
A Step Towards the Final Frontier: Lessons Learned from Acceptance Testing of the
First HPE/Cray EX 3000 System at ORNL

Verónica G. Vergara Larrea, Reuben D. Budiardja, Paul Peltz, Jeffery Niles, Christopher Zimmer,
Daniel Dietz, Christopher Fuson, Hong Liu, Paul Newman, James Simmons, Christopher Muzyn

National Center for Computational Sciences
Oak Ridge National Laboratory

Oak Ridge, TN, USA
Email: vergaravg@ornl.gov

Abstract—In this paper, we summarize the deployment of
the Air Force Weather (AFW) HPC11 system at Oak Ridge
National Laboratory (ORNL) including the process followed
to successfully complete acceptance testing of the system.
HPC11 is the first HPE/Cray EX 3000 system that has been
successfully released to its user community in a federal facility.
HPC11 consists of two identical 800-node supercomputers,
Fawbush and Miller, with access to two independent and
identical Lustre parallel file systems. HPC11 is equipped with
Slingshot 10 interconnect technology and relies on the HPE
Performance Cluster Manager (HPCM) software for system
configuration. ORNL has a clearly defined acceptance testing
process used to ensure that every new system deployed can
provide the necessary capabilities to support user workloads.
We worked closely with HPE and AFW to develop a set of
tests that used the United Kingdom’s Meteorological Office’s
Unified Model (UM) and 4DVAR. We also included benchmarks
and applications from the Oak Ridge Leadership Computing
Facility (OLCF) portfolio to fully exercise the HPE/Cray
programming environment and evaluate the functionality and
performance of the system. Acceptance testing of HPC11
required parallel execution of each element on Fawbush and
Miller. In addition, careful coordination was needed to ensure
successful acceptance of the newly deployed Lustre file systems
alongside the compute resources. In this work, we present
test results from specific system components and provide an
overview of the issues identified, challenges encountered, and
the lessons learned along the way.

Keywords-acceptance testing; system test;

I. INTRODUCTION

In this paper, we summarize the deployment of the Air
Force Weather (AFW) HPC11 system at Oak Ridge National
Laboratory (ORNL) including the process followed to suc-
cessfully complete acceptance testing of the system.

To our knowledge, HPC11 is the first HPE/Cray EX
3000 system that has been successfully released to its user
community. The HPC11 system consists of two identical
HPE/Cray EX 3000 supercomputers, Fawbush and Miller.
HPC11 is the first deployed system at ORNL equipped
with Slingshot 10 interconnect technology and also the first
relying on the HPE Performance Cluster Manager (HPCM)
software for system configuration. Each compute resource
consists of 800 nodes each with two 64-core AMD Rome

CPUs and 256GB of memory. In addition, HPC11 has access
to two independent and identical high performance Lustre
parallel file systems.

As described in [1], ORNL has established a clearly
defined acceptance testing process that has been used to
successfully deploy its last three flagship systems: Jaguar,
Titan, and Summit. The acceptance testing process includes
four different test elements which are used to ensure that
every new system deployed can provide the necessary ca-
pabilities to support its user workloads. The four elements
include a vendor test, a functionality test, a performance
test, and a stability test. A key requirement of ORNL’s
acceptance test is to be able to simulate a realistic workload.
We achieved this goal by selecting applications that are
representative of the target user community’s workflows. Our
team worked closely with HPE and AFW subject matter
experts to develop a set of tests that used United Kingdom’s
Meteorological Office’s Unified Model (UM) and 4DVAR.
We also included additional benchmarks and applications
to fully exercise the HPE/Cray programming environment.
We relied on standard benchmark and test suites to evaluate
the functionality and performance of both the hardware
and the software stack. We used the High-Performance
Linpack (HPL) and STREAM benchmarks during the vendor
test element. We also utilized the OpenMP Validation &
Verification suite [2], the Standard Performance Corporation
High Performance Group (SPEC HPG) suites[3], and the
OSU Microbenchmarks [4] to evaluate the OpenMP and
MPI implementations available on the system during the
functionality test element. We complemented these with
additional applications from the Oak Ridge Leadership
Computing Facility (OLCF) portfolio including LSMS [5],
GenASiS [6], minisweep [7], among others.

Acceptance testing of HPC11 required parallel indepen-
dent execution of each acceptance test element on Fawbush
and Miller. In addition, careful coordination was needed to
ensure successful acceptance of the newly deployed Lustre
file systems alongside the compute resources.

In this work, we present test results from specific sys-
tem components including: network, file system, system



Figure 1. High Level Diagram of HPC11.

Figure 2. Node Design of HPC11.

management, programming environment, and tools. We also
provide an overview of the issues identified, challenges
encountered, and the lessons learned along the way that
would be useful for other sites currently working on similar
system deployments.

II. SYSTEM ARCHITECTURE

HPC11 consists of two identical, independent HPE/Cray
EX 3000 supercomputers, Fawbush and Miller, with access
to two identical, independent Lustre parallel file systems,
Storm and Cyclone.

A. Compute System

Each compute resource consists of 800 compute nodes
each with two 64-core AMD Rome CPUs and 256 GB of
memory [8]. The compute nodes are connected via Sling-
shot 10 interconnect technology configured in a Dragonfly
topology. Figure 1 shows the HPC11 high level diagram.
Figure 2 shows the HPC11 node design of an AMD Epyc
Processor.

