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Background : The Cray Graph Engine

• CGE is a scalable parallel graph analytics framework 
• An in-memory semantic graph database

– Basic graph pattern search
– Graph-theoretic (whole graph) algorithms

• A W3C Standards inspired triplestore
– Uses RDF Data model 
– Uses SPARQL as query language

• Scales-out and scales-up, i.e. built for “vertical scaling” based on 
parallel and distributed computing principles
• Most market competitors are scale-out databases.
• Scale-up => faster with more compute resources

• Fast turn-around on queries, brings interactivity to graph-based 
discovery
• Scaling and performance enables interactive analysis of very 

large datasets (1 – 100s of TBs)

2012: YarcData is formed to build Big
Data solutions

2014: Urika-GD – an appliance for
graph analytics using the XMT
architecture

2016: Urika-GX – graph engine code
ported to work on Aries interconnect
and x86 architecture.

2018: Demonstrated scaling and
showed CGE as the best performing
database on a trillion triples.

2017: Urika-XC – graph engine code
scales on supercomputers.

2020 : Ongoing work on porting
Graph engine ported for HPE
hardware architectures such as
ProLiant, SuperDomeFlex, InfiniBand,
Shasta and HPE Container Platform.



• CGE for XC based on Cray Coarray-C++
• Coarray-C++ built on Cray PGAS which leverages XPMEM/DMAPP and Aries interconnect

• Changes required for multi-platform support:
• Developed simplified PGAS library to remove dependence on Cray hardware and software stack

– Based upon POSIX shared memory and one-sided MPI communication
– Implements only functionality required by CGE, such as:

– Creation of symmetric virtual address space across images and symmetric memory allocations/frees
– Blocking and non-blocking puts/gets
– Barriers
– Collectives

– Direct memory access amongst images on same physical node

• Modified Coarray-C++ to leverage simplified PGAS library
• Advantages of using POSIX shared memory and MPI

• Portability
• Performance across architectures
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Enabling CGE on Multiple Architectures



• POSIX shared memory used for symmetric heap
• All images use shared memory to allocate symmetric heap

– Used for all allocations in CGE, including memory for other allocators CGE maintains 

• Enables images on same node to directly read/write to each other’s memory without XPMEM

• MPI used for PMI, synchronization and RMA
• MPI window feature used to enable RMA access to symmetric heap
• CGE put/get functions translated into memcpy if on same node or MPI_Put/MPI_Get if to remote node

– If non-blocking put/get, CGE will track outstanding RMA until next atomic_image_fence()

• atomic_image_fence() implemented using MPI_Win_flush_local for necessary ranks
• sync_all() implemented as an atomic_image_fence() and MPI_Barrier()

• Using MPI enables containerization with Singularity
• Container, cloud, Infiniband clusters, SuperDome Flex, and Shasta Cray EX supercomputers
• Without significant loss in performance across architectures
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CGE PGAS Library



• Only implemented features used by CGE
• Removed features such as cofuture and coatomic

• Replaced calls to Cray PGAS library with new versions to CGE PGAS
• New API mimics Cray PGAS which simplified replacement

• New functionality:
• coexchange(): templated utility function provided that performs all-to-all communication of single data 

elements in a group-aggregated manner
• Separate image fence functions for puts/gets:

– atomic_image_put_fence()
– atomic_image_get_fence()

• coexchange and separate put/get fences required corresponding support be added to CGE PGAS library
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CGE Coarray-C++ Template File



• Dictionary updated to support block-fetching of strings
• Given an array of IDs dictionary uses group-aggregated block fetching of strings 
• Used by query results writing, FILTER, Inferencing, etc.

• Inferencer updated to use dictionary block fetching of strings
• Strings used to verify quads being inferred
• Reduced inferencing time of LUBM100K on 512 images from 1796.6 seconds to 158.8 seconds

• Scan/Join operators 
• Optimized for shared memory machines to avoid data marshalling
• Modified group-aggregated messaging so images hold data for consecutive images

– Previously aggregated data from group based on one partner image per group – O(num_groups) messages
– Reduces number of groups an image communicates with  -- O(num_groups / group_size) messages

• Reduced message sizes by returning bit-flag for 1/0 statuses rather than full words
• Uses separate fence for remote get to prevent blocking on put of status bits
• LUBM100K Query 9 time on 32 nodes x 16 images per node reduced from 8.6 to 7.0 seconds
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Recent Optimizations



• Build and execute natively using Cray MPICH
• Method used for executing on XC and EX
• Enables optimal performance for given hardware using Cray MPI libraries

• Containerization using Singularity
• Two models for MPI applications:

– Bind – host MPI bind-mounted into container
– Hybrid – MPI built into container and host MPI interacts with container MPI

• CGE uses hybrid model for portability but requires container MPI to be configured for performance
– Container includes: Mellanox OFED, UCX/OFI and MPI

• Containers created for both OpenMPI and MPICH
– OpenMPI 4.1 using UCX

– Requires host OpenMPI install

– MPICH 3.4 using OFI
– Easy execution using slurm
– Sometimes fails with OFI timeouts
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Deployment Options



• Database build time 
excluding file I/O
• Parse, Sync, Sort, Update 

and Inference

• Scales well by node count 

• CGE using OMPI in 
Singularity is fastest

• CGE using MPICH fails to 
build using > 32 nodes
• OFI timeout errors
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Dictionary Build Step Scaling



• Strong scaling for all
deployments except CS-
MPICH
• 64 to 128 nodes had

reduced scaling

• Performance with Cray 
MPICH matches Cray 
PGAS

• CGE on CS using OMPI is 
fastest

• CGE on CS using MPICH
required new coexchange
• OFI timeouts for small 

all-to-all puts/gets

• 10

LUBM200K Query 9 Scaling



• Benchmarked on AWS and Cray EX using LUBM100K (~18.2 billion quads)
• AWS parallel cluster with c5n.18xlarge nodes
• Cray EX dual socket nodes with AMD 64-core EPYC processors
• 32 nodes for both with either 16 or 32 images per node

• SuperDome Flex (SDF) with LUBM25K (~4.6 billion quads)
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Query Performance on EX, AWS and SDF

Computing Platform MPI
Query 9 time in seconds

512 images 1024 images

AWS efa cluster (singularity) OpenMPI 11.60 8.40

Cray EX with Slingshot Cray MPICH 6.17 4.24

Computing Platform MPI
Query 9 time in seconds

96 images 192 images

8 socket SDF (singularity) MPICH 16.45 12.81



• Described effort for enabling CGE to execute on multiple platforms
• Simplified PGAS and Coarray-C++ built on top of POSIX shared memory and one-sided MPI
• Portability and performance using POSIX and MPI

• Recent optimizations to CGE
• Dictionary build, inferencing and variable bindings

• Demonstrated dictionary build and query performance and scaling
• CGE MPI based PGAS performance matches Cray PGAS
• Containerized CGE performance on CS can match or exceed native XC performance

• CGE now deployable either natively or in a Singularity container
• Native version for XC/EX enables leveraging Cray MPICH
• Container enables easy deployment across platforms as well as in the cloud
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Summary



• Questions?
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THANK YOU


