
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Early Experiences Evaluating the HPE/Cray
Ecosystem for AMD GPUs

Verónica G. Melesse Vergara
Reuben D. Budiardja
Wayne Joubert
Oak Ridge National Laboratory

Cray User Group 2021
May 3, 2021
Virtual

22

Outline

• The Oak Ridge Leadership Computing Facility (OLCF)

• Background & Motivation

• Experimental Methods

– Target Systems

– Programming Models

• Results

• Lessons Learned

• Summary

3

The U.S. Department of Energy Office of Science and its
role in computing

• DOE is leader in open
High-Performance Computing

• Provide the world’s most
powerful computational tools
for open science

• Access is free to researchers
who publish

• Boost US competitiveness

• Attract the best and brightest
researchers

NERSC
Cori is 30 PF

OLCF
Summit is 200 PF

ALCF
Theta is 12 PF

4

The Oak Ridge Leadership Computing Facility

500-fold
improvement

in 9 years

OLCF-5

OLCF-4
~1
EF

200
PF

27
PF

2012
Cray XK7

Titan

2021
Frontier

2018
IBM

Summit

● Transitioning from Titan to Summit was fairly straightforward as they both use NVIDIA GPUs
● Transitioning from Summit to Frontier will require porting efforts from application teams

○ Understanding the maturity of the tools available and learning from porting experiences will
be key for the OLCF user community

5

Systems

Spock

64-core AMD Rome

Summit

66

GenASiS (General Astrophysics Simulation System)

• Use GenASiS Basics for this work: a simplified version of divergence solvers
without the sophistication of multi-patches meshes and other physics
modules (self-gravity, radiations, nuclear EoS, …)

• GenASiS Basics: OpenMP offload and CUDA versions for performance testing

• OpenMP Porting is largely straightforward, except for
– Different mapping of directives to threads, need simd in CCE

!$OMP target teams distribute simd
– Not yet implemented default mapping rule for reduction variable in CCE, need explicit

mapping
– Uncovered several Fortran and OpenMP bugs

• CUDA (V100) to HIP (MI100) porting:
– No Unified Memory support used to move array indices and offset

77

88

99

Minisweep
Overview

• Minisweep is an Sn radiation transport miniapp corresponding to the Denovo
radiation transport code (part of Exnihilo package)

• written in C, supports OpenMP 3.1, CUDA, OpenACC, OpenMP offload, now
HIP

Porting experience:

• code already had CUDA constructs (mostly) in single file, using #ifdefs
• easy to manually port to HIP since API mostly isomorphic to CUDA
• a few differences, like __CUDA_ARCH__ vs. __HIP_DEVICE_COMPILE__,

kernel launch syntax
• used early version of HIPLOCALConfig.cmake, made adjustments to

CMakeLists.txt
• overall straightforward experience

1010

Minisweep

Performance Results

• preliminary findings
• run on 1 rank, 1 GPU, different grid

sizes
• typical memory-bound performance,

~ 5% of FP peak
• MI100 and V100 qualitatively similar
• larger MI100 memory allows larger

problem size
• performance better for larger

problems -- amortized overheads
• slower Spock performance may be

due to various reasons, possibly PCIe
rate

1111

Sparkler: Porting Experience

Overview

• Mini-application for the CoMet* computational genomics code
• Dense matrix-matrix multiplication for small integer elements

Porting experience to HIP:

• Code already supported CUDA
• Fairly straightforward though some options not directly translatable
• Started with hipify-perl script provided in ROCm 4.1.0
• Exact translation for the following were not available:

– CUBLAS_GEMM_ALGO4_TENSOR_OP -> HIPBLAS_GEMM_DEFAULT
– CUBLAS_TENSOR_OP_MATH -> removed
– cublasSetMathMode -> removed

• HIP build uses ROCm 4.1.0 and PrgEnv-cray 8.0.0 (default on Spock)
• CUDA build uses CUDA 11.0.3, GCC 9.1.0, and ESSL 6.3.0 (default on Peak)

(*) https://github.com/wdj/comet

https://github.com/wdj/comet

1212

Sparkler: Results

• Experiments on a single node of
each system

• Comparable performance for 1
and 2 devices

• Initially observed performance
degradation for 4 GPU case
– Utilizing SLURM GPU binding

capabilities partially addresses the
issue

• Better performance on Spock for
larger problems -- amortized
overheads

1313

Conclusions

• The porting process from NVIDIA to AMD GPU platforms is fairly
straightforward
– Functionality can be obtained by both manual or script-aided ports from CUDA to

HIP
– OpenMP offloading requires minimal changes particularly with mapping

• Obtaining comparable performance “out of the box” is possible for specific
cases even in the controlled environment of these mini-apps

• Additional tuning and potential code changes needed depending on the
use case

• Further investigation being done to understand performance degradation
of specific kernels of GenASiS, minisweep, and small Sparkler problems

1414

Thank you! Questions?