1) System Configuration: HPC11 leverages the HPE Per-
formance Cluster Manager (HPCM) for system configura-
tion. HPCM is a fully featured cluster management suite
that is responsible for the life cycle management of a HPC
system. The software provides tools for switch management,
image curation and provisioning, monitoring and health

Figure 3. Slurm job federation on HPC11.

management, and cluster setup. HPCM is a more traditional
cluster management suite of tools that has adopted some
modern aspects of system monitoring and metric collecting
through tools like Kafka, ELK, and Alerta. HPCM has a
decade long history of supporting HPE and SGI clusters.
When Cray was acquired by HPE, they made a decision to
add Cray EX support to HPCM as well.

The HPC11 system was one of the first customer systems
to utilize this new Cray EX hardware support in an early
HPCM 1.4 release. We worked with the HPCM developers
to test and improve the early HPCM release. There was an
initial learning curve and we encountered issues reconfig-
uring the system from a Shasta Cray System Management
(CSM) configured system to an HPCM configured system,
but those were quickly resolved with assistance from the
HPCM developers. We were able to make fast progress
reinstalling the system and testing the usability of the HPCM
solution. Because we were able to quickly deploy an HPCM
configured system, engineers and project management de-
cided to pursue HPCM as the acceptance path for the HPC11
system.

HPCM management system is comprised of one admin
node and three leader nodes. The admin node is the
single point of management of the HPCM system and the
leader nodes are responsible for scaling those critical
services up as the system size increases. HPCM does have a
high-availability model that we did not choose to pursue to
provide more resiliency, but since the HPC11 is actually a
dual cluster, the resilience is pushed into the two hall design
and federated scheduling system (see Figure 1. The leader
nodes can also be scaled up in sets of three, if necessary,
as a cluster grows in size, but for the scale of the HPC11
system three leader nodes is an adequate number for each
system.

2) Federated Scheduling: Slurm, which is developed and
supported by SchedMD, was the scheduler selected to be
used on the HPC11 system. Slurm has a feature called
Federated Scheduling which allows users to submit a job to a
cluster and then Slurm replicates that job across all available
clusters in the federation. As shown in Figure 3, the job is
tracked and managed by the individual cluster scheduler and
whichever cluster is able to run it first will run the job and



cancel the job on any other clusters it is also scheduled upon.
This allows greater utilization of a two cluster design rather
than having a production and development cluster requiring
users to switch between them when the production system is
down for maintenance. One cluster can also suffer from an
unexpected failure and while the current running jobs will
fail and requeue, the dual scheduled jobs that are currently
queued on the other cluster will still have an opportunity to
run on the still operational cluster. Users should not need to
know about which cluster their job is scheduled to run on
and simply have to submit it and let the federated scheduling
system manage the job. This will allow users to not have to
guess which cluster they should submit to in order to get
their job to be scheduled to run first because the scheduler
will handle that for them.

3) Network: HPC11 utilizes a Slingshot 10 high speed
network. The network is composed of Mellanox Connect-X
5 100G ethernet network interface cards and HPE Rosetta
switches. The Slingshot network brings significant advance-
ments in state-of-the-art congestion control and adaptive
routing improving the bandwidth utilization and reducing
tail latency on large HPC networks. Each Hall of HPC11
is broken into a 3-Hop dragonfly network with 4 dragonfly
groups per hall. Each group contains 16 Rosetta switches
configured where each switch has 16 links for computes,
32 links for intra-group connectivity, and 16 links for inter-
group (global connectivity). Each dragonfly group contains
200 compute nodes with a global connectivity of 51.2 Tbps.

The edge connection into the HPC11 system was a
constantly evolving topic leading up to acceptance. When
the system was originally designed to run the Shasta soft-
ware stack there was a Customer Access Network (CAN)
designed to provide an edge connection from the internal
ethernet network out to the customer network. When we
switched to using HPCM, that was no longer an option as
the CAN was a Shasta-specific component, and a supported
edge connection method was not available due to the fact
that the HPCM-managed solution for Cray EX was still
under active development. In order to fill this gap and to
provide a resilient login and system services deployment, we
designed and introduced a “Hall C” network that provides
edge routing from the Slingshot network into the ORNL
network.

The “Hall C” network includes of login nodes, Slurm
nodes, and the Slingshot edge connections into two Arista
switches. This allows login nodes and Slurm nodes to
be independent from the compute Slingshot network. The
advantage this provides is that each of the compute clusters
can have independent fabric managers and can be taken
down for maintenance without affecting the login and Slurm
nodes. The login nodes have a direct Lustre connection
rather than routing through the Slingshot network and the
Slurm scheduler node is still available to the users even when
the rest of the Slingshot network may be down.

With the change to HPCM, the network had to be
redesigned to include a modified ingress. This included
new switch hardware and routing design. Network topology
now includes a routed link for Slurm, Slingshot, and login
nodes. This change simplified the overall design and network
segmentation.

4) Software Stack: At the time of acceptance, the soft-
ware stack comprised of a pre-release version of HPCM
1.4.1, Cray OS 1.3, and the Slingshot fabric manager 1.3.
The Cray OS and fabric manager were originally tied to
Shasta releases so we needed to extract individual compo-
nents from them to create the full software stack for HPCM
that we would run for acceptance. HPCM was described in
Section II-A1. In this section we will discuss the Cray OS
and the Slingshot fabric manager.

