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Abstract—Since deploying the Titan supercomputer in 2012,
the Oak Ridge Leadership Computing Facility (OLCF) has
continued to support and promote GPU-accelerated computing
among its user community. Summit, the flagship system at
the OLCF — currently number 2 in the most recent TOP500
list — has a theoretical peak performance of approximately
200 petaflops. Because the majority of Summits computational
power comes from its 27,972 GPUs, users must port their
applications to one of the supported programming models
in order to make efficient use of the system. Looking ahead
to Frontier, the OLCF’s exascale supercomputer, users will
need to adapt to an entirely new ecosystem which will include
new hardware and software technologies. First, users will
need to familiarize themselves with the AMD Radeon GPU
architecture. Furthermore, users who have been previously
relying on CUDA will need to transition to the Heterogeneous-
Computing Interface for Portability (HIP) or one of the other
supported programming models (e.g., OpenMP, OpenACC).
In this work, we describe our initial experiences in porting
three applications or proxy apps currently running on Summit
to the HPE/Cray ecosystem to leverage the compute power
from AMD GPUs: minisweep, GenASiS, and Sparkler. Each
one is representative of current production workloads utilized
at the OLCF, different programming languages, and different
programming models. We also share lessons learned from
challenges encountered during the porting process and provide
preliminary results from our evaluation of the HPE/Cray
Programming Environment and the AMD software stack using
these key OLCF applications.
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I. INTRODUCTION

Since deploying the Titan supercomputer in 2012, the Oak
Ridge Leadership Computing Facility (OLCF) has continued
to support and promote GPU-accelerated computing among
its user community. Summit, the flagship system at the
OLCF and currently number 2 in the most recent TOP500
list, has a theoretical peak performance of approximately 200
petaflops. Because the majority of Summits computational
power comes from its 27,972 GPUs, users must port their
applications to one of the supported programming models
in order to make efficient use of the system.

Looking ahead to Frontier, the OLCFs exascale supercom-
puter, users will need to adapt to an entirely new ecosystem
which will include new hardware and software technologies.
First, users will need to familiarize themselves with a new

GPU architecture, the AMD Radeon GPU. In addition,
users that have been relying on NVIDIA’s CUDA API on
OLCFs Titan and Summit will need to transition to AMD’s
Heterogeneous-Computing Interface for Portability (HIP)
or another supported programming model (e.g., OpenMP
with target offload, OpenACC, Kokkos). To facilitate this
transition, the OLCF is working closely with HPE/Cray and
AMD to evaluate the programming environment for AMD
accelerators. This includes evaluation of new compilers and
tools as well as math libraries and supporting packages.

In this work, we describe our initial experiences in
porting three proxy applications, currently running on Sum-
mit, to the HPE/Cray ecosystem to leverage the compute
power from AMD GPUs. These applications include Min-
isweep [1], GENASIS [2], and Sparkler [3]. Minisweep is
a mini-application developed to simulate the computational
patterns used in the Denovo radiation transport application.
It is an MPI application written in C++ and has been ported
to several programming models and interfaces including:
CUDA, OpenMP (threaded and target offload), and Ope-
nACC. GENASIS (General Astrophysics Simulation System)
is a developing multi-physics code for large-scale simu-
lations of astrophysical phenomena. Its example problem
in GENASIS BASICS has been used to experiment with
different programming models includingOpenMP (threaded
and target offload), OpenACC, and CUDA. Sparkler is a
mini-application developed to mimic the computation per-
formed by the CoMet comparative genomics application [4].
Sparkler is an MPI application written in C++ that relies on
CUDA and cuBLAS. These applications are representative
of current production workloads utilized at the OLCF and
span different programming languages as well as program-
ming models.

In this work, we also share lessons learned from chal-
lenges encountered during the porting process. We provide
preliminary results from our evaluation of the HPE/Cray
Programming Environment and the AMD software stack us-
ing these key OLCF applications. The results presented will
be useful for the user community working to prepare their
applications for the arrival of the Frontier supercomputer.



II. RELATED WORK

When the OLCF deployed the Summit supercomputer, we
started offering a mechanism for our users to take advantage
of the OpenMP offload capabilities available in the OpenMP
4.5 specification. As a result, we began efforts to port
and evaluate key kernels that would help us gather lessons
learned that we could share with the user community. In [5],
we ported two of the same codes used here, minisweep and
GENASIS to a programming model new to the codes to
compare results between OpenACC and OpenMP offload.

