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Abstract—The next-generation HPE Cray EX and HPE Apollo su-
percomputers with Slingshot interconnect are breaking new ground in
the collection and analysis of system performance data. The moni-
toring frameworks on these systems provide visibility into Slingshot’s
operational characteristics through advanced instrumentation and trans-
parency into real-time network performance. There still exists, however,
a wide gap between the volume of telemetry generated by Slingshot
and a user’s ability to assimilate and explore this data to derive critical,
timely, and actionable insights about fabric health, application perfor-
mance, and potential congestion scenarios. In this work, we present
trellis — an analytical framework built on top of Slingshot monitoring
APIls. The goal of trellis is to provide system-administrators and re-
searchers insight into network performance, and its impact on complex
workflows that include both Al and traditional simulation workloads. We
also present a visualization interface, built on trellis, that allows users
to interactively explore through various levels of the network topology
over specified time windows, and gain key insights into job performance
and communication patterns. We demonstrate these capabilities on an
internal Shasta development system and visualize Slingshot’s innovative
congestion-control and adaptive-routing in action.

Index Terms—Performance of Systems, Machine learning, Network
monitoring, Network topology, Information Visualization, Visualization
systems and software, Visualization techniques and methodology

1 INTRODUCTION

The overall performance of applications is highly depen-
dent on many factors such as system resources, health
and availability of network interconnect, etc. Contention of
shared resources, faulty components, imbalanced workload
decompositions, can all significantly degrade performance.
System administrators and application developers often en-
counter slow running jobs and network congestion ends up
being one of the common root causes in such scenarios.
The HPE/Cray Slingshot network employs various hard-
ware mechanisms which are used to significantly reduce
congestion within the network and to address network per-
formance issues when problems do arise. System adminis-
trators and application developers can benefit from insights

derived from a combination of job-related information from
the workload manager and network telemetry data to debug
these issues.

The HPE Cray EX supercomputer currently provides
two tightly integrated monitoring frameworks, the Cray
System Manager (CSM) [1] and the HPE Performance Clus-
ter Manager (HPCM) [2] which consolidate telemetry data
from different subsystems such as the network fabric, job
management, storage, power, user applications and com-
pute, and persist them in dedicated data stores.

However, additional analytical tools are needed beyond
what the monitoring framework can provide, in order to
investigate the sensitivity of application performance to
network characteristics. Researchers and system adminis-
trators have to spend a significant amount of time clean-
ing, refining, and transforming the raw telemetry data to
extract actionable insights. There are many efforts and tools
available to address the data collection process. However,
there are but a few end-to-end frameworks that target HPC
systems, such as the ones in [3]-[6], that can specifically
support end-users through data collection, preparation, fu-
sion, and aggregation, all the way through to building
robust data visualization and analytical pipelines. Such tools
will shorten the time-to-insight for understanding various
aspects of the high-speed network fabric. This ability to
detect and adapt to network topology and traffic patterns is
a valuable capability to facilitate application performance,
as highlighted by the Exascale Computing Project [7].

Our solution, trellis, is designed to address the gap
between data collection and getting useful insights from
them. trellis enables users to easily extract data from the
system, load the data into a highly optimized columnar
data store for faster querying, perform a series of pre-
processing on the data and finally delivering interactive and
intuitive visualizations for fast real-time system monitoring
and analysis.

In this paper, we discuss the architecture and features of
trellis in detail. We also describe several examples of how
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Fig. 1: Architecture overview of trellis. trellis optimizes access to Slingshot telemetry through its APIs, so users can easily gain

insight into Slingshot’s performance.
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Fig. 2: Overview of a heatmap for Group 5. The entries of the
heatmap can be color-coded to show telemetry or application
specific metrics.

we use trellis to build visualizations to correlate network
performance and application characteristics. One of our
design goals for trellis is to facilitate ease of use within a
data science or machine learning development environment,
such as Jupyter Notebooks.

2 ARCHITECTURE OVERVIEW

Figure 1 shows a high-level overview of the architecture
of trellis. The framework includes four distinct functional
components:

a) API Client Layer

b) Analytics Datastore Layer

c) Trellis API Layer

d) RESTful API Layer
The API Client Layer provides an adapter to acquire data
from Slingshot telemetry APIs on the monitoring frame-
work. The Analytics Datastore Layer is tasked with combining

and persisting fabric performance data into an analytics-
friendly format. The Trellis API Layer and RESTful API
Layer implement and expose compute-intensive analytics
functionalities via user-friendly Pythonic and HTTP REST
APIs.