HPCM supports the SUSE Linux Enterprise Server
(SLES) 15 SP2 operating system for the compute node
image, but we wanted to provide the Cray Operating System
because it has a HPC optimized kernel running on SLES 15
SP1 OS. This choice allowed us to provide the Cray kernel
along with all of the drivers compiled against it rather than
having to manage that complete stack. With minimal effort,
we combined the HPCM provided repositories with the Cray
OS repositories and made a hybrid image for the compute
nodes to boot.

The Slingshot fabric manager, at the time of acceptance,
was only provided as a container in the Shasta release.
We extracted that fabric manager from the container and
developed a method for it to run natively on the admin
node. This allowed us to provide an initial version of
the standalone Slingshot fabric manager to be used for
acceptance without relying on any container services.

For HPC11 acceptance testing, we used the October 2020
HPE/Cray programming environment (PE 20.10) which in-
cludes the Cray Compiler Environment 10.0.4, Cray MPICH
8.0.16, and Cray LibSci 20.10.1.2.

5) Telemetry: Metrics and logging for the HPC11 system
are sent to both a remote Elasticsearch instance for long term
storage and a system local short term Elasticsearch. The
short-term instance receives only logs and metrics from the
HPCM metric pipeline, which pertains to the system, nodes,
network, and facilities. As shown in Figure 4, these metrics
are also shipped out to the aforementioned remote Elas-
ticsearch instance, in addition to metrics regarding Slurm
scheduling, GPU usage (where applicable), and filesystem
metrics.

The HPCM system local store is aggregated using Mes-
sage Queuing Telemetry Transport (MQTT) brokers, which
collect metrics from their various sources and forward them
into a centralized Kafka bus. The Kafka bus serves as the
central location to obtain the internal metrics. From here,
we employ a kafka-elastic connector to send to the local
Elasticsearch store.

For the long-term store, we employ Logstash as a buffered



Figure 4. Telemetry system overview.

pipeline between Kafka and the remote long-term store. The
Logstash buffer is intended to provide approximately 5 hours
of storage in the event of connection loss. The Logstash
instance is also where we inject any custom metrics that
HPCM does not collect for us, using custom Python metrics
collectors. Logstash is also responsible for sending data to
the remote Elasticsearch store.

B. Storage System
HPC11 also includes two identical, independent Lustre

parallel file systems, Storm and Cyclone. Each file system
provides 7.5 PB of usable capacity and performs at ap-
proximately 45GB/s each for sequential read and write I/O
operations. Additionally, each file system has 110 TB of
flash capacity for future data-on-metadata (DoM) use.

1) Hardware: From a hardware perspective, each file
system is largely based off a single DDN SFA14KX. The
SFA14KX head unit is connected to 10 disk enclosures
and presents 12 virtual disks (LUNs) to six physical OSS
nodes via SRP over direct-connect InfiniBand. A single ZFS-
backed object storage target (OST) is created on each of
these 12 virtual disks. For metadata targets (MDTs), a single
DDN SFA200NV is direct-connected to two metadata server
(MDS) nodes. The SFA200NV is formatted into four virtual
disks, two of which are presented as primary to each MDS.
These two virtual disks are formatted into a single ZFS pool
which is then used as the MDT.

Each file system node is interconnected by 2x100G
bonded (active-active) diverse ethernet links to two in-

dependent network switches. These switches are directly
connected to the compute fabric.

2) Software stack: Storm and Cyclone were ultimately
accepted with RHEL 7.9 (3.10.0-1160.6.1 kernel), ZFS
0.8.5, and Lustre 2.12.6 (with patches). We completed
testing using fio 3.7 and IOR/mdtest 3.2.1.

III. HPC11 ACCEPTANCE TEST PLAN

HPC11 acceptance testing consisted of two separate ac-
tivities that were executed in parallel: compute and storage
acceptance. Compute acceptance includes the following test
elements: vendor test, functionality test, performance test,
and stability test. Storage acceptance is comprised of the
following test elements: hardware test, functionality test,
performance test, and stability test.

As shown in Figure 5, in order to optimize the schedule,
we executed a single combined stability test period on each
cluster to evaluate the stability of the compute and file
system resources.

Each test element for compute and storage acceptance is
described in this section.

A. Compute Acceptance Test Elements

1) Vendor testing (VT): This element is executed by the
vendor and includes collecting results from component hard-
ware diagnostics, benchmark results, and contractual Figure-
of-Merit (FOM) deliverables. For HPC11, application-level
performance requirements were set for the two primary
applications: UM and 4DVAR.



Figure 5. HPC11 Acceptance Test workflow.

Table I
DEFECT SEVERITY LEVEL CLASSIFICATION

Severity Description
Level 1 A critical component of the system is down

or an issue causes significant disruption to
workloads (e.g., scheduling is interrupted,
incorrect answers produced, data corruption).

Level 2 Service is partially interrupted or impaired and a
workaround is not available.

Level 3 A problem that impacts specific workloads or batch
jobs without interruption to service.

Level 4 A problem that has minimal impact to users and can
be circumvented.

