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Abstract—In this paper we explore the usage of SVE to
vectorise number-theoretic transforms (NTTs). In particular,
we show that 64-bit modular arithmetic operations, including
modular multiplication, can be efficiently implemented with
SVE instructions. The vectorisation of NTT loops and kernels
involving 64-bit modular operations was not possible in previous
Arm-based SIMD architectures, since these architectures lacked
crucial instructions to efficiently implement modular multipli-
cation. We test and evaluate our SVE implementation on the
A64FX processor in an HPE Apollo 80 system. Furthermore, we
implement a distributed NTT for the computation of large-scale
exact integer convolutions. We evaluate this transform on HPE
Apollo 70, Cray XC50, and HPE Apollo 80 systems, where we
demonstrate good scalability to thousands of cores. Finally, we
describe how these methods can be utilised to count the number
of Goldbach partitions of all even numbers to large limits. We
present some preliminary results concerning this problem, in
particular a histogram of the number of Goldbach partitions of
the even numbers up to 240.

Index Terms—A64FX; Arm; Goldbach partitions; Modular
multiplication; NTT; SVE; ThunderX2; Vectorisation.

I. INTRODUCTION

Despite having made their debut on the HPC scene only
a few years ago, Arm-based processors have already become
some of the most powerful chips in the world. Advanced fea-
tures of recent Arm architectures, such as the Scalable Vector
Extension (SVE), have enabled new optimisations that until
very recently were not possible. One of these optimisations is
the vectorisation of loops containing modular arithmetic op-
erations, in particular 64-bit modular multiplication. Modular
arithmetic can be viewed as conventional integer arithmetic,
where basic operations such as additions, subtractions and
multiplications are taken modulo an integer (the modulus).
In general, the most challenging of the elementary modular
operations is modular multiplication, since it involves a non-
trivial modular reduction step. There are a few well-known
methods for performing fast modular multiplications, such as
the Montgomery multiplication method [1] that we employ
in this work. However, previous single instruction multiple
data (SIMD) architectures, namely Neon, lacked crucial in-
structions to implement these methods efficiently (for example,
instructions that calculate the “full” 128-bit result of a 64-bit
multiplication). Because of this, modular multiplications have

frequently hindered the vectorisation of loops they are a part
of.

One place where loops with several modular operations
occur is in number-theoretic transforms (NTTs). NTTs are
analogous to the discrete Fourier transform (DFT), with the
key difference that all arithmetic operations proceed over
a ring or field instead of the complex domain [2, §9.5.5].
In practice, this typically means replacing the conventional
additions, subtractions and multiplications in a DFT by their
modular counterparts, where the modulus is usually a prime
number satisfying some conditions. Importantly, due to the
underlying modular arithmetic, NTT computations are exact.
As a result, NTTs have become an important tool to compute
the exact convolution of arbitrarily large integer sequences,
avoiding the rounding and representation errors that arise in
conventional DFTs. Incidentally, NTTs are usually more com-
putationally demanding than DFTs, since they require more
operations to implement the modular arithmetic, and some of
those operations per se (such as the modular reductions in
multiplications) make other optimisations such as vectorisation
more difficult, as we have previously mentioned.

In this paper we explore the usage of SVE to optimise 64-bit
modular arithmetic operations in NTTs, with a special focus
on modular multiplications. We show that it is now possible
to vectorise loops with modular multiplications efficiently by
utilising SVE, and choosing the parameters for the Mont-
gomery method in such a way that only shifts and arithmetic
modulo 264 are used in specific junctures of the algorithm. It
is worth noting that none of the compilers tested by us (i.e.
Arm, Cray, Fujitsu and Gnu) were able to vectorise these loops
automatically. We evaluate our implementation on the A64FX
processor.

Furthermore, we implement a distributed large-scale NTT
for the exact computation of large integer convolutions. Our
implementation is based on Bailey’s four-step algorithm [3]
and uses a hybrid MPI and OpenMP parallelisation approach.
We evaluate our implementation on three Arm-based HPC
systems:

Fulhame An HPE Apollo 70 cluster that consists of 64 dual-
socket compute nodes connected with Mellanox EDR
Infiniband (IB). Each node contains two 32-core Marvell



ThunderX2 processors running at 2.2GHz and 256GB of
DDR4 random-access memory.

Isambard 1 A Cray XC50 system, also based on Mar-
vell ThunderX2 processors, but containing 329 compute
nodes connected with Cray Aries (169 of which have
512GB of RAM, the rest have 256GB).

Isambard 2 An HPE Apollo 80 system based on Fujitsu
A64FX processors. It consists of 72 nodes connected
with Mellanox Infiniband, each node containing a 48-core
A64FX processor running at 1.8 GHz.