3 MONITORING THE NETWORK

Jobs not performing as expected is an issue that applica-
tion developers and system administrators often have to
diagnose. A slow network is often one of the root causes
in such cases. Therefore, it is imperative to have a clear
understanding of what is happening in the network at a
given time. Monitoring and comparing the status of the
network and traffic generated by job mixes are some of the
most constructive ways to determine the root cause of a slow
network.

trellis enables users to map bandwidth and congestion to
different traffic patterns generated by jobs in the network,
thereby helping them to unveil relationships between differ-
ent job-types and placements, and network performance. In
the following sections, we present our custom visualizations
built on top of trellis to demonstrate how we can overlay job-
related information on top of the network data to identify a
few key communication patterns, and at the same time un-
derstand the state of the network with respect to congestion
and bandwidth utilization.

3.1 Setup

To demonstrate the effectiveness of trellis in monitoring net-
work performance alongside application performance, we
instrument GPCNeT [8] and LAMMPS [9] using CrayPat [10]
and execute them on a 1024 node Cray EX developmental
system called Shandy. GPCNeT is a well known network
benchmark application that uses MPI to generate a variety
of congestor traffic patterns in the network (e.g. pairwise
all-to-all and incast). Network telemetry is collected using
Shandy’s CSM framework and trellis, whereas application
specific data such as node allocations and average MPI
latencies are collected through CrayPat. The visualizations
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Fig. 3: A network map showing applications (color coded) executing at the edge ports. The edge ports map directly to compute

nodes allocated to the applications.

are built on 4-hour telemetry data captured at 1 Hz sam-
pling rate and persisted in OmniSciDB database for post-hoc
analysis.

When we conducted our experiments, Shandy had
Shasta v1.3 software installed. Each dual-socket compute
node on Shandy has two 64-core EPYC Rome processors
with a total of 256 GB DDR-4 memory per node. Its network
topology consist of 8 groups, with 16 switches per group,
and 128 nodes connected at each group. Each compute node
in the system hosts dual Mellanox ConnectX-5 Network
Interface Cards.

For the application runs, we use “out-of-the-box” build
settings for both GPCNeT and LAMMPS. A total of 640
nodes were available at the time of the experiment, with
GPCNeT running across 540 nodes, with 128 processes-per-
node, and LAMMPS (2D Lennard-Jones diffusion coefficient
calculation) running across 100 nodes, with 4 processes-per-
node with OpenMP enabled at each process rank. Disk I/O
was negligible for both applications.

3.2 About the Visualizations

To map telemetry and application performance across net-
work groups, switches and ports, we use a heatmap as the
key graphical unit for our visualizations. Figure 2 shows an
example heatmap of a switch group 5 with rows represent-
ing the Port IDs and columns representing the Switch IDs.
Each block in the heatmap can be color coded to show

o if an application was allocated to run at that port (for
edge ports)

o an aggregated application performance metric (i.e. MPI
latencies)

e an aggregated network telemetry statistic (i.e. band-
width and congestion)

All values are aggregated over the time period of the
application run. The key network statistics measured at
each port are received bandwidth - rxBW, transmitted band-
width - txBW and average frames blocked per second —
rxBlocked. Additionally, for every edge port, we can show
its associated compute node id.

3.3 Monitoring the network at the application level

Figure 3 shows the node allocations for both LAMMPS and
GPCNeT across all the groups on Shandy. Figures 4a and
4b show average injected bandwidth and average blocked
frames, respectively, at the edge ports where both applica-
tions were executing. Further, the heatmaps indicate that
congestion and bandwidth utilization across edge ports
running GPCNeT are much higher compared to the edge
ports assigned to LAMMPS.

In the next two sections, we focus on identifying com-
munication patterns generated by GPCNeT.