2) Functionality testing (FT): This element ensures indi-
vidual components of the hardware and software stack are
working correctly. It also verifies correct functionality of the
selected realistic workloads. The following tests are executed
in this element:

• System Administration: cold and warm boot of the full
system, failure injection, telemetry data capture, among
others

• Network test: injection bandwidth per node, latency,
global bandwidth

• Scheduler and job launch tests: SLURM layout, job
federation

• Component tests: HPL, STREAM
• Programming Environment tests: compilers, MPI, tools
• Realistic workloads: math and I/O libraries

3) Performance testing (PT): This element focuses on
workloads specific to the individual program as well as
contractual benchmarks. In this element, tests are executed
in isolation to obtain reference values on a quiet system.

4) Stability testing (ST): This element simulates a real-
istic environment by combining code development activities
with batch workloads. During this element, the OLCF Test
Harness [9], [10] is used to maintain a continuous stream
of jobs running on the system. The stability test period for
each cluster, Fawbush and Miller, was 14 days.

During ST, we must identify a root cause for all failures.
In addition, all issues are classified based on severity as
specified in Table I. If a critical issue emerges during ST,
the entire ST period must be restarted after the issue is
addressed.

B. Storage Acceptance Test Elements

1) Hardware testing (HW): Hardware testing typically
includes a verification against the bill of materials (BOM)
and requires successful completion of power-on self-test
(POST) procedures. At this stage, all dead-on-arrival (DOA)
hardware is identified and replaced.

2) Functionality testing (FT): Functionality testing of
the storage system ensures that specific features of the
hardware function as expected. In particular, we focus on
block device setup, power failure scenarios, and component
failure scenarios.

3) Perormance testing (PT): Performance testing of the
storage system ensures that the system meets the perfor-
mance criteria required. This includes block level bench-
marks, client level benchmarks, and full file system bench-
marks.

4) Stability testing (ST): Stability testing of the storage
system includes maintaining a known consistent workload
for an extended period of time. Frequently, this workload is
complemented with edge cases that stress the file system.

IV. COMPUTE ACCEPTANCE TEST

For HPC11, parallel acceptance tests were executed in-
dependently on each of the clusters: Fawbush and Miller.
In this section, we summarize the results from functionality,
performance, and stability test elements.

A. Functionality Test Results

In this section we will highlight results from key areas
of the acceptance test including network validation, job and
application launch tests, individual component testing, and
application tests.



Table II
HPC11 ACCEPTANCE TEST CONTENT

Test Description
OSU Microbenchmarks MPI bandwidth and latency

ALCF MPI ALCF MPI benchmarks
HPL High-Performance Linpack

STREAM Measures memory bandwidth
OpenMP 3.1 verification and validation OpenMP 3.1 specification

SPEC OMP2012 OpenMP 3.1 functionality and performance
LSMS Locally Self-consistent Multiple Scattering application

GenASiS General Astrophysics Simulation System
minisweep Sn radiation transport miniapp for Denovo

UM Unified Model
4DVAR Four dimensional variational data assimilation

Table III
HPC11 NETWORK FUNCTIONAL TEST RESULTS: PROJECTIONS AND

MEASUREMENTS

Test Projection Measured
Global Bandwidth 5.6 TB/s 9.3 TB/s

Bi-section Bandwidth 2.8 TB/s 3.1 TB/s
MPI Latency 1.7µs 1.8µs

MPI Bandwidth 12 GB/s 11.8 GB/s

1) Network validation: We evaluated the high speed net-
work (HSN) of HPC11 to determine whether the bandwidth
and latency at varying scopes achieved the performance
requirements of the system. We measured global and bi-
section bandwidths using the ALCF MPI benchmarks [11].
As shown in Table III, the bandwidths measured on the
system exceeded the initial projections. In the case of global
bandwidth, the result was 66% faster than the original
target set. We also measured MPI point-to-point latency and
bandwidth using the OSU microbenchmarks [4] and showed
reasonable performance results, which were very close to the
expected performance of the Slingshot 10 projections.

2) Job launch and layout tests: To ensure adequate
support for the various use cases expected on HPC11, we
designed a comprehensive set of job launch and layout tests.

The batch scheduler provides a mechanism for users
to allocate and access a system’s compute resources. The
allocation created through the scheduler is the only route
through which users can access the system’s compute re-
sources.

The batch scheduler also provides the center with a
method to control the flow of allocation requests on the
system’s limited compute resources. Through batch job pri-
orities and limits, a center can manage access to a compute
system’s resources based on center policies. Organizing the
queue of allocation requests is important as user requests
for compute resources are often larger than the available
resources. Because the allocation and control of the request
queue is an important step in the use of compute resources, it
is also important for a center to test the mechanisms through
which the access and limits will be enforced.

Fawbush and Miller use the Slurm workload manager.
As part of system acceptance, we performed tests to verify
Slurm’s job scheduler features. During FT, we tested the
ability for a user to submit, hold, alter, remove, control
order with dependencies, as well as other scheduler flags. We
also performed tests to verify scheduling functionality. For
example, only eligible jobs were scheduled for allocation,
scheduling performed based on priority, lower priority jobs
were backfilled, jobs exited the queue once the specified
walltime was reached, and other similar tests.

