
CRAY USER GROUP 2021 1

Optimizing the Cray Graph Engine for
Performant Analytics on Cluster, SuperDome
Flex, Shasta Systems and Cloud Deployment

Christopher D. Rickett, Kristyn J. Maschhoff, Sreenivas R. Sukumar
Hewlett Packard Enterprise

chris.rickett@hpe.com
kristyn.maschhoff@hpe.com
sreenivas.sukumar@hpe.com

Abstract—We present updates to the Cray Graph Engine, a high performance in-memory semantic graph database, which enable
performant execution across multiple architectures as well as deployment in a container to support cloud and as-a-service graph
analytics. This paper discusses the changes required to port and optimize CGE to target multiple architectures, including Cray Shasta
systems, large shared-memory machines such as SuperDome Flex (SDF), and cluster environments such as Apollo systems. The
porting effort focused primarily on removing dependences on XPMEM and Cray PGAS and replacing these with a simplified PGAS
library based upon POSIX shared memory and one-side MPI, while preserving the existing Coarray-C++ CGE code base. We also
discuss the containerization of CGE using Singularity and the techniques required to enable container performance matching native
execution. We present early benchmarking results for running CGE on the SDF, Infiniband clusters and Slingshot interconnect-based
Shasta systems.

Index Terms—graph analytics, semantics, PGAS, parallel programming, pattern search, pattern mining, Cray Graph Engine.

F

1 INTRODUCTION

Since the HPE acquisition of Cray, the focus of the Cray
Graph Engine (CGE) has expanded from a solution lim-
ited to the Cray XC hardware platform, to providing a
performant solution across multiple architectures and cloud
environments (on-premise or as-a-Service) in order to sup-
port the growing market adoption of graph databases and
tools in the public cloud. The focus of this paper is on the
modifications made to the Cray Graph Engine to enable
both portability and containerization, while maintaining
performance.

The importance and influence of graph analytics in
high-performance workloads continues to grow and there
is increasing customer demand for scalable solutions for
analyzing graphs. We continue to see demand in the areas
of fraud detection; cybersecurity, but more recently have
seen growing interest in the areas of knowledge graph
traversal, recommender systems, etc. In response, there has
also been a flood of options available in the market such
as Neo4j, TigerGraph, AnzoGraph, BlazeGraph, GraphX,
Apache Giraph, Trovares etc. While most of these databases
have seen enterprise wide adoption due to their accessibility
via public cloud instances, customers are still looking for
better solutions that (i) are cost-effective at data sizes greater
than 2 TB, (ii) execute queries in the order of seconds for
interactive vertex-centric basic-graph pattern searches and
graph-theoretic whole-graph analysis algorithms, (iii) is a
graph database that horizontally scales-out and vertically

scales-up, and (iv) can be run in a container on their laptops
for application development and then transitioned into pro-
duction on specialized clusters and supercomputers as data
sizes grow.

The key to efficient performance for CGE, and the focus
of several Cray User Group papers discussing optimizing
CGE performance on Cray XC systems [1, 2, 3], is how
one best utilizes the remote direct memory access (RDMA)
capabilities in the network to maximize efficient remote
access of data. In this paper we demonstrate how efficient
RDMA communication is also achievable when running
CGE from within a container and we discuss the techniques
required to enable container performance to match that of
native execution. While the focus of this paper is on con-
tainerizing CGE to enable optimal performance on multiple
platforms, the techniques discussed are also applicable to
containerizing other RDMA dependent high-performance
computing (HPC) applications.

With this latest set of updates, CGE can now be deployed
across a variety of architectures including the HPC Cray
Shasta systems, large shared-memory machines such as
HPE SuperDome Flex (SDF), and cluster environments such
as HPE Apollo systems.

2 BACKGROUND

The first semantic graph database developed at Cray was
the Urika-GD database appliance, launched in 2012. The
scalable shared memory model of the Cray XMT2 and its

CRAY USER GROUP 2021 2

high performance indirect addressing enabled connections
in the graph to be searched efficiently, and the multi-
threaded programming model made it possible to access
data with high-concurrency to hide latency. The Urika-GD
database was ported to the XC30 architecture in 2015, as de-
scribed in a previous CUG paper [1]. This was accomplished
by making use of the Partitioned Global Address Space
(PGAS) programming model and Coarray-C++. The back
end query engine of CGE was refactored as a distributed
application using Coarray-C++ as the underlying distribu-
tion mechanism. Coarray-C++ is a C++ template library that
runs on top of Cray’s Partitioned Global Address Space
(PGAS) library and permits multiple processes (images) on
multiple compute nodes to share data and synchronize op-
erations. The Cray PGAS library supports the Cray compiler
and is built on top of DMAPP [4] which targeted the Aries
interconnect. Further optimizations to CGE were described
in a 2017 CUG paper [2] and also in a 2018 CUG paper
[3] which described the additional optimizations made to
CGE to achieve scalable high performance on a very large
database consisting of over one trillion Resource Description
Framework (RDF) [5] triples.

3 OUR SOLUTION

As previously discussed, CGE was written using Cray’s
Coarray-C++ which is based upon the Cray PGAS library
that leverages the Cray DMAPP library targeting the Aries
interconnect. In order to port CGE to enable efficient exe-
cution on multiple platforms, the first step was to remove
the dependencies on the Cray hardware and software stack.
The design of CGE encapsulates nearly all of the details
about the communication layer for remote data access and
image synchronization within the Coarray-C++ and PGAS
implementation. This meant that if the Cray Coarray-C++
and PGAS software stack could be replaced with a platform
independent solution then CGE would be able to execute
across multiple platforms with limited changes to CGE
itself.

