to ensure that the final installation has met those requirements
- Chicoma is among the earliest installations of the HPE Cray EX system, running the Shasta Architecture
 - Integration and testing activities continue to date
 - Continued testing ensures that the system can support a synthetic workload representative of the science for which it is intended

Acceptance Testing Approach

- Integration Testing
 - New architecture and progression of system software while developing the test suite required integration testing
- Functionality testing was accomplished during this phase
 - Evaluating the readiness of the Cray Programming Environment (CPE) to support workloads
 - Testing viability of containerized FEs to host the harness
 - Unprivileged container testing using Charliecloud
 - Usability of the supplied GROMACS application with COVID-19 study .tpr file
 - Scaling tests for MPI applications
 - Setting up Pavilion configurations and developing Acceptance Test Suite
- Seven Weeks from Plan Draft to Running Acceptance Tests
 - Drafted Testing Plan July 14, 2020
 - Implemented Plan September 3, 2020

Test Suite

DGEMM - single node performance

ExaMiniMD - proxy MD application

GROMACS Covid-19 problem - real world application

HPCG - full system benchmark

HPL (8 nodes, full system, single node) - various sized benchmark

LULESH - proxy application

MILC7 - Mini app QCD problem QuickSilver - CTS Mini App Stream - Memory benchmark SystemConfidence - network latency benchmark VPIC - Kinetic plasma modeling simulation Intel MPI Benchmarks - MPI-1 benchmark suite

Pavilion2 HPC Test Harness

Pavilion is a Python 3 (3.5+) based framework for running and analyzing tests targeting HPC systems

- Maintained by LANL's High Performance Computing Environments Group and is open-sourced for community contributions & usage
- Supplies a framework for creating sophisticated YAML configurations to automate the workflow of running jobs on HPC systems
- Plugin components include those for gathering system data, adding additional schedulers, parsing test results, and more
- Pavilion outputs results of every test in a json log file, which then is able to be processed by a number of analysis utilities
- <u>https://github.com/hpc/pavilion2/</u>

Splunk - Data Visualization Tool for Test Results

Intel MPI Benchmarks		Intel MPI Benchmarks	Intel MPI B	enchmarks	
cce - X	cray - ×	IMB Scattery guage cce	100	guaje cce	
IMB BCast quale or		10,000			
10,000					
1000	Splunk is a flexible data analytics platf machine-generated data	form that enables searching, monitoring and	analyzing	233 236	
IMB PingPing guaji too	Captures and correlates data in searchable database for supporting dashboard and graphical displays of data The monitoring infrastructure is supported by a distributed Splunk instance on every network,				
37 IMB PingPong guaj					
100		IVSIS			
5 10	• LANL's Splunk distributed monitoring infrastructure indexed Chicoma test result logs to enable automated results analysis and correlation of system events to test underperformance/failures				
		10 37 233 236 239 242 245 26 bd — AVG MS 1048574 — AVG MS 1024 — AVG MS 4	21 2690	37 233 236 — AVG MS 10	
	Alamos	S	plunł	(*)	
NATION	AL LABORATORY				

FAILING TESTS COUNT guaje 1599228000 - 1599400800 PASSING TESTS COUNT guaje 1599228000 - 1599400800 SUCCESS PERCENT guaje 99.45% 13,998 61 TEST SUCCESSES Success Percentage { 1 of 61 failures was TEST FAILURES legitimate }-{ HPCG test mis-configuration led to 60 failures } vpic dgemm sysconfidence examini-guaje gromacs { 225+ TFLOP/s - 256 nodes } hello_mpi HPL GFLOP/s Full System stream HPL Full System Performance guaje 300,000 hpcg-guaje 224,200 224,200 224 200 quicksilver 200,000 GFLOP/s milc7 129.000 121.350 113,700 lulesh_single_node hpl 100,000 imb hpl-full 460800 614400 valn MAX GFLOP/s MIN GFLOP/s AVG GFLOP/s .OS Alamos

11

Acceptance Testing Results Summary

Load Testing

59 Hours with no hardware failures or system related test failures

other (5) vpic

Table Count Tests 1599400800 - 1599699600 dgemm Only failures were due to oversubscribing or running too large a problem

TEST FAILURES

	testname 🗘	count ≑
1	dgemm	427
2	examini-guaje	8
3	gromacs	8
4	hello_mpi	8
5	hpcg-guaje	23
6	hpl	19
7	hpl-8	248
8	hpl-full	11
9	imb	18
10	lulesh_single_node	7
11	milc7	6
12	quicksilver	12
13	stream	18
14	sysconfidence	13
15	vpic	41

12

LULESH

HPL-8 Node Benchmark

HPL-8 Node

HPL Single Node Benchmarks

HPL Single Node Performance guaje

{ Some interesting HPL spikes in std dev }

15

Stream Memory Benchmark

Full System High Performance Conjugate Gradient (HPCG)