Once jobs are submitted to the batch queue, it is important
for users to monitor the submitted jobs as they progress
through the queue. We executed tests to verify a user’s ability
to view not only their queued batch jobs, but also, all jobs
in the queue. Viewing the full queue provides the ability to
monitor progress over time as the queue changes due to new
job allocations getting scheduled, jobs completing, and new
job submissions. We tested Slurm commands such as sacct
and squeue to verify the ability to view the full queue by
job state and priority. We also tested the ability to view
the entire queue and common details of each job including
job ID, username, account, partition, walltime, nodes, and
priority.

Batch job accounting is also important to help the center,
programs, and users understand usage of the valuable and
limited compute resources. We performed tests to ensure the
ability to view details of completed batch jobs. Example per
job details included job ID, username, account, submission
time, start time, end time, partition, and allocated nodes.
We also tested the ability to feed completed Slurm batch
job details to the center’s tracking and reporting systems.

Once the needed compute nodes have been allocated
through the scheduler, the job launcher is used to execute
a program in parallel on the allocated resources. The job
launcher allows a user to control layout within and across
compute nodes based on requirements of the parallel pro-
gram. The launcher also provides users with the flexibility
to launch multiple parallel executables either serially or
simultaneously depending on the workflow. We tested the
job launcher used by Slurm, srun, to verify inter-node



and across node task placement and binding. On both
Fawbush and Miller, we performed tests to verify job launch
performance, task and thread layout, job memory access,
and job step binding to bind task/thread to physical core,
hyperthread, and a NUMA domain. We performed additional
tests to validate simultaneous job steps including single node
steps, multi-node steps, non-uniform steps, and steps queued
tests.

3) Individual node component testing: Before proceeding
with realistic workload tests, we executed a subset of tests
on every single node on the system to ensure that all nodes
were healthy. These tests included standard benchmarks like
HPL and STREAM, as well as, ORNL mini-applications like
Minisweep, described in Section IV-A5, which has been able
to identify problems in the past.

4) LSMS: LSMS (Locally Self-consistent Multiple Scat-
tering) is a computational material sciences application that
uses first principles Density Functional Theory to solve the
Kohn-Sham equation and calculate electronic properties of
materials. LSMS is written in C/C++ and supports MPI,
OpenMP, and CUDA [5]. LSMS has been used for accep-
tance testing of previous systems at ORNL, including Titan
and Summit. For HPC11 acceptance testing, we used the
MPI version of LSMS with OpenMP support enabled. The
tests executed ranged from 1 to up to 512 nodes.

5) minisweep: Minisweep is a mini-application devel-
oped as a proxy for the Denovo Sn radiation transport code.
Minisweep replicates the 3-D sweep wavefront calculation
in Denovo, which represents the most computationally in-
tensive kernel in the code. Minisweep is written primarily in
C++ and supports OpenMP, OpenACC, CUDA, and HIP [?]
programming models. The mini-application has been able
to pinpoint correctness issues on new systems and why we
include it as part of the set of tests that we run on every
node of the system. For HPC11 acceptance testing, we used
the MPI-only version of Minisweep and ran tests starting
with 2 nodes up until 784 nodes, each using 4 processes per
node. For Minisweep tests, we exercised the GCC compiler
and Cray MPICH from the October 2020 Programming
Environment as mentioned in Section II.

6) GenASiS RiemannProblem Test: GENASIS (General
Astrophysics Simulation System) is a developing multi-
physics code to perform simulations of astrophysical phe-
nomena on large-scale supercomputers. Currently, its pri-
mary aim is the simulation and modeling of three-
dimensional core-collapse supernovae with radiation trans-
port. GENASIS is written primarily in modern Fortran.
Leveraging object-oriented features afforded by the standard,
GENASIS manages code complexities by using abstractions
and encapsulations. GENASIS adopts test-driven develop-
ment as one of its sofware development practices. As such,
GENASIS has unit tests to exercise its classes and appli-
cation drivers that implement known benchmark problems
utilizing its solvers. For this acceptance testing, we used the

multi-dimensional RiemannProblem in GENASIS fluid
dynamics solvers. The RiemannProblem starts with two
fluid regions separated by a discontinuity in pressure and
density. As the simulation progresses, shock develops and
propagates within the fluid. The problem benchmarks the
code ability to correctly evolved the shock with its associ-
ated contact discontinuity. GENASIS RiemannProblem
exercises the Fortran compiler maturity in the system. Since
GENASIS uses OpenMP for both CPU and GPU paral-
lelism, its test problems also benchmark the compiler and
runtime performance for OpenMP for the particular CPU on
the system.

7) UM: The United Kingdom Meteorological (UK Met)
office’s Unified Model (UM) is a numerical model used for
both climate and weather applications. UM can be used to
model at different time and geographical scales [12]. For
HPC11 acceptance testing, we used an optimized version
based on UM 10.9 on a specific problem size requiring 135
HPC11 nodes that was provided by UK Met. The benchmark
case was setup such that 5 simultaneous copies will run
concurrently on each cluster, which each one meeting the
reference performance.

8) 4DVAR: 4-Dimensional Variational Data Assimilation
(4DVAR) is a general method and specific implementation
of data assimilation for global numerical weather prediction
(NWP). To initialize a global NWP model, such as UM,
to predict future real-world conditions, modelers must as-
similate data sources that describe current global weather
conditions. These data sources may include output from
surveillance satellites and surface observations. 4DVAR con-
siders these data, which are spaced sporadically in 3-D space
and in time, and interpolates them into a homogenous grid
at a single point in time that is used to initialize the global
model.