The first and largest part of replacing the Cray software
stack was in creating or finding a replacement PGAS library
that could run on multiple platforms. The first step done
was to look at the features required of CGE for the PGAS
library since not all of the existing features are used. The
primary features of the PGAS library that CGE required are:

• creation of a symmetric virtual address space across
images

• symmetric heap malloc/free functions
• blocking/non-blocking one-sided puts/gets
• barriers
• collectives (i.e., sum/min/max)
• direct memory access amongst images on same phys-

ical node

In CGE, images that reside on the same physical node are
referred to as a group. A key design feature of CGE is the
group-aggregation of messages, where data is aggregated
within images in a group first so that all data for/from a
given target image can be put/get with a single message
whenever possible. This has been shown to significantly im-
prove the scalability of CGE by increasing the overall size of

messages but drastically reducing the number of messages.
For common operations such as scan/join/merge, this has
been shown to make the operators ∼3x faster than when
all images performed more all-to-all style communications
[3]. In order to enable this group aggregation, the PGAS
replacement would need to provide a mechanism for an
image to directly read/write memory for other images on
the same physical node.

Another key detail about CGE that impacts the inter-
action with the PGAS library is that CGE manages its
own memory, including the symmetric heap allocations.
This was done early in the creation of CGE to address
memory fragmentation problems that arose when using the
system malloc, which is based upon tcmalloc [6], that lead to
CGE hitting out of memory errors when running queries
repeatedly. This was due to a combination in how CGE
uses memory and how tcmalloc caches memory for faster
allocations of similar sizes later [6]. This caching can cause
problems when trying to coalesce memory and resulted in
CGE being unable to allocate large blocks of memory after
running a number of queries. To address this limitation,
CGE uses its own memory allocators to handle allocations of
different types, such as temporary, persistent or symmetric.
Enabling CGE to manage its own symmetric memory adds
an additional requirement for the PGAS library.

3.1 Simplified PGAS

Given the desire to port CGE to execute efficiently on
multiple platforms, including in a cloud environment using
containers, our solution was to replace the Cray PGAS
with a simplified one of our own that implements only
the necessary features. To accomplish this, we based our
PGAS library on POSIX shared memory [7] and the Message
Passing Interface (MPI) [8]. The primary motivation of using
these two standards is to increase the number of platforms
that CGE could execute efficiently on while reducing the
amount of effort required to create the simplified PGAS
library. Performant MPI implementations are available for a
large number of architectures and can easily be container-
ized, greatly expanding the potential architectures where
CGE could perform well.

3.1.1 Symmetric Heap
The symmetric heap is created on each image using POSIX
shared memory with all images mapping their heap at
a known starting address to easily enable calculations of
addresses for remote gets/puts. An instance of the CGE
memory allocator is created as part of the PGAS library
that maps the POSIX shared memory and this allocator han-
dles any symmetric allocation/free requests by an image.
Reusing the existing CGE memory allocator class to serve
the symmetric heap allocations further simplified the effort
required to develop the library. Previously, the size of the
symmetric heap in CGE was only a fraction of the available
memory on a node but with the new PGAS the symmetric
heap is used to create all of the memory that an image will
use. The symmetric heap is then used to provide memory
for the other allocators used by CGE. As will be discussed
below, this enables memory to easily be shared amongst
images in a group but has a drawback in that the default size

CRAY USER GROUP 2021 3

of /dev/shm used for POSIX shared memory is only 50% of
RAM, which can significantly limit the amount of data CGE
can store per node. However, this default size can easily be
increased with a remount of /dev/shm to a larger percentage
of RAM. In our tests we usually remount it to be 85% of
RAM but this could be tuned based on user requirements.

The Cray Coarray-C++ and PGAS provided a function,
to local(), that could be used to return a local pointer to an
image for memory owned by another image on the same
physical node to enable direct reads/writes. This required
XPMEM to enable the mapping of virtual memory of one
process into the virtual address space of another on the same
node [3]. XPMEM requires a kernel mod as well as a user
space library, so leveraging XPMEM in the simplified PGAS
would limit portability and containerization. The simplified
PGAS uses POSIX shared memory to enable mapping of the
virtual address spaces to enable direct reads/writes of mem-
ory between images on the same node. The shared memory
segments of images on the same physical node are mapped
into each other’s virtual address spaces at program startup
and the new PGAS library provides the same to local()
function for creating a local pointer to memory owned
by another image within an image’s group. Using POSIX
shared memory to enable direct memory reads/writes be-
tween images on the same node is a portable alternative
to XPMEM since it has been supported in the Linux kernel
since version 2.4 [7].

Finally, the new PGAS library does not require huge
pages, which were used by the Cray PGAS library. While
huge pages may be useful for performance of applications
with large data sets and certain access patterns, we have
encountered issues when running CGE where memory frag-
mentation resulted in insufficient huge pages being avail-
able causing Cray PGAS to initialization to fail. Removing
the use of huge pages has removed these initialization
failures and, as our benchmarks will show, has not resulted
in a significant reduction in performance.

3.1.2 Communication and Synchronization
The new PGAS library leverages MPI for handling the
process management interface (PMI) with the work load
manager and process synchronization. The communication
of one-sided messages are implemented using MPI win-
dows [8] to enable remote memory access (RMA) between
images. Using MPI provides portability through multiple
performant implementations and simplifies the develop-
ment effort required for the new PGAS library.