HPCG GFLOP/s Full System HPCG GFLOP/s Full System HPCG GFLOP/s Full System Cubesize Num Threads Cubesize Num Threads Cubesize Num Threads 128 • × 2 • X 128 • X 2 • X 64 • × 2 • X OMP PLACES OMP PLACES CPUBind OMP PLACES CPUBind CPUBind sockets • X sockets • × • X • X • X sockets • × threads threads sockets Sort by Sort by Sort by Stats by SLURM_JOBID 🔹 Stats by SLURM_JOBID 🔹 Stats by SLURM_JOBID 🔹 128 ppn X 2 threads X 256 guaje 128 128 ppn X 2 threads X 256 guaje 128 128 ppn X 2 threads X 256 guaje 64 10.000 10,000 10,000 8,897 8,815.34 7.860.03 7,655.2 (sdo 7,500 7,500 7,500 5,000 5,000 5,000 values(...gflops) values(...gflops) values(...gflops) 2,500 2,500 2,500 10971 10509 10962 10969 job_id job_id job_id

QuickSilver Proxy Application

Quicksilver Figure of Merit - guaje | sort stdev(fom)

Quicksilver

- MPI/MPI-OMP proxy application
- Included in the CTS Benchmarks Suite
- Solves a simplified dynamic Monte Carlo particle transport problem.
 - Its performance is bound by poor vectorization potential, latency bound table look-ups and a heavily branching or divergent code path.

VPIC LPI 3D Deck (Lyin-Sequoia)

Vector Particle-In-Cell (VPIC)

- Simulation code for modeling kinetic plasmas on one, two, or three dimensions.
- It employs a second-order, explicit, leapfrog algorithm to update charged particle positions and velocities in order to solve relativistic kinetic equations.
- The input deck, a modified version of lyin_sequoia problem conducted, exercises the problem that Lawrence Livermore National Laboratory used to evaluate their Sequoia system's potential to model the interaction of realistic fast-ignition-scale lasers with dense plasmas in three

VPIC Lyin-Sequoia

VPIC LPI 3D Deck: time to completion with 256 nodes.

Intel MPI Benchmarks

Intel MPI Benchmarks 100 IMB Alltoall guaje gcc_cray sn 10 1,000,000 100,000 10,000 614 620 624 627 617 630 id us 1,000 - AVG MS 1024 — AVG MS 4 — AVG MS 1048574 100 10 617 620 624 627 614 630 id - AVG MS 1024 - AVG MS 1048574 — AVG MS 4

IMB PingPong guaje gcc_cray

20

ExaMiniMD

ECP Proxy Application (Kokkos) Simplified MD Simulation

MILC

The MILC Code is a body of high performance research software written in C for doing SU(3) lattice gauge theory on high performance computers

22

DGEMM

DGEMM

- DGEMM was built with the Cray Libsci package and we weren't able to get the job to spread to both sockets of the nodes.
- We're working on a DGEMM built with OpenBLAS to see if we can overcome this issue, for improved performance.

GROMACS - COVID-19 Simulation

One major motivation for this effort was to ensure MD problems would run on the system. The repeatability of successful runs with a real GROMACS simulation proves it.

GROMACS Simulation

COVID-19 MD Sim

System Confidence Network Latency Test

Sysconfidence guaje Pair-wise Latency Test

Sysconfidence guaje usec 52376

Sysconfidence guaje mbpsec 52376

System Confidence

- Captures latency (usecs) and rate (MB/s)
- Consistent ~1 sec latency max measured for all buffer lengths
- Could be a test anomaly

Conclusions

- Chicoma was "accepted" by LANL after demonstrating that it was capable of sustaining a workload and measuring acceptable performance
- Chicoma was constructed to serve as the IC Program's Platform for supporting COVID-19 studies
- Chicoma is currently undergoing an upgrade to Shasta v1.4
- Tests will be repeated after that upgrade to ensure continued stability and performance of the machine
- Chicoma is currently running in a pre-production mode at LANL while efforts to fully integrate into production environments are underway
- Users are using the pre-production system to conduct their research for the IC Program

Future Work

- Pavilion tests are being developed to target unprivileged containerized runtimes on HPC resources at LANL
- This effort proved that Pavilion was able to satisfy the requirements to conduct Acceptance testing of future procurements
- Test implementations under Pavilion for Chicoma acceptance will be re-run during the course of transitioning the Chicoma system to full-production
- Results comparison of the initial baselined results will be rerun with upgrades, including the upgrade to Shasta v1.4, and conducted over the life-cycle of the machine to
 - identify any performance degradation
 - support optimization of configurations
 - feed into future procurements