For the acceptance testing, we ran an implementation
provided by the UK Met office and that will be used in
production to generate the initial conditions for the UM
model. The Met Office also provided a standard benchmark
set with reference scaling and performance data gathered
from a Cray XC40 supercomputer. We ran this benchmark
with several decompositions across 16 to 128 nodes, in the
same configurations as provided in the reference benchmark
performance data.

B. Performance Test Results

We executed several key scientific applications as part
of the performance tests including GENASIS LSMS, Min-
isweep, UM, and 4DVAR. We concentrated in the UM
and 4DVAR workloads given that both applications are
representative of the types of production workloads that will
be executed on the clusters. In addition, both applications
have contractual figures-of-merit that had to be met as part
of acceptance.



1) UM: We executed the UM test case first in isolation
using 135 nodes on each cluster. Then we used the average
execution time obtained in a quiet system as the reference
value to measure runtime variability in isolation and under
a realistic workload.

In isolation, we were able to easily reproduce the runtime
reported by HPE on the 135-node UM case. Running 5
simultaneous copies of UM did not significantly impact
performance of individual runs. On average, the target UM
dataset ran in approximately 1240 seconds.

No performance issues were detected executing this ap-
plication.

2) 4DVAR: Although the performance did not scale to as
many nodes as the UK Met office’s reference XC40, this was
not a problem because HPC11 outperformed that result by
nearly 2 times on the smallest decomposition core count. As
shown in Figure 6, the scaling curve flattens between 32-48
nodes versus 128-192 nodes on the XC40. Approximately
the same runtime was achieved on 48 nodes of our system
compared to 192 nodes of the XC40. The increased core-to-
core performance likely results in a sharper flattening of the
scaling curve. On this test case, the cores are not saturated
and we are unable to scale further with this dataset. More
importantly for acceptance, the performance and output were
consistent between runs and with the reference system.

0 16 32 48 64 80 96 112 128 144
500

600

700

800

900

1,000

1,100

1,200

1,300

Number of Nodes

Ti
m

e
(s

)

Figure 6. Scaling results of 4DVAR on HPC11.

When this dataset was run at 96 and 128 nodes, we
frequently encountered hangs in the code. We conducted
extensive debugging and consulted with UK Met to identify
the cause and a solution. The UK Met office suggested to
try a newer release of 4DVAR, however, for acceptance we
needed to use the specific version provided by HPE that
would be run in production, so we did not pursue this. Given
the excellent performance on a much smaller set of nodes,
it is unlikely the code will be run in production with 96 or

more nodes, so we did not classify as a critical issue. As
shown in Figure 6, peak scaling performance is achieved
with a quarter of the nodes, so we speculate this number of
nodes is overly decomposing the dataset and would require
a larger dataset to reliably run at this scale.

C. Stability Test Results

To ensure HPC11 can support realistic workloads on the
system, we conducted a 14-day stability test on each cluster,
in parallel. We used the OLCF Test Harness (OTH) to
launch a mixed workload that included both the contractual
benchmarks, UM and 4DVAR, but also the subset of OLCF
applications that were selected for acceptance: GENASIS
Minisweep, and LSMS.

In total, over the 14-day stability period, we launched
5,783 jobs on Miller and 5,892 jobs on Fawbush and
obtained a pass rate of 98.86% and 99.19%, respectively.
Figures 7 and 8 summarize the types of failures we observed.
The types of failures we encountered are shown in Table IV.

The majority of failures on both clusters were attributed
to the application hitting the walltime requested before
completing. Most of these jobs were for 4DVAR jobs using
96 or more nodes which, as mentioned above, is now known
to be an unstable configuration. On Miller, we also saw
approximately 1% of jobs fail due to node failures. This
was expected as Miller became online close to the start of
acceptance and had a shorter burn-in period than Fawbush.
The 14-day ST is exactly designed to catch these ”early life”
failures.

Throughout the stability test, we used the OTH to measure
the runtime of individual jobs for the two key applications.
Overall, between the two clusters, we saw a runtime variabil-
ity of ∼ 2.5% and ∼ 4% for UM and 4DVAR, respectively.
These values are well within the contractual requirements
for runtime variability.

V. STORAGE ACCEPTANCE TEST RESULTS

For acceptance, we ran all tests on both file systems.
With the exception of some early hardware issues that were
corrected, all test results were extremely similar, as expected
for identical systems. As such, the results below are given
from the perspective of a single file system.

A. HW results

Hardware testing was straight-forward, and no major
issues were identified.

B. FT results

The system was first configured consistent with the pro-
duction block layout. Once complete, redundant power was
removed from the system to verify that it would survive a
half-power (single side) failure scenario using either power
input. Additionally, a total power failure was simulated to



Application Walltimed
(53.85%)

42

Core dumps
(3.85%)

3

Self-inflicted
(34.61%)

27 False-postive
(3.85%)

3 Other
(3.85%)

3

Other Reasons:
Node failure: 1 (1.28%)

IO error: 0 (0%)

MPI CQ error: 0 (0%)

Resubmission failure: 1 (1.28%)

Job launch failure: 0 (0%)

Network error: 1 (1.28%)

Bus error : 0 (0%)

Figure 7. Failure distribution for Fawbush ST (336-hour period).