When using MPI for RMA, the remote reads and writes
to the symmetric heap between images are implemented
using the MPI window feature, which allows processes to
specify a virtual address range available for RMA opera-
tions [8]. All images create their window at CGE startup
and use MPI Win lock() to create an access epoch to the
windows for remote images that remain active until CGE
exits. When an operation in CGE results in a put/get, the
library first determines if the remote memory involved is
on the same physical node or not. If the memory is on the
same physical node the put/get is simply performed as a
memcpy(). However, if the memory is not on the same node,
an MPI Put() or MPI Get() is issued and the process may
immediately block if the given operation requested blocking

semantics; otherwise the RMA operation is tracked and no
blocking is done.

The other main feature provided by MPI is process
synchronization. In Coarray-C++ terms this refers to a
sync all(), which requires all images to participate and
ensures all outstanding puts/gets have completed at the
source and destination. Coarray-C++ also includes an
atomic image fence(), which ensures all outstanding put-
s/gets for a given image have completed. These are of-
ten used in CGE when overlapping communication and
computation to increase independence between images by
reducing complete synchronization. In the new PGAS li-
brary when using MPI RMA, the atomic image fence() trans-
lates into MPI Win flush local() calls for any source/target
image that the given image has an RMA operation out-
standing with. The MPI Win flush local() takes an argument
that specifies the target rank and ensures all RMA oper-
ations with that given target have completed. A sync all()
call translates into an atomic image fence() followed by an
MPI Barrier().

3.2 Simplified Coarray-C++
Once the new PGAS was created, a simplified version of
the Coarray-C++ header file was created targeting the new
PGAS library rather than the Cray PGAS. This is a signif-
icantly reduced version of the original Cray Coarray-C++
that removes features not used by CGE, such as coatomic and
cofuture objects, for the sake of reducing development efforts
and code maintenance. Since most of the implementation
details are actually in the PGAS library and not the Coarray-
C++ header file, the changes to the header file mostly
consisted of translating calls from the Cray PGAS to the
new PGAS. This includes calls for symmetric heap alloca-
tions/frees, image fence and barriers, and remote put/get
calls.

The Cray Coarray-C++ also included more code for
supporting collectives, such as sum/min/max, which have
been simplified in the newer Coarray-C++ header file be-
cause the implementation has been pushed down into the
PGAS library. The PGAS implementation still provides tem-
plated versions of these functions for offering type checking
at compile time while also offering generic versions for a C
based interface.

3.3 Optimizations
With the new PGAS library a couple optimizations were
added based on how CGE often uses Coarray-C++. First, a
new function, coexchange(), was added to the new Coarray-
C++ header file with the necessary support also added to
the new PGAS library. This function enables images to easily
exchange simple data values they have for all other images.
For example, often in CGE all images have start/count
values for all other images that inform the images where
to pull data from and how much data to pull. The prototype
for coexchange() is shown in Listing 1.

template < typename T >
void coexchange(coarray<T []>& dest, coarray<T []>& src)

Listing 1. C++ prototype for coexchange

The src and dest arguments are both num images() in
length and upon entry the src provides the data for all

CRAY USER GROUP 2021 4

images it has data for such that src[dest image] is the data for
destination image dest image. Upon completion, dest holds
the received data for a given image such that dest[src image]
is the data received from src(src image)[this image()]. The
exchanging of keys is done in a group-aggregated man-
ner, similar to what is done for operations such as
scan/join/merge since this has been shown to scale well
[3]. The motivation for this new function will be explained
below when discussing the MPI implementations available
for the containerization of CGE.

The second optimization added was the ability to sepa-
rate an image fence for puts and gets so that an image can
fence on one type of remote operation while not fencing for
the other. This meant the addition of two new functions
to the Coarray-C++ header file, atomic image put fence()
and atomic image get fence(), that perform image fences for
outstanding RMA puts and gets, respectively. In the new
PGAS library, outstanding put and get RMA operations for
a given target image are tracked separately, which enables
the flush operations to be done separately. This can be
useful for CGE where communication and computation are
often overlapped, such as with group-aggregated messaging
[3], and the outstanding get and put operations typically
involve different images. An example of where this is now
used in CGE will be discussed more below.

4 DEPLOYMENT

To enable optimal execution on multiple platforms, CGE can
be deployed either natively or in a container. The native
deployment is the manner more typical for XC where CGE
is available in a loadable module. The container deployment
uses Singularity containers to more easily allow CGE to be
executed on multiple platforms while minimizing the effort
required for deployment. These two methods of deploying
CGE will be discussed in more detail in the subsequent
sections.

4.1 Native Build
On the Cray XC, CGE is released as a module that users
can load, which makes the install process simple and allows
users to easily switch between installed versions. We will
refer to this deployment method as native because CGE
is executed directly, via either srun or aprun, rather than
through a container image. The new CGE that uses MPI
and POSIX shared memory is installed in the same manner
for XC systems and current plans are to deploy natively for
Shasta (EX) systems.

A key motivation for native deployment on XC and
Shasta systems is to enable CGE to build using the Cray
MPICH libraries that are optimized for the given hardware.
The Cray MPICH libraries should enable CGE to achieve the
most optimal performance across the Cray hardware while
also simplifying the deployment since it uses the existing
mechanism for installing and users are familiar with using
modules.

4.2 Containerization
Recent changes to CGE to create the new PGAS library
and Coarray-C++ header were done to increase the number

of platforms that CGE could efficiently execute upon, as
well as enabling CGE to be deployed within a container.
With containerization, CGE could be deployed on multiple
platforms locally or in a cloud instance with all of the
required packages included in the container to simplify
deployment. Singularity was chosen for containerization
since it is intended for HPC applications [9].