3.3.1 Identifying an Incast pattern

The heatmap in Figure 3 shows the edge ports (shaded
blue) where GPCNeT is executing across groups 2-7. As part
of its benchmark suite, GPCNeT induces both end-point
congestion and intermediate congestion in the network.
Figure 5a shows the average MPI latencies across all
ranks of GPCNeT. A closer inspection of the heatmap re-
veals a high MPI latency at a pair of ports from switches
8 and 9 in group 7. These two ports are connected to a
single node through two network interfaces. Correspond-
ingly, Figure 5b shows the average transmitted bandwidth
for all the edge ports where GPCNeT was running. We
notice a similar outlier at the same corresponding pair of
ports i.e. port 0 of switches 8 and 9, in group 7, indicating
higher-than-normal transmitted bandwidth. Now, for any
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(a) Bandwidth injected at the edge ports by GPCNeT and LAMMPS, averaged across the application execution time.

Group 1 Group 2

49 50 51 58 59

Switch ID

Group 3 Group 4 00000

80000

60000

rxBlocked frames/s

40000

20000

001 2 3 4 5 6 7 8 9 101 12131415
Switch ID.

10 1 12 13 14 15

(b) Average congestion, measured as blocked frames per second while receiving at edge ports. Edge ports used by GPCNeT (figure 3) appear

congested.

Fig. 4: Visualizing received bandwidth(top) and congestion(bottom) at the edge ports. trellis makes it easier to summarize and

map large volumes of telemetry data into visuals such as these.

given edge port, transmitted bandwidth corresponds to
bandwidth received at the node connected to that edge port.

Our hypothesis from this observation is that the higher
MPI latencies correspond to an incast pattern observed
in the same network location (i.e. switch, and port). We
can qualitatively confirm this hypothesis as we know that
GPCNeT indeed generates an incast congestion as part of
its benchmark suite.

3.3.2 Adaptive routing in action

The heatmap in Figure 6a shows the transmitted bandwidth
for global ports when GPCNeT was running. High band-
width values are color-coded as red. In contrast, Figure 6b
shows the transmitted bandwidth for the global ports when
GPCNeT was not running. Immediately, one can observe
a non-trivial bandwidth in the global links of group 8§,
in Figure 6a. If we recall, GPCNeT was executing only
across groups 2 through 7. The appearance of transmitted
bandwidth values in group 8, despite the fact that no jobs
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(a) A map of average MPI latencies as measured at edge ports associated with GPCNeT.
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(b) Average bandwidth egress as measured at edge ports associated with GPCNeT.

Fig. 5: Visualizing MPI latencies (top) and txBW (bottom) at the edge ports for GPCNeT. The high MPI latency observed in
Switches 8 and 9 in Group 7 correspond to a high value of received bandwidth at the same switches in Group 7. This is indicative

of incast congestion pattern generated by GPCNeT.

were allocated in that group, is indicative of non-minimal-
path adaptive-routing in action.

HPE’s Slingshot interconnect employs adaptive routing
features to avoid congestion impacts by routing traffic
around hot spots in the network [11]. In figure 6a, GPC-
NeT causes congestion in the global links of groups 2-7,
and therefore, Slingshot re-routes some of the global traffic
through group 8.

3.4 Monitoring the network fabric

In addition to facilitating users to monitor the network at
the application level, trellis can also be used to monitor the
status of the overall fabric at any given point in time. We
overlay network telemetry (bandwidth and congestion) on
top of the network topology, and present a timeline of which
jobs were executing in the system, where applicable. We
developed a prototype web-based visualization interface for
this purpose. Our key contribution with this design is the
ease with which users can filter and apply thresholds across
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Fig. 6: Visualizing bandwidth egress at global links. There is a non-trivial amount of traffic being routed through global links in
Group 8 even when GPCNeT is only running in Groups 2-7 (top). We do not see this phenomena when GPCNeT is not running

(bottom).
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Fig. 7: A web user interface showing a chord visualization of
the network topology, along with aggregated metrics across all
ports. The metrics are color coded by port type.

both time and metrics, at different hierarchies of the net-
work topology, and obtain highly intuitive and interactive
visualizations to enable useful insights into the status of the
network.

Figure 7 shows an example of the interface presenting
a topological representation of the network along with
the network traffic visualized in the form of a chord di-
agram [12]. The web interface presents several filters and
options. A user can begin by selecting a time range using

the date-time filter on the top and a metric of interest
from the items on the left. Additionally, the user can select
various network entities such as group, link types (edge,
local, and global) and port types (edge, local and, global).
Upon submitting the selections, the chord diagram showing
the topological view gets updated with annotated data.