Application Walltimed
(42.71%)

41
IO error
(4.17%)

4
MPI CQ error

(4.17%)
4

Resubmission failure
(14.58%)

14

Self-inflicted
(27.08%)

26 False-postive
(4.17%)

4 Other
(3.13%)

3

Other Reasons:
Node failure: 1 (1.04%)

Core dumps: 0 (0%)

Job launch failure: 1 (1.04%)

Network error: 0 (0%)

Bus error : 1 (1.04%)

Figure 8. Failure distribution for Miller ST (336-hour period).

Table IV
TYPES OF FAILURES ENCOUNTERED DURING HPC11 ACCEPTANCE TEST

Failure Type Description
Application walltimed Job does not complete in the requested walltime.

Node failure Job fails due to a node failure as reported by Slurm.
I/O error Job fails due to an io error as reported by Slurm.

MPI CQ error Job fails due to an MPI completion queue error.
Resubmission failure Job is unable to submit the chained job.

Core dumps Application fails and left a core file.
Self-inflicted Job fails due to a script error.

False positive: Value reported as a failure but reviewing output shows the correct result.



ensure that data was not lost or corrupted. Finally, each
component was individually tested for failover (if applicable)
and hot-swap capability; this included power supplies, fans,
controllers, media, cabling, etc.

No issues were identified in functionality testing.

C. PT results
First, we ran block level benchmarks on the SFA14KX to

determine what the maximum theoretical performance was.
Using fio, it was determined that the SFA14KX maxed
out at 52GB/s write and 65GB/s read with our hardware
setup and layout. We also benchmarked the SFA200NV, and
found the maximum block performance to be 18.0GB/s write
and 23.8GB/s. Both were benchmarked with sequential and
random workloads; maximum numbers stated are sequential.
Initial tests were also performed to determine the best raw
MDT performance, eventually settling on the production
layout that combines both block devices into a single pool, as
described earlier. All block level benchmark tests completed
satisfactorily.

Moving on to client and file system level benchmarking,
we encountered many significant performance issues. In
short, our initial system layout included heavy use of Data
on Metadata (DoM), where we encountered significant per-
formance problems. Issues with the native client and DoM
were identified, so we migrated to a patched, custom client.
This mitigated the issue somewhat, but still did not achieve
the desired performance. We have since disabled DoM.
We also identified significant performance issues with ZFS
integration. Some of this was mitigated, but we still have
outstanding issues with ZFS related performance losses.

The following key issues highlight the type of perfor-
mance degradation observed. Note that this is a subset of all
issues encountered, but reflects the highest impact issues:

• Initial “hero” benchmark numbers were ∼35GB/s write
and ∼30GB/s read, single client performance ∼2GB/s
read/write

• Poor ksocklnd performance on our bonded ethernet
interface (LU-14293)

– iperf between two nodes was achieving 98Gbps
and we were able to demonstrate 190Gbps with a
2→1 setup

– lnet selftest could only hit ∼20Gbps in a node
to node test

– We backported a multiple-socket patch (LU-
12815) to Lustre client version 2.12 which resolved
this issue

• Client hangs when using DoM with a fixed mdc
lru_size (LU-14221)

– We typically set fixed lru_size to avoid the
potential for a large memory footprint if using
dynamic

– Clients would reliably hang with a reproducer that
included large amounts of metadata operations

– Resolved by backporting LU-11518
• Multitude of grant related issues requiring a custom

client, deviating from Cray client
After we backported several patches (both client and

server) to Lustre version 2.12, we were able to resolve
some of the observed performance issues. After patching,
the observed performance is now:

• ∼6GB/s read/write on clients
• ∼45GB/s write/read hero numbers

VI. LESSONS LEARNED

During the deployment and acceptance of HPC11, we
discovered several issues that would have negatively im-
pacted user workloads. In this section, we discuss a few
high priority issues.

During our validation of performance for UM, we con-
ducted a sequence of runs using the 135-node case to ensure
that all 800 nodes in each cluster would participate in a UM
job. In one of the jobs, the OLCF Test Harness detected a
divergence. Further investigation showed that the divergence
was reproducible but only when run on the original set of
nodes. This was the smallest job size available for UM and,
as a result, we had to bisect the set of 135 nodes until we
were able to identify one specific processor in one specific
node that consistently produced a silent incorrect answer.
The processor was an early AMD test escape and the root
cause was identified and remedied in manufacturing. This
is one example of the value of using a realistic workload
for acceptance testing. If we had included a reduced set of
applications, this issue may not have been caught in time.

Prior to the start of the acceptance testing, GENASIS
uncovered a compiler bug in Cray Compiling Environment
(CCE) Fortran compiler. The bug seemed to have existed
in several versions of the compiler. It causes the compiler
to generate executable that produced wrong results when
the Fortran pointer remapping feature is used to modify
the bounds of higher-rank arrays pointing to a contiguous
section of a rank-one array. Since this language feature is
used in several places in GENASIS, the compiler bug needed
to be fixed before the start of the acceptance testing. A new
compiler version was released that included the appropriate
fix for the bug. This was verified with GENASIS during FT.