With Singularity containers there are generally two ap-
proaches to running MPI applications. The first method is
called the hybrid model, which is where the MPI installed
on the host system and the MPI within the container are
both used to execute the application. The second model is
the bind method in which there is no MPI within the con-
tainer and the host MPI is bind-mounted into the container
to be used by the application. The advantage of the hybrid
model is that it is simpler, however, it requires the MPI
inside the container to be appropriately built in order to get
optimal performance. The bind method has the advantage
that performance should match because the host MPI is
being used, however it requires pulling host libraries into
the container which could lead to problems such as version
mismatches [9].

For the CGE Singularity container we chose the hybrid
model to minimize the effort for porting the container
to multiple platforms. In order to achieve optimal perfor-
mance, the container includes the following components:

• Mellanox OpenFabric Enterprise Distribution
(OFED) [10]

• Unified Communication X (UCX) [11] or Open Fabric
Interfaces (OFI) [12]

• MPI (OpenMPI [13] or MPICH [14])

The OFED stack is a key component in order to achieve
optimal performance as it is used to provide Infiniband
verbs [15] support for both UCX and OFI without requiring
host libraries to be bind-mounted into the container. The
components are installed in the container in the order they
are listed with UCX/OFI and MPI configured to use the
installed OFED software.

4.2.1 MPI Options
Given that MPICH and OpenMPI (OMPI) are both widely
used open source MPI implementations but are not API
compatible with one another, we chose to create different
Singularity containers for CGE targeting each MPI. The first
was built with MPICH using either OFI or UCX and the
second was built using UCX and OpenMPI. This was done
to enable the CGE container to execute well on the widest
range of platforms. Each container version has different
advantages and disadvantages, which will be discussed
below.

One significant advantage for CGE when using MPICH
in the container is the ease of execution using srun directly,
which is possible due to the builtin support for PMI-2 within
MPICH. Another potential advantage is that CGE built
with MPICH would be API compatible with other MPICH
based implementations, such as Cray MPICH, which could
enable the bind-mounting of the host MPI into the container.
However, given our focus on the hybrid model of the
container this was considered a less important ability. When
using MPICH with OFI we encountered OFI timeout errors

CRAY USER GROUP 2021 5

caused by all-to-all communications of small messages (i.e.,
< 32 bytes) in CGE when executing on 32+ nodes. This
was the motivation for creating the new coexchange() which
replaced several of these problematic messages in the query
engine portion of CGE with more group-aggregated ones
that avoided the OFI timeouts. However, while we updated
some of CGE to use the coexchange() there are still multi-
ple places in the build phase of CGE that encounter the
OFI timeout at 32+ nodes, preventing our ability to build
databases with MPICH+OFI at large node counts. These OFI
timeouts led us to try MPICH with UCX, which improved
resiliency at larger node counts and faster performance over
using OFI, which will be discussed later in the benchmarks
section.

The second MPI option for containerizing CGE is Open-
MPI, which is similar to MPICH in that there are performant
builds available on a large number of platforms. The default
communication layer in OpenMPI versions 4.x and newer is
UCX so we combined UCX and OpenMPI in the container.
One potential advantage of OpenMPI for containerization
is that the support for OpenMPI with Singularity may be
better than the support for MPICH, at least based on the
initial focus on OpenMPI by Singularity [9]. Another advan-
tage that arose from our tests is the reliability of OpenMPI
with UCX was better than that of MPICH and OFI based on
our ability to successfully run more tests and larger scales
with OpenMPI and UCX. This will be discussed in more
details in the benchmarks section below. One disadvantage
to OpenMPI is that it typically requires installing OpenMPI
on the host machine in order to correctly launch the con-
tainers and handle the PMI interaction between the host
and containers since the ability to be launched directly via
srun is not enabled by default for OpenMPI. Further, our
efforts to include slurm and PMI-2 inside the container with
OpenMPI could successfully build but failed to create the
RMA windows at CGE launch.

5 PERFORMANCE IMPROVEMENTS

Multiple performance improvements have been made to
CGE since the latest benchmarks in 2018. The changes
focused on the idea of aggregating messages into larger
messages to reduce the overall number of messages since
this has been shown in previous studies to greatly improve
performance and scalability [3].

5.1 Dictionary

The first significant performance optimization made was in
adding the ability for the dictionary to fetch the strings
for a given set of integer identifiers as large blocks. The
dictionary is used to provide a mapping from the RDF
string literals to the integer CGE uses internally to represent
literals as part of quads [3]. Several operators often need to
fetch a large number of dictionary strings, such as during
a FILTER operation or when generating the query results
to return to the user. Previously this meant multiple calls
to the dictionary to fetch a single string at a time, which
could limit scaling and performance due to the number
of messages occurring simultaneously. To improve this, the
dictionary now can take an array of integers and fetch all

strings from a given source image as a single block using
group-aggregated messaging. This requires all images to
participate but significantly reduces the number of messages
and, as will be shown below, can drastically improve perfor-
mance.