Several efforts to port applications to HIP are in active
development as is the case for the Ginkgo linear algebra
package [6].

III. EXPERIMENTAL SETUP

For our experiments, we used the OLCF’s flagship system,
Summit, and one of the early access systems deployed in
preparation for the arrival of Frontier [7], Spock.

A. Summit

Summit, deployed in 2018, is currently the number two
fastest supercomputer in the world according to the most
recent TOP500 list (Nov 2020) [8]. Summit is an IBM
AC922 supercomputer comprised of 4,662 compute nodes,
an increase of 54 nodes since it was first put in production.

Each compute node has two 22-core POWER9 CPUs and
six NVIDIA Tesla V100 GPUs. The GPUs on the node are
interconnected via NVLink 2.0 which provides 50GB/s of
peak bandwidth between devices. As shown in Figure 1,
each POWER9 CPU is directly connected via NVLink 2.0
to three of the six GPUs.

Figure 1. Summit node architecture.

Summit is equipped with the IBM HPC Software Stack
which includes IBM Spectrum MPI as the MPI implemen-
tation, the IBM XL compiler, and IBM ESSL mathematics
library. OLCF also provides the GNU Compiler Collection
(GCC) compiler, the PGI compiler, the LLVM compiler,
and the NVIDIA HPC Software Development Kit (NVHPC
SDK) and corresponding toolchains with each one.

We used the following versions of these packages to
collect the results presented in this work:

• IBM XL 16.1.1 PTF5 compiler
• IBM Spectrum MPI 10.3.1.2
• NVIDIA CUDA 10.1.243

B. Spock

Spock is a 36-node Cray EX supercomputer deployed
at the OLCF to provide users with a platform similar
in architecture to the upcoming exascale supercomputer,
Frontier [7]. Each compute node on Spock has a single 64-
core AMD EPYC 7662 Rome CPU with 256GB of DDR4
memory and four AMD MI100 GPUs with 32GB HMB2
memory per device. As shown in Figure 2, the GPUs are
interconnected via AMD’s Infinity Fabric technology which
provides 46GB/s of peak bandwidth (unidirectional).

Spock compute nodes are connected with HPE’s Slingshot
10 interconnect technology [9].

Figure 2. Spock node architecture.

Being an HPE/Cray system, Spock is equipped with the
HPE/Cray Programming Environment (CPE) which, for this
platform, includes support for two compilers: the Cray
Compiling Environment (CCE), and the GNU Compiler
Collection (GCC). The CPE also includes Cray MPICH as
the MPI implementation that is optimized for the system.

In addition, AMD’s Radeon Open Compute (ROCm) stack
is available and includes the HIP programming framework
as well as ROCm libraries such as rocBLAS, hipBLAS,
rocFFT, RCCL, among others.

The OLCF also provides LLVM and the AMD AOMP
compilers to complement the other compilers already avail-
able in CPE.



We used these specific packages to collect results on
Spock for this paper:

• HPE/Cray Programming Environment 8.0.0 (CPE
21.04)

• Cray MPICH 8.1.4
• CCE 11.0.4
• ROCm 4.1.0
• AOMP 13

Table I provides a side-by-side comparison of the main
differences between Spock and the previously described
Summit supercomputer.

IV. EXPERIMENTAL RESULTS

A. GENASIS
GENASIS uses OpenMP target offload (available since

OpenMP 4.5 specifications) as its primary mechanism to
exploit GPUs for its computation kernels [10]. The majority
of its device memory management functionalities (alloca-
tion, data movement, mapping) are also implemented using
OpenMP API, except for a small number of functionalities
that are not yet implemented by current OpenMP compilers.
These include allocating to the host page-locked (pinned)
memory and getting device memory info.

Porting GENASIS to AMD GPU is therefore a relatively
straightforward experience. For OpenMP offloaded kernels,
technically there should not be any changes needed.

However, it turns out there are minor adjustments needed
due to the way CCE Fortran compiler maps OpenMP
construct to GPU. While IBM XL compiler maps !$OMP
parallel do to Nvidia GPU warp and threads, CCE
only maps !$OMP simd to AMD GPU’s analogue (i.e.
wavefront and work-item). The simplest solution is to add
the simd construct for every parallel do construct.

