
Optimizing the Cray Graph Engine for
Performant Analytics on Cluster, SuperDome
Flex, Shasta Systems and Cloud Deployment

Christopher D. Rickett, Kristyn J. Maschhoff and Sreenivas R. Sukumar

Cray User Group, May 3-5, 2021

• Background
• Cray Graph Engine (CGE)

• Enabling execution on multiple platforms
• Performant execution across architectures

• Recent Optimizations
• Database build
• Query Engine

• Deployment Options
• Native and cloud deployments

• Benchmarks
• Dictionary build
• Query execution

• Summary

• 2

Outline

3

Background : The Cray Graph Engine

• CGE is a scalable parallel graph analytics framework
• An in-memory semantic graph database

– Basic graph pattern search
– Graph-theoretic (whole graph) algorithms

• A W3C Standards inspired triplestore
– Uses RDF Data model
– Uses SPARQL as query language

• Scales-out and scales-up, i.e. built for “vertical scaling” based on
parallel and distributed computing principles
• Most market competitors are scale-out databases.
• Scale-up => faster with more compute resources

• Fast turn-around on queries, brings interactivity to graph-based
discovery
• Scaling and performance enables interactive analysis of very

large datasets (1 – 100s of TBs)

2012: YarcData is formed to build Big
Data solutions

2014: Urika-GD – an appliance for
graph analytics using the XMT
architecture

2016: Urika-GX – graph engine code
ported to work on Aries interconnect
and x86 architecture.

2018: Demonstrated scaling and
showed CGE as the best performing
database on a trillion triples.

2017: Urika-XC – graph engine code
scales on supercomputers.

2020 : Ongoing work on porting
Graph engine ported for HPE
hardware architectures such as
ProLiant, SuperDomeFlex, InfiniBand,
Shasta and HPE Container Platform.

• CGE for XC based on Cray Coarray-C++
• Coarray-C++ built on Cray PGAS which leverages XPMEM/DMAPP and Aries interconnect

• Changes required for multi-platform support:
• Developed simplified PGAS library to remove dependence on Cray hardware and software stack

– Based upon POSIX shared memory and one-sided MPI communication
– Implements only functionality required by CGE, such as:

– Creation of symmetric virtual address space across images and symmetric memory allocations/frees
– Blocking and non-blocking puts/gets
– Barriers
– Collectives

– Direct memory access amongst images on same physical node

• Modified Coarray-C++ to leverage simplified PGAS library
• Advantages of using POSIX shared memory and MPI

• Portability
• Performance across architectures

• 4

Enabling CGE on Multiple Architectures

• POSIX shared memory used for symmetric heap
• All images use shared memory to allocate symmetric heap

– Used for all allocations in CGE, including memory for other allocators CGE maintains

• Enables images on same node to directly read/write to each other’s memory without XPMEM

• MPI used for PMI, synchronization and RMA
• MPI window feature used to enable RMA access to symmetric heap
• CGE put/get functions translated into memcpy if on same node or MPI_Put/MPI_Get if to remote node

– If non-blocking put/get, CGE will track outstanding RMA until next atomic_image_fence()

• atomic_image_fence() implemented using MPI_Win_flush_local for necessary ranks
• sync_all() implemented as an atomic_image_fence() and MPI_Barrier()

• Using MPI enables containerization with Singularity
• Container, cloud, Infiniband clusters, SuperDome Flex, and Shasta Cray EX supercomputers
• Without significant loss in performance across architectures

• 5

CGE PGAS Library

• Only implemented features used by CGE
• Removed features such as cofuture and coatomic

• Replaced calls to Cray PGAS library with new versions to CGE PGAS
• New API mimics Cray PGAS which simplified replacement

• New functionality:
• coexchange(): templated utility function provided that performs all-to-all communication of single data

elements in a group-aggregated manner
• Separate image fence functions for puts/gets:

– atomic_image_put_fence()
– atomic_image_get_fence()

• coexchange and separate put/get fences required corresponding support be added to CGE PGAS library

• 6

CGE Coarray-C++ Template File

• Dictionary updated to support block-fetching of strings
• Given an array of IDs dictionary uses group-aggregated block fetching of strings
• Used by query results writing, FILTER, Inferencing, etc.