5.2 Inferencer
During inferencing all quads are validated before inserting
them into the database, which requires fetching the RDF
strings for each field and verifying the given string is valid
for the field. For example, this check verifies that string
literals are not used as the subject or that blank nodes
are used as a predicate. This was being done by fetching
the RDF string for each field from the dictionary one at
a time as needed when evaluating the new quads. The
inferencer caches strings to reduce the number of fetches for
common strings, however, the number of messages was still
O(num inferred quads) which could limit scalability due
to the total number of concurrent messages. To help address
this, the inferencer was updated to use the new block
fetching feature of the dictionary to enable all strings that
will be required for verification to be fetched as large blocks
in a group-aggregated manner. This drastically reduced the
inferencing time for larger datasets. For example, using 32
Broadwell nodes with 16 images per node for a total of
512 images, the inferencing step on the Lehigh University
Benchmark 100K [16] infers ∼4.9B new quads and the total
database has ∼18.2B quads. The inferencing step previously
took ∼1797 seconds when fetching the strings individually
and after updating to use block fetching the time was cut
down to ∼159 seconds. This clearly demonstrates the sig-
nificant performance improvements possible when trading
larger messages to reduce the number of messages.

5.3 Query Engine
Given the desire to execute CGE on multiple platforms,
including large shared memory machines such as the SDF,
recent optimizations were made to the scan/join operators
that are part of nearly all queries to better utilize a shared
memory architecture. Much of the work involved with the
scan/join operators is for tracking valid identifiers for the
variables involved in a query. These bindings for variables
are tracked for each scan/join operation in a query and
the bindings from a given scan/join are used to filter out
solutions in subsequent scans/joins. A significant portion
of the time for getting and setting these variable bindings
is spent marshalling the data into large blocks in order to
perform group aggregated messaging [3] of the bindings.
When executing on a shared memory machine such as the
SDF, this data marshalling is unnecessary and just adds
overhead so these operators were modified to detect when
CGE is executing on a shared memory machine so this data
movement can be skipped. Instead, when CGE is executing
on a shared memory machine images will directly read-
/write to each other’s memory for handling the variable
bindings.

Other key optimizations made recently to CGE also
focused on the scan and join operators since they are part
of nearly all basic graph pattern searches. Each of these
operators tries reducing the number of potential solutions

CRAY USER GROUP 2021 6

by tracking the identifiers for the unbound variables en-
countered in one subset of solutions and using these to
filter potential solutions from subsequent solution subsets.
Previous work to enable CGE to efficiently load and query
a trillion triples focused on improving the performance of
tracking the bound variable identifiers in scan and join
and drastically reduced the operator times as well as im-
proved scaling [3]. That work focused primarily on chang-
ing the image-by-image aggregation of bound identifiers to
the group-aggregated version so that each image would
only share bound identifiers with one other image per
group for a total of O(num groups()) messages rather
than O(num images()) messages per image. The group-
aggregated messaging is described in more detail, including
with pseudo-code, in our previous study benchmarking
CGE with a trillion triples [3].

Recent optimizations to scan and join again focused
on improving the performance of tracking the variable
bindings and using them to filter solutions. The first of
these optimizations was to modify how bound identifiers
are grouped per node. In the original group-aggregated
messaging, each image works with a partner image on
each group. The partner image is the image on the given
group that is at the same relative offset. For example,
image 0 would always partner with the lowest numbered
image in a group so if there are 16 images per group,
image 0 would partner with itself, image 16, 32, 48 and
so on. For the variable bindings process, this aggregation
results in a total of O(num groups() ∗ num images())
messages since each image communicates with one image
per group. The actual work to fetch and set the variable
bindings overlaps the fetching of bindings from one image
while processing the bindings from another. Even with the
group-aggregation, the communication time still becomes a
bottleneck for performance causing stalls in the loop over
images. This is especially true for the process of fetching
bindings to determine which solutions to filter because the
potential solutions are pulled to the image that contains the
bindings and a keep/discard status is sent back for each of
those potential solutions to the source to signal which to
eliminate.

The improvement made to the group-aggregation
method was to change the images each image partners
with so that they work with consecutive images rather than
images at even strides. Now each image holds binding data
for num groups() images in a dense range. For example,
image 0 holds the data from its group members for the first
num groups() images. If there are 16 images per node and
512 total images, image 0 holds the data for images 0-31
and image 15 holds the data for images 480-511. This new
aggregation means each image only needs to communicate
with num groups()/group size() images to send all of
the identifiers they hold for their group members. Further,
as more images are added per node the overall number
of messages per image goes down since the number of
messages is divided by the group size(). In the original
version of group-aggregation, the number of messages each
image was responsible for was always O(num groups())
but now it is O(num groups()/group size()). To evenly
distribute the messages for a given destination group across
the images in the group, teams are formed out of all images

that communicate with a given group. The images offset
within this team is then used to choose a partner image on
the given destination group in a round-robin manner.

The second optimization made to the variable bindings
step was to reduce the size of the messages both sent for
the identifiers as well as the 1/0 status flags returned to
the source. Originally, the full 64-bit identifier was sent
to each destination image but now only a 32-bit index is
sent which represents the offset into the bit-vector used to
track bound identifiers. Additionally, the 1/0 status flags
previously were sent as full words and reused the source
image’s identifier buffer to receive the status words. This
has now been modified to create a new bit-vector to receive
the status flags so that only a single bit per solution is sent
back to the source.