Perhaps a more portable solution is to use OpenMP 5
metadirective feature to generate the appropriate construct
based on compiler family. However, as of this writing, this
feature is not yet widely implemented. As such, we fall back
to use preprocessor macro to implement this change.

Certain kernels use reduction clause within its
target region. While IBM XL compiler implements
OpenMP 5 standard that automatically maps reduction vari-
ables as tofrom, the CCE compiler has yet implemented
this (as of this writing). Adding the mapping explicitly
was needed for the code to run correctly, at the cost of
reduced portability with CPU multi-threading version (i.e.
non-offload) of the code. Again in this case we fall back to
employ preprocessor.

For this work, we use an example problem
RiemannProblem in GENASIS BASICS [11]. The
BASICS division of GENASIS implements the utilitarian
functionality required for most large-scale physics
simulations. They include physical units and constants,
message passing, I/O, runtime parameter management, and

exploitation of hardware accelerators. These classes are
used in higher-level GENASIS divisions: MATHEMATICS
[12] and PHYSICS. Example problems implemented in
GENASIS BASICS use these facilities with a more simplified
distributed mesh and solvers. These solvers mimic the more
sophisticated ones in higher level (MATHEMATICS and
PHYSICS), allowing these example problems to be used as
proxy applications.

For earlier performance study, we have also ported the
kernels in GENASIS BASICS to CUDA. This port al-
lows us to compare CUDA and OpenMP performance
on Summit. Porting these CUDA kernels to HIP is very
straightforward. Other changing CUDA library calls to the
corresponding HIP calls, the only other change is how
to execute subroutine for kernel launch. CUDA uses the
“triple-chevron” <<< ... >>> syntax while HIP initially
used hipLaunchKernelGGL() function call. Since then,
support for the “triple-chevron” has been added.

In some kernels, we have inadvertently relied on Summit
unified shared memory feature for small arrays that are
needed on the GPUs. Because this feature does not yet
exist on Spock, we encountered page fault and crash for
these kernels. The solution is to copy these arrays to device
memory prior to kernel launch.

Figure 3 shows timings of kernels in GENASIS BASICS
RiemannProblem. The timings for OpenMP offload and
CUDA/HIP versions of the kernels are shown. On Summit,
we use the IBM XL compiler version 16 and NVIDIA
CUDA compiler version 10 nvcc, respectively. On Spock,
we use CCE compiler version 11 and ROCm compiler
version 4.1.0 for OpenMP offload and HIP, respectively.

On Figure 3 we observe that for most kernels OpenMP
and CUDA or HIP versions achieve near performance parity.
For the Difference and Fluxes kernels, CCE OpenMP
is noticeably slower than the HIP version. On Summit, this
is correspondingly observed on Fluxes kernel only. On the
other hand, we observe that CCE OpenMP perform better
for ApplyBoundaryConditions than HIP version of
the kernel. These differences in performance speak to opti-
mization that can be in the compilers.

B. Minisweep

Minisweep is a miniapplication that models the perfor-
mance characteritics of the Denovo Sn radiation transport
code, part of the Exnihilo package[1], [13]. It is written
in C and supports multiple programming models including
OpenMP 3.1, CUDA, OpenACC and OpenMP offload.

In the present work we port Minisweep to HIP and evalu-
ate on AMD GPUs. By construction, Minisweep attempts to
isolate into individual source code files the parts of the code
that are specific to a given programming model. In particular,
this includes code for memory and thread management,
transfers to and from the GPU, and kernel launch. Because
of this, we did not use the AMD hipify-perl tool to



Table I
SIDE-BY-SIDE COMPARISON BETWEEN SPOCK AND SUMMIT.

Component Spock Summit
Number of nodes 36 4,662

Network Slingshot 10 InfiniBand
Filesystem GPFS GPFS

Processors per Node 1 x 64-core AMD Rome CPU 2 x 22-core IBM POWER9 CPU
Memory per Node 256GB DDR4 256GB DDR4

Accelerators per Node 4 x AMD MI100 GPUs 6 x NVIDIA V100 GPUs
GPU-GPU Bandwidth 46+46 GB/s InfinityFabric 50 GB/s NVLink2
CPU-GPU Bandwidth 32+32 GB/s PCIe Gen4 50 GB/s NVLink2
Memory Bandwidth 205 GB/s DDR4 170 GB/s DDR4
Accelerator Memory 32GB HBM2 16GB HMB