During FT, we identified an issue that prevents GDB4HPC
from starting successfully. The issue is currently being inves-
tigated and was tracked down to sattach being unable to
connect to a job step in a multi-cluster environment (CASE
#275853).

There were a few issues encountered with HPCM that
were discovered during acceptance, but most of them have
been addressed in newer versions of HPCM released since
then. The majority of these issues were fairly minor (severity
level 3 and 4), for example, timestamps and logging data
being collected and stored correctly for a specific length of



time. We also discovered issues when we introduced our
Puppet configuration management onto the HPCM adminis-
tration server and making sure we were capturing configu-
ration files that needed to be managed and not overwriting
configurations that HPCM expected to have in place. This
work is still ongoing and we are working closely with the
HPCM developers to address these issues.

HPC11 provides a resilient set of compute and storage
systems for users. However, the simultaneous acceptance
testing of identical systems, significantly increases the com-
plexity of the tests and the coordination required between
system administrators, HPC engineers, and the vendor. In
addition, simultaneously accepting compute and storage
resources results in unavoidable dependencies. As discussed
in the paper, when issues were identified on the storage
systems, we had to interrupt compute acceptance test until
they were resolved. For future procurements, we recommend
using a previously available storage system, if possible.

Because we utilize an already well-established acceptance
test procedure and testing framework, the development effort
invested to port tests to a Cray EX system and Slurm-based
resource will be useful for future acceptance testing of future
deployments, including Frontier.

VII. CONCLUSION

In this paper, we have described the entire process fol-
lowed to successfully execute acceptance testing of the
HPC11 system. This system includes two identical compute
resources, Fawbush and Miller, and two identical file system
resources, Storm and Cyclone.

In addition, we have provided a summary of the results
obtained, issues encountered, workarounds developed, and
open issues that still remain.

The information provided here could be helpful to other
centers interested in transitioning from a Shasta CSM-based
system to a HPCM-based one.

While the HPCM solution was still in development in
the beginning of acceptance, since the system transition to
operations, we continued working with HPE to formalize
the designs and procedures described here.

ACKNOWLEDGMENT

The authors would like to thank the Cray/HPE team
for their invaluable contributions to acceptance testing of
HPC11. In particular, Jeff Beckleheimer, Adam Sachitano,
Cathy Willis, Pete Johnsen, Eric Dolven, Dave Londo, and
Kim Kafka. We would also like to thank Matt Ezell and Don
Maxwell from ORNL for lending their expertise to make the
transition to HPCM a success.

This research used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC05-00OR22725.

REFERENCES

[1] V. G. V. Larrea, W. Joubert, M. J. Brim, R. D. Budiardja,
D. Maxwell, M. Ezell, C. Zimmer, S. Boehm, W. Elwasif,
S. Oral et al., “Scaling the summit: deploying the world’s
fastest supercomputer,” in International Conference on High
Performance Computing. Springer, 2019, pp. 330–351.

[2] C. Wang, S. Chandrasekaran, and B. Chapman, “An OpenMP
3.1 Validation testsuite,” in International Workshop on
OpenMP. Springer, 2012, pp. 237–249.

[3] “SPEC OMP2012 Benchmark Suite,” https://www.spec.org/
omp2012/.

[4] “OSU Microbenchmarks,” http://mvapich.cse.ohio-state.edu/
benchmarks.

[5] M. Eisenbach, C.-G. Zhou, D. Nicholson, G. Brown,
J. Larkin, and T. C Schulthess, “Thermodynamics of
magnetic systems from first principles: Wl-lsms,” in
Proceedings of the 2010 SciDAC conference, 04 2010.

[6] C. Y. Cardall, R. D. Budiardja, E. Endeve, and
A. Mezzacappa, “GENASIS: GENERAL ASTROPHYSICAL
SIMULATION SYSTEM. i. REFINABLE MESH
AND NONRELATIVISTIC HYDRODYNAMICS,” The
Astrophysical Journal Supplement Series, vol. 210,
no. 2, p. 17, jan 2014. [Online]. Available:
https://doi.org/10.1088%2F0067-0049%2F210%2F2%2F17

[7] O. B. Messer, E. D’Azevedo, J. Hill, W. Joubert, M. Berrill,
and C. Zimmer, “Miniapps derived from production
hpc applications using multiple programing models,” The
International Journal of High Performance Computing
Applications, vol. 32, no. 4, pp. 582–593, 2018. [Online].
Available: https://doi.org/10.1177/1094342016668241

[8] “AFW HPC11 User Documentation,” https://docs.afw.ornl.
gov/.

[9] V. G. V. Larrea, M. J. Brim, A. Tharrington, R. Budiardja, and
W. Joubert, “Towards acceptance testing at the exascale fron-
tier,” in Proceedings of the Cray User Group 2020 conference,
2020.

[10] “The OLCF Test Harness repository,” https://github.com/olcf/
olcf-test-harness, 2021.

[11] V. Morozov, J. Meng, V. Vishwanath, J. R. Hammond,
K. Kumaran, and M. E. Papka, “Alcf mpi benchmarks:
Understanding machine-specific communication behavior,” in
2012 41st International Conference on Parallel Processing
Workshops, 2012, pp. 19–28.

[12] “Unified Model,” https://www.metoffice.gov.uk/research/
approach/modelling-systems/unified-model/.