One final optimization was made to the variable bind-
ings process that leverages a new feature added to the CGE
PGAS library, which is the ability for images to fence on
puts and gets separately. As mentioned above, each image
loops over the set of partner images to fetch the appropriate
bindings and return the status bits, if needed. Double-
buffering is used in this loop so that the images can begin
fetching the next set of indices while processing the current
set. After processing the current set of indices the image
needs to do an atomic image fence() to ensure the fetching
of the next set of indices has completed. However, in the
case of returning the 1/0 status bits this resulted in the
image not only fencing for the get to complete but also the
put that was issued to return the current status bits. With
the ability to separate these fences, the variable bindings
loop will issue the put for the status bits and then fence
on just the outstanding get for the next set of indices. Once
an image has completed processing the variable bindings
from all of their partners they will ensure the puts have
all completed as well. This decoupling of the put and get
fences helps prevent stalls in the computation portion of the
loop that could happen with the immediate fence on the put
operation.

To test the combined effects of these optimizations on
the variable bindings step in scan and join, LUBM100K was
used with query 9 running on 32 Skylake nodes with 16
images per node. Query 9 is a key benchmark query because
it performs multiple complex joins in order to search the
entire graph for a given triangular relationship [16]. Prior
to these optimizations, the query 9 time was 8.6 seconds
and after the optimizations the time was reduced to ∼7.0
seconds, clearly demonstrating the advantage of reducing
the number of messages and improving the overlap of
gets/puts.

6 BENCHMARKS

To demonstrate performant execution across multiple ar-
chitectures we present timing results for both the database
build and LUBM query 9 performance across multiple sys-
tem configurations. Query execution time reported is the
strict query time and does not include the time required
for writing the results to the file system which is common
practice. Due to resource constraints, we were not able to
run the same size LUBM dataset across all the different
system configurations, but selected a database size sufficient

CRAY USER GROUP 2021 7

to utilize most of the memory available on the smaller
system configurations (SuperDome Flex and AWS parallel
cluster).

6.1 System Configurations
Below is a brief description of each of the system configura-
tions used for benchmarking.

6.1.1 Cray XC
The Cray XC results were run on an internal 370 node XC-50
system development system utilizing the Aries interconnect.
This XC system contains a mixture of compute node types
(Intel Broadwell, Intel Skylake, Intel Cascade Lake, and
ARM processors). Benchmarks were primarily run on a
mixture of dual-socket 48-core Skylake and Cascade Lake
nodes, ranging in frequency from 2.1-2.4GHz. The majority
of these nodes have 192 GB DDR4-2666 memory but 63
of the Cascade Lake nodes have the larger 384 GB DDR4-
2933 memory. The attached Lustre file system is a Sonexion
CS-L300N system with 8 OSTs providing 655 TB of stor-
age. Database build and load times are dominated by I/O
performance to/from the Lustre filesystem so I/O system
performance is an important consideration.

6.1.2 Cray CS
The Cray CS results were run on an internal CS500 devel-
opment system utilizing HDRI InfiniBand (using Mellanox
ConnectX-6 HCA). The CS system also contains a mixture
of compute node types including both Intel Cascade Lake
(dual-socket nodes, 44-cores per socket, 2.4GHz, 192 GB
DDR4-2934 memory) and AMD EPYC Rome processors
(dual-socket nodes, 64-cores per socket, 2.0 GHz, 256 GB
DDR4-3200 memory). Benchmark results using 128 nodes
were run across both the Cascade Lake and the Rome pro-
cessors. For the Cascade Lake nodes, it also uses a daughter
card to enable Mellanox’s Socket Direct. The attached Lus-
tre files system is a Lustre Sonexion E1000 with 10 OSTs
providing 2.9 PB of storage.

6.1.3 HPE Cray EX
The HPE Cray EX results were run on a 1024-node internal
Shasta development system using Slingshot 10 interconnect.
The network topology for this development system con-
sisted of 8 groups, with 16 switches per group, and 128
nodes connected at each group and each node in the system
hosts dual Mellanox ConnectX-5 Network Interface Cards.
Compute nodes in this system are using AMD EPYC Rome
compute processors (dual-socket nodes, 64-cores per socket,
256 GB DDR4-3200 memory) ranging in frequency from 2.0-
2.25GHz. The attached Lustre file system is a Clusterstor
system with 12 OSTs providing 2 PB of storage.

6.1.4 AWS Parallel Cluster
For the AWS deployment we used the AWS ParallelClus-
ter open source cluster management tool to configure and
deploy a 32 node HPC cluster. We used compute re-
sources from the us-east-1 region, selecting instance type
c5n.18xlarge for the compute partition, since this instance
types supports the Elastic Fabric Adapter (EFA). The cluster
was configured to use the SLURM workload manager and

also included an attached Amazon FSx Lustre file system.
The cluster comes with OpenMPI targeting OFI with efa
enabled. Since our intent was to use AWS to test cloud
deployment, we also installed Singularity on the system.

6.1.5 HPE SuperDome Flex
Benchmarks were run on an 8-socket HPE SuperDome Flex
system with 3 TB memory (DDR4-2933). Each 2.9 GHz Intel
Cascade Lake socket has 24 cores for a system total of 192
cores.

6.2 Database Build

The database build process primarily involves parsing one
or more N-Triple [5] or N-Quad [17] files, storing the unique
RDF literal strings in the dictionary and creating a mapping
between unique integer identifiers (HURI) and using these
identifiers to create the integer quads stored in the quads
table. The build step sorts all of the unique RDF strings
after processing all input files and update the HURIs based
on the sort order. This is done to enable optimizations in
FILTER and other operators that compare literals using the
HURIs rather than by the RDF strings. Finally, inferencing
is executed on the loaded triples/quads if the user provided
a set of rules. After building a database, a checkpoint is
done to save the internal representation to disk to enable
faster reloads of the same database. More information on
the build process can be found in our previous study [3].
Figure 1 shows the flow of the steps involved in the build
process.