The sectors in the chord diagram, in figure 7, correspond
to a selected subset of groups from the system. Each group is
again subdivided into smaller sectors representing different
switches. An aggregated metric value is shown in the outer-
most segment across all the ports in a group. The values
are color coded by port types: yellow for edge ports, blue
for local ports and green for global ports. The inner-most
segment of the chord diagram depicts the inter and intra
group connectivity. Blue arcs indicate local links and the
green arcs correspond to global links. For the visualization
shown in the figure, metric values for each network entity
have been averaged over the selected time period. However,
additional aggregation methods such as max, min, and sum
are also available.

Figures 8a, 8b and 8c show progressive views available
from the interface. A user can interact with the network data
at different levels of granularity, starting from a high-level
group view, through a switch-based view, down to viewing
metrics at a single port. Any update on the selection panel
modifies all the views of the interface.

In order to tackle the complexities of a hierarchical net-
work topology, trellis performs aggregations on the metrics
at different levels of the hierarchy (group, switch and port).
These aggregated views are made available to the users
through interactive visualizations.

4 |IMPLEMENTATION

The core libraries in trellis have been implemented in
Python. We used Plotly [13] and matplotlib [14] to create the
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Fig. 8: Our web-based user interface with three different views that progressively visualizes three different levels of the network
hierarchy. Figure 8a shows the transmitted bandwidth across all the groups. Figure 8b shows the transmitted bandwidth for all
the ports within a single switch, along with job information. The visualization in figure 8c allows the user to observe the trend of

transmitted bandwidth over time for a particular port at a switch.

heatmaps on top of trellis, to monitor and correlate network
utilization with applications (Section 3.3). Dash [15], a web
interface library, was used to display these visualizations. To
build the visualization interface for monitoring the overall
status of the network (Section 3.4) we used React [16] and
d3js [17].

trellis can also be used from within a Jupyter Notebook
environment. Figure 9 illustrates an example of using the
trellis API to obtain the connectivity information for all
global ports as an adjacency list. The output is a pandas
dataframe, which can be used for further analysis and
investigation. We believe that having the flexibility to use
trellis within the datascience ecosystem of tools will lower
the barrier-of-entry and enable researchers to use the frame-
work as a building block for more complex analytics and
machine learning pipelines.

5 CONCLUSION

This paper introduces trellis, an analytics framework to ob-
serve and understand network performance. As core pieces
in the design of trellis, we present two key components
that address the challenges of aggregating and analyzing
high-throughput and high-volume network telemetry and
making them easily available to end-users.

e An industry-standard columnar database, OmniS-
ciDB [18], to efficiently store and quickly analyze large
streams of telemetry data.

o A web-standard compliant RESTful API server, based
on TornadoWeb [19], that exposes rich and complex
analytical queries on telemetry streams to enable web-
based interactive visualization front-ends.

The architecture of trellis is designed as a component-based
system that allows users to easily integrate it in their existing
data science and visualization workflows.

We have also presented how users can investigate net-
work communication patterns generated by their applica-
tions (eg. GPCNeT, LAMMPS), and correlate network per-
formance with application performance characteristics on a
Slingshot-based system. In addition, we also demonstrated
a web-based user interface that successfully fuses network
telemetry information with job statistics and allows users to

evaluate the health of the network at different hierarchical
levels (i.e. group, switch and port).

6 FUTURE WORK

At the time of writing this paper, we have successfully
deployed trellis on a 1024 node system (Shandy). However,
scaling up trellis to work on larger systems, and eventually
on exascale systems will pose unique challenges when try-
ing to gain insights from large volumes of telemetry data.
For large scale systems, raw telemetry data is likely to grow
to several petabytes, even with a 30-day retention period,
for instance.

Currently, we employ techniques such as aggregating
data at various levels of granularity, filtering and thresh-
olding performance metrics, and resampling metrics at
coarser temporal granularity. But there exists a trade-off
between interactivity and computation time which becomes
prominent as the scale of the data increases. Therefore, in
order to build visualizations for large and high-resolution
data, we need advanced data management, analysis and
visualization techniques. We are working on enhancing our
tools and interfaces so that end-users can continue exploring
and interacting with the data to gain timely insights in an
efficient manner.

For future work, we plan to investigate advanced ma-
chine learning models based on trellis. These models, once
successful, can associate and predict job execution times
with network performance.
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