Accelerator Memory Bandwidth 1.2 TB/s HMB2 900 GB/s HBM
Accelerator Programming Models HIP / ROCm, OpenMP offload CUDA, OpenMP offload, OpenACC

Figure 3. Kernel timings for GENASIS BASICS RiemannProblem with 2563 cells per GPU evolved for 50 timesteps. The bars represent the timing
with IBM XL compiler for OpenMP on Summit (blue), NVIDIA nvcc compiler for CUDA on Summit (green), CCE compiler for OpenMP on Spock
(yellow), and ROCm compiler for HIP on Spock (red).

translate CUDA to HIP automatically, but instead translated
the code manually. Owing to the near-isomorphism between
the CUDA and HIP APIs, the the hand translation is
straightforward and makes use of ifdefs to specify the
programming model option at compile time. A few differ-
ences required specific attention, such as __CUDA_ARCH__
vs. __HIP_DEVICE_COMPILE__ and the kernel launch
syntax. An early version of HIPConfig.cmake was in-
stalled to support the CMake configuration system. Overall,
the porting process was straightforward and required less
than two days of effort.

Preliminary performance results are shown in Figure 4.
For this test, the code is run on one rank using one GPU,
and the number of gridcells is varied. Performance rates are
shown for one NVIDIA V100 GPU on Summit and one

AMD MI100 GPU on Spock. The maximum performance
of this code on either architecture is roughly 5% of double
precision floating point peak, which is very typical for this
algorithm insofar as it is inherently memory bandwidth
limited. Performance on the MI100 and the V100 GPUs are
qualitatively similar, with better performance for very large
problem sizes, for which various overheads and latencies
are amortized. The larger memory of the MI100 GPU
allows for larger problems to be run, which further improves
efficiencies. The raw performance of the V100 GPU for
this problem is higher than the MI100 GPU. This is not
surprising insofar as the Minisweep implementation has been
heavily tuned to the NVIDIA architecture, and for these
preliminary tests the code has not been significantly re-tuned
for the AMD architecture. It is expected that further tuning



effort in the future will improve performance for the MI100
GPU case.

Figure 4. Minisweep performance results

C. Sparkler

Sparkler is a mini-application developed at ORNL to
mimic the computations executed by the CoMet compu-
tational genomics code [4], [14]. Sparkler computes dense
matrix-matrix multiplication for small integer elements. In
particular, Sparkler computes the Custom Correlation Co-
efficient (CCC) metric. Like CoMet, Sparkler is written in
C++ and uses MPI and CUDA.

Sparkler was also featured in 2019 as the mystery ap-
plication for the Student Cluster Competition at the 2019
International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC19) held in Denver,
CO [15].

Given that Sparkler already used CUDA, we used the
hipify-perl script provided as part of the AMD ROCm
stack to do the initial port. As shown in Listing 1, in three
cases, an exact translation from CUDA to HIP was not
available. For that reason, CUBLAS_TENSOR_OP_MATH
and cublasSetMathMode were removed, and
CUBLAS_GEMM_ALGO4_TENSOR_OP was replaced
with HIPBLAS_GEMM_DEFAULT.

With those changes, we were able to successfully compile
the HIP version of Sparkler on Spock using ROCm 4.1.0’s
hipcc and linking explicitly to the Cray MPICH libraries.

We then conducted experiments on a single node of Sum-
mit and a single node of Spock to compare the performance
of both implementations. The first problem size chosen used
4,000 vectors with 90,000 fields and, as shown in Figure 5,
we were able to obtain nearly identical performance on a
single NVIDIA V100 GPU and a single AMD MI100 GPU.
As we increased the number of processes to fully utilize a
Spock node with 4 GPUs, we noticed that the performance
obtained on Summit was approximately 21% higher than on
the AMD platform.

Figure 5. Sparkler performance on Summit and Spock using 4,000 vectors
and 90,000 fields over 400 iterations.

A similar experiment conducted using 15,000 vectors
demonstrated that on larger problems the overheads can be
amortized and we can obtain better performance on Spock
as shown in Figure 6.

Figure 6. Sparkler performance on Summit and Spock using 15,000 vectors
and 90,000 fields over 400 iterations.