Fig. 1. CGE Database Build Flow Chart

The build process was benchmarked on the Cray CS,
XC and EX systems using LUBM200K, which is ∼4.59 TB
of raw N-Triples data on disk with ∼26.7 billion quads
before inferencing and ∼36.4 billion quads after inferencing.
On the AWS parallel cluster instance we used LUBM100K,
which is ∼2.29 TB of raw N-Triples data on disk with ∼13.3
billion quads before inferencing and ∼18.2 billion quads
after inferencing. Finally, on the SuperDome Flex we used
LUBM25K, which is ∼583 GB of raw N-Triples data on disk
with ∼3.3 billion quads before inferencing and ∼4.6 billion
quads after inferencing. We used smaller sizes of LUBM on
AWS and SDF because of the resources we had available.
As discussed above, the AWS cluster was only 32 nodes and
the SDF was only 8 sockets.

Table 1 below shows the times for the different build
steps of LUBM200K on CS, XC and EX when running on 32
nodes with 16 images per node. As the numbers show, the
time for reading the RDF triples from disk is a significant
portion of the total build time. The remaining steps in the

CRAY USER GROUP 2021 8

build phase is what we refer to as the ”build processing”
since it is the work to parse and convert the input to the
internal format once it is loaded from disk.

TABLE 1
Times in seconds for Build Steps for LUBM200K Using 512 Images

Build Step CS CS CS XC EX
MPICH+OFI MPICH+UCX OMPI+UCX Cray MPICH Cray MPICH
Singularity Singularity Singularity Native Native

Read RDF 658.2 659.8 653.9 414.4 551.9
Ingest Quads 253.5 239.5 214.0 236.6 279.6
Sync Quads 39.6 32.3 27.7 31.4 35.8
Sort Literals 76.3 74.3 59.9 73.4 90.2

Update HURIs 295.7 211.2 174.6 207.0 225.2
Inference 663.6 539.2 458.9 547.2 553.0

Total 1986.9 1756.3 1589.0 1510 1735.7

Figure 2 shows the scaling of the build processing time
for LUBM200K when executing on 32, 64 and 128 nodes
with 16 images per node. The build process scales fairly
well when using OMPI on the cluster as well as when
running natively on XC and EX. The MPICH performance
on the cluster using UCX scales reasonably as well up to 64
nodes but is unable to complete at 128 nodes. The database
build failed when using MPICH+UCX at 128 nodes because
buffers were not correctly being transmitted which caused
CGE assertions to fail when it detected invalid input values
in the receive buffers. Further, when using MPICH+OFI, the
build process fails when using more than 32 nodes because
CGE encountered OFI timeout errors caused by too many
ranks doing put/get operations to the same target rank.

On AWS we leveraged the OMPI+UCX Singularity con-
tainer and we used LUBM100K since we had limited lus-
tre space and only had a 32 node parallel cluster. The
LUBM100k build was performed using 32 nodes and 16
images per node (i.e., 512 images) and the processing por-
tion took 693.8 seconds and the reading of the raw N-
Triples files took 2109.9 seconds. The build processing time
translates to ∼51,300 quads/image processed per second
which compares to ∼76,123 quads/image processed per
second when using the OMPI Singularity container on the
CS cluster.

For the SDF we used the MPICH+OFI based Singularity
container. The SDF was only an 8 socket machine and did
not have a parallel file system so we used the smaller
LUBM25K for our tests. Given that no parallel file system
was available the build time was dominated by the time
to read the RDF, which took 981.7 seconds for the 583 GB
of raw data. The build processing time took 873.5 seconds
when using 24 cores per socket for a total of 192 images,
which equates to 27,167 quads/image processed per second.
Note that much of CGE has not yet been optimized for
running on a large shared memory machine so considerable
time is spent marshalling data unnecessarily. Once more of
CGE is updated to reduce this data movement the build
performance on the SDF should improve. Also, the build
process did not ensure optimal NUMA placement to best
utilize all sockets, which could certainly impact perfor-
mance.

6.3 Query Performance

Figure 3 shows the scaling of query 9 for LUBM200K when
executing on 32, 64 and 128 nodes with 32 images per node
for XC, CS and EX. On the XC we tested CGE using the

Fig. 2. CGE LUBM200K Build Scaling

Cray PGAS as well as with the new PGAS library based
on MPI to look for any significant performance differences.
As the numbers show, there is no difference in performance
when using MPI rather than the Cray PGAS on the XC.
Further, as previously mentioned the new PGAS library no
longer requires the use of huge pages. This is an important
improvement for CGE because requiring huge pages has
caused problems at CGE startup on nodes with insufficient
huge pages.

Fig. 3. CGE LUBM200K Query 9 Scaling

On the CS we tested all three of our container ver-
sions: MPICH+OFI, MPICH+UCX and OMPI+UCX. With
the changes to scan/join to leverage the new coexchange() the
MPICH+OFI was able to run up to 128 nodes though there
was limited scaling beyond 64 nodes. The MPICH+UCX
again performed better than MPICH+OFI, however, it was
unable to execute properly at 128 nodes due to errors in the
buffers being transmitted. Leveraging OMPI+UCX was the
best performing container for query 9, just as it was for the
build processing.