• Inferencer updated to use dictionary block fetching of strings
• Strings used to verify quads being inferred
• Reduced inferencing time of LUBM100K on 512 images from 1796.6 seconds to 158.8 seconds

• Scan/Join operators
• Optimized for shared memory machines to avoid data marshalling
• Modified group-aggregated messaging so images hold data for consecutive images

– Previously aggregated data from group based on one partner image per group – O(num_groups) messages
– Reduces number of groups an image communicates with -- O(num_groups / group_size) messages

• Reduced message sizes by returning bit-flag for 1/0 statuses rather than full words
• Uses separate fence for remote get to prevent blocking on put of status bits
• LUBM100K Query 9 time on 32 nodes x 16 images per node reduced from 8.6 to 7.0 seconds

• 7

Recent Optimizations

• Build and execute natively using Cray MPICH
• Method used for executing on XC and EX
• Enables optimal performance for given hardware using Cray MPI libraries

• Containerization using Singularity
• Two models for MPI applications:

– Bind – host MPI bind-mounted into container
– Hybrid – MPI built into container and host MPI interacts with container MPI

• CGE uses hybrid model for portability but requires container MPI to be configured for performance
– Container includes: Mellanox OFED, UCX/OFI and MPI

• Containers created for both OpenMPI and MPICH
– OpenMPI 4.1 using UCX

– Requires host OpenMPI install

– MPICH 3.4 using OFI
– Easy execution using slurm
– Sometimes fails with OFI timeouts

• 8

Deployment Options

• Database build time
excluding file I/O
• Parse, Sync, Sort, Update

and Inference

• Scales well by node count

• CGE using OMPI in
Singularity is fastest

• CGE using MPICH fails to
build using > 32 nodes
• OFI timeout errors

• 9

Dictionary Build Step Scaling

• Strong scaling for all
deployments except CS-
MPICH
• 64 to 128 nodes had

reduced scaling

• Performance with Cray
MPICH matches Cray
PGAS

• CGE on CS using OMPI is
fastest

• CGE on CS using MPICH
required new coexchange
• OFI timeouts for small

all-to-all puts/gets

• 10

LUBM200K Query 9 Scaling

• Benchmarked on AWS and Cray EX using LUBM100K (~18.2 billion quads)
• AWS parallel cluster with c5n.18xlarge nodes
• Cray EX dual socket nodes with AMD 64-core EPYC processors
• 32 nodes for both with either 16 or 32 images per node

• SuperDome Flex (SDF) with LUBM25K (~4.6 billion quads)

11

Query Performance on EX, AWS and SDF

Computing Platform MPI
Query 9 time in seconds

512 images 1024 images

AWS efa cluster (singularity) OpenMPI 11.60 8.40

Cray EX with Slingshot Cray MPICH 6.17 4.24

Computing Platform MPI
Query 9 time in seconds

96 images 192 images

8 socket SDF (singularity) MPICH 16.45 12.81

• Described effort for enabling CGE to execute on multiple platforms
• Simplified PGAS and Coarray-C++ built on top of POSIX shared memory and one-sided MPI
• Portability and performance using POSIX and MPI

• Recent optimizations to CGE
• Dictionary build, inferencing and variable bindings

• Demonstrated dictionary build and query performance and scaling
• CGE MPI based PGAS performance matches Cray PGAS
• Containerized CGE performance on CS can match or exceed native XC performance

• CGE now deployable either natively or in a Singularity container
• Native version for XC/EX enables leveraging Cray MPICH
• Container enables easy deployment across platforms as well as in the cloud

12

Summary

• Questions?

13

THANK YOU