To better understand the performance difference, we used
rocprof to profile the code using a 8 iterations instead of
400. Unfortunately, we encountered runtime issues with the
tool that prevented us from generating a trace using ROCm
4.1.0. The issues were due to a bug in the Spack [16] pack-
age provided for ‘rocprof‘ and ‘roctracer‘ when installed to a
non-default location. These issues were corrected in ROCm
4.2.0, and once available on Spock, we were able to capture
a profile and trace using rocprof --timestamp on
--hip-trace --stats ./sparkler. The resulting
JSON file can be displayed using Google Chrome’s tracing
tool (i.e., chrome://tracing) as shown in Figure 7. The
trace shows nine different data transfers, one from the host
to the device at the beginning of the application and eight
transfers from the device to the host after every iteration.



1 $ hipify-perl main.cu
2 warning: main.cu:398: unsupported identifier "CUBLAS_GEMM_ALGO4_TENSOR_OP"
3 warning: main.cu:482: unsupported identifier "cublasSetMathMode"
4 warning: main.cu:483: deprecated identifier "CUBLAS_TENSOR_OP_MATH" since CUDA 11.0
5 warning: main.cu:483: unsupported identifier "CUBLAS_TENSOR_OP_MATH"

Listing 1. Sample output from running hipify-perl on Sparkler’s main.cu file.

Figure 7. Sparkler rocprof profile on Spock using 15,000 vectors and 90,000 fields over 8 iterations.

The version of rocprof available on Spock does not
yet combine traces from ranks on different nodes. However,
since we are running all processes on the same node for
the Sparkler experiments, we are able to use the method
recommended at [17] to profile the MPI job. Further
improvements to this and the tracing tools are expected in
future versions of ROCm that will allow users to more easily
study their multi-node applications.

V. LESSONS LEARNED

During this work, we encountered several issues that
we think would be relevant to others currently porting
applications to an AMD-based Cray EX supercomputer. In
this section, we include a selection of these.

• As of this writing, the HPE/Cray PE does not include
the ROCm stack and as a result, we have to install it
on our facility maintained software stack. This process
has not being as straightforward as we had hoped. We
currently use Spack packages developed by AMD to
install ROCm [18] on an NFS area. However, these
installs all components in their own prefixes when
ROCm and its tools expect all to be in the default lo-

cation (i.e., /opt/rocm-<version>). These issues
are currently being investigated by AMD and we expect
updates to the Spack packages will eventually address
them.

• The HPE/Cray PE 21.04, currently provides toolchains
for CCE and GCC. However, other compilers like
AOMP is in development.

• As identified by GENASIS the AMD flang compiler
does not yet provide the require features needed by
OpenMP codes.

• As seen in this work, while tools like rocprof can
already be useful, because they are in active develop-
ment, they are not as robust and fully featured as those
available on NVIDIA platforms. Future releases of the
tools will continue adding features and will provide
support for future devices.

• Because ROCm is in active development, releases of
new versions are frequent. At the time of this writing,
the HPE/Cray PE currently does not yet support the
latest ROCm release 4.2.0.

• As noted in the Sparkler experiments, SLURM binding
and mapping for GPUs is a relatively new feature which



will require user education and also close collaboration
with the SchedMD team.

• In this work, we found that porting codes that already
support CUDA to be a simple and straightforward
process. However, unsurprisingly, to get the most out
of the new architecture additional tuning would be
required.

VI. CONCLUSION

In this paper, we describe our first experiences porting
key application kernels or mini-applications to a platform
equipped with AMD GPUs using the HPE/Cray program-
ming environment and the AMD ROCm stack.

Our contribution includes porting the three applications,
GENASIS , Minisweep, and Sparkler, to HIP and evaluating
their performance on the latest AMD GPU device available
to the public.

As discussed here, porting the selected CUDA-based
codes to Spock was fairly straightforward. Due to the fact
that AMD ROCm is a younger platform than CUDA, we
found a few cases in which exact matches were not available.
However, we were able to successfully execute the three
codes studied on the AMD MI100 GPUs. Although we were
able to obtain comparable performance “out-of-the-box” for
specific problem sizes, additional optimizations would be
needed in order to fully utilize the compute power of the
MI100 GPU.

Furthermore, as was shown in the GENASIS case, the
AMD compiler, which is in active development, does not yet
provide the same level of OpenMP support as more mature
compilers like CCE or GCC.

The early experiences presented here could be useful for
users that are starting to port codes to AMD accelerators.
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