On the EX we were able to test the native compila-
tion and execution of CGE using Cray MPICH as well as
the OMPI+UCX singularity container. As the query results
show in Figure 3, using Cray MPICH had scaling limitations
even at 64 nodes and performed considerably slower than
CGE inside the OMPI+UCX container. We have not yet

CRAY USER GROUP 2021 9

determined why the native build performed so poorly com-
pared to the containerized version and this is an ongoing
investigation. The ability to run the same OMPI+UCX con-
tainer on EX as on the CS and AWS demonstrates the ease
of portability offered by containerization. Finally, given the
fact that the OMPI+UCX singularity containerized version
of CGE performed the best across all platforms clearly
illustrates that CGE can now run optimally across multiple
architectures while minimizing development effort.

7 CONCLUSIONS

In this paper, we have demonstrated how we were able to
containerize CGE in order to enable easy porting to mul-
tiple platforms. We discussed the work required to enable
the containerization, which mainly focused on removing
dependencies on the Cray Coarray-C++ and PGAS library
originally used by CGE. To do this, a new PGAS library
was created based upon MPI RMA operations and POSIX
shared memory and a simplified Coarray-C++ was created
to utilize the new PGAS. The MPI and POSIX shared mem-
ory standards were chosen for multiple reasons, including
greater portability, ease of containerization and performance
on multiple platforms. We also discussed the components
required within the container to enable optimal performance
of CGE across platforms.

We also discussed recent optimizations made to CGE to
improve some operations, including scan, join and infer-
encing, and why these improvements were more important
now that CGE was executing on architectures other than
XC. Through our benchmarks we were able to demonstrate
the performance improvements gained from these changes,
which were significant in cases such as inferencing where
the fetching of dictionary strings was modified to use group-
aggregated messaging.

Finally, we have shown the performance and scaling
of CGE on several architectures, including XC, CS, EX,
SDF and AWS, when running either natively or inside a
container. We demonstrated the ease of executing CGE on
multiple platforms by leveraging the same container on
multiple architectures and verified that CGE can run opti-
mally on multiple platforms by comparing the performance
and scaling on all architectures to the performance of CGE
on XC using the original Cray PGAS.

8 FUTURE WORK

As discussed in Section 6.2, the MPICH+OFI containerized
version of CGE suffered from OFI timeout errors that pre-
vented scalability and limited performance. We plan to do
further investigation into these timeouts to see what the
cause(s) may be and how they can be avoided. As part of
this effort, we may consider going directly to OFI rather than
using MPI for the RMA operations to see if that avoids or at
least reduces the timeout failures. Further, since using UCX
for both MPICH and OMPI provided the best performance,
we plan to investigate whether we could interface with
UCX directly rather than MPI for the RMA operations. By
calling UCX directly the container could use MPICH and
UCX to ease the launch of the CGE container directly from
slurm while avoiding the OFI timeouts and gaining the
performance improvements of UCX.

Finally, as discussed in Section 6.3, there is a significant
performance difference on the EX when executing CGE na-
tively using Cray MPICH versus running the containerized
CGE built upon OMPI+UCX. Further investigation into the
cause of the performance difference and limited scaling is
planned to determine why there is such a difference and if
any changes could be made to CGE and/or Cray MPICH to
improve the native performance.

REFERENCES

[1] K. Maschhoff, R. Vesse, and J. Maltby, “Porting the Urika-GD
graph analytic database to the XC30/40 platform,” in Cray User
Group Conference (CUG ’15), Chicago, IL, 2015.

[2] K. Maschhoff, R. Vesse, S. Sukumar, M. Ringenburg, and J. Maltby,
“Quantifying Performance of CGE: A Unified Scalable Pattern
Mining and Search System,” in Cray User Group Conference (CUG
’17), Seattle, WA, 2017.

[3] C. Rickett, U. Haus, J. Maltby, and K. Maschhoff, “Loading and
Querying a Trillion RDF Triples with Cray Graph Engine on the
Cray XC,” in Cray User Group Conference (CUG ’18), Stockholm,
Sweden, 2018.

[4] T. Johnson, “Coarray C++,” in 7th International Conference on PGAS
Programming Models, Edinburgh, Scotland, 2013.

[5] D. Beckett, “RDF 1.1 n-triples,” W3C, W3C Recommendation, Feb.
2014, https://www.w3.org/TR/n-triples/.

[6] “TCMalloc,” https://github.com/google/tcmalloc, 2021.
[7] “shm overview(7) — linux manual page,” https://www.man7.

org/linux/man-pages/man7/shm overview.7.html, 2021.
[8] “MPI Forum,” https://www.mpi-forum.org/, 2021.
[9] “SingularityCE User Guide,” https://sylabs.io/guides/3.8/

user-guide/, 2021.
[10] “Mellanox OpenFabrics Enterprise Distribution for Linux

(MLNX OFED).” [Online]. Available: https://www.mellanox.
com/products/infiniband-drivers/linux/mlnx ofed

[11] “Unified communication x.” [Online]. Available: https://www.
openucx.org/

[12] “libfabric.” [Online]. Available: https://github.com/ofiwg/
libfabric

[13] “Open MPI: Open Source High Performance Computing,” 2021.
[Online]. Available: https://www.open-mpi.org

[14] “MPICH: High-Performance Portable MPI,” 2021. [Online].
Available: https://www.mpich.org/

[15] “Userspace verbs access.” [Online]. Available: https://www.
kernel.org/doc/html/latest/infiniband/user verbs.html

[16] Y. Guo, Z. Pan, and J. Heflin, “Lubm: A benchmark for owl
knowledge base systems,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 3, no. 2, pp. 158–182, 2005.

[17] “RDF 1.1 n-quads,” W3C, W3C Recommendation, Feb. 2014,
https://www.w3.org/TR/n-quads/.