Our results (Figs. 3 and 4) show excellent strong and weak
scaling to a few thousand cores, with the percentage of non-
overlapped MPI communication being kept below 4% when
using 32 nodes of Fulhame (2048 cores in total) to compute
large transforms of 239 points.

Finally, we employ the aforementioned methods to compute
some preliminary results concerning the number of Goldbach
partitions of all even integers to a large limit. Goldbach
partitions correspond to the different ways in which an even
integer n can be represented as the sum of two prime num-
bers (the Goldbach conjecture is equivalent to the statement
that all even integers greater than 2 have at least one such
representation). We plot the number of Goldbach partitions
of the even numbers up to 240 (Fig. 5), which corresponds
to an improvement of more than 2000x over the previously
published record [4]. Our aim is to utilise these methods
to carry out a much larger-scale computation of Goldbach
partitions in the near future.

Although we specifically discuss our work in the context
of counting Goldbach partitions, our contributions are more
widely applicable to modular arithmetic operations, which
are fundamental to pure mathematics and number theory
applications. In particular our contributions are:

1) The demonstration of the use of SVE to successfully
vectorise loops with 64-bit modular multiplications;

2) The implementation of local and distributed number-
theoretic transform methods, with applications to a wide
spectrum of problems that require exact convolution of
(very large) integer sequences;

3) The performance evaluation of these methods on Arm-
based supercomputers.

The remainder of this paper is organised as follows. In
Sec. II we present the SVE implementation of the modular
arithmetic operations we employ in NTTs. In Sec. III we
discuss the implementation of NTTs themselves, namely the
algorithm we use to compute them in a distributed fashion.
In Sec. IV we describe how these methods are utilised to
compute Goldach partitions to large limits. We evaluate the
methods we have developed in Sec. V, and we discuss related
work in Sec. VI. Section VII concludes the paper.

II. MODULAR ARITHMETIC WITH SVE
In this section we present SVE implementations of the

three basic modular arithmetic operations required for number-
theoretic transforms (NTTs): addition, subtraction, and multi-
plication. Other operations, such as modular exponentiation,

are implemented resorting to these elementary operations,
and thus they are not considered here. As we shall see
below, the only operation that poses an actual challenge for
efficient implementation, particularly with vector instructions,
is modular multiplication.

Although our motivation for developing vector versions of
these modular operations is to vectorise the butterfly loops
of NTTs, the same techniques can also be employed in other
codes—for example, codes that utilise the Chinese Remainder
Theorem (CRT) to work with a very large modulus broken
into several smaller moduli, with all operations taken modulo
each of those moduli.

Henceforth umod_t is used as an alias for an unsigned
64-bit integer type, and N is the modulus over which the
operations are taken (a constant of umod_t type). We assume
throughout that N ≥ 232, since different strategies could
be used to implement these operations more efficiently for
smaller integer types. For each operation we present a generic
implementation written in C, followed by an SVE version
implemented using SVE intrinsics [5].

A. Addition and subtraction

Addition and subtraction of two integers a and b modulo a
third integer N may be expressed as

add_mod (a, b) = (a+ b) mod N, (1)
sub_mod (a, b) = (a− b) mod N. (2)

When the operands a and b are given in their reduced form
modulo N , i.e. 0 ≤ a, b < N , the implementation of these
operations is straightforward:

1 inline umod_t add_mod(umod_t a, umod_t b)
2 {
3 umod_t z = a+b;
4 return z >= N ? z-N : z;
5 }

1 inline umod_t sub_mod(umod_t a, umod_t b)
2 {
3 umod_t z = a-b;
4 return a >= b ? z : z+N;
5 }

In the code above it is assumed that N ≤ 263, otherwise
the computation of z in the function add_mod may overflow.
If N > 263, one can instead compute modular addition via a
modular subtraction between a and N − b.

Since these implementations only utilise additions, subtrac-
tions, and conditionals, they can be readily rewritten utilising
SVE intrinsics:

1 inline svuint64_t add_mod_sve(
2 svbool_t pg, svuint64_t a, svuint64_t b)
3 {
4 svuint64_t z = svadd_x(pg, a, b); // z = a+b
5 svbool_t pc = svcmpge(pg, z, N); // c = z >= N
6 return svsub_m(pc, z, N); // if(c) z -= N
7 }

1 inline svuint64_t sub_mod_sve(
2 svbool_t pg, svuint64_t a, svuint64_t b)
3 {



4 svuint64_t z = svsub_x(pg, a, b); // z = a-b
5 svbool_t pc = svcmplt(pg, a, b); // c = a < b
6 return svadd_m(pc, z, N); // if(c) z += N
7 }

The compilers we tested (Arm, Cray, Fujitsu, and GNU)
managed to vectorise loops with modular additions and sub-
tractions automatically, when these operations were used in
isolation. However, in practice almost all loops involving mod-
ular arithmetic include some form of modular multiplication,
and once modular multiplication is present none of these
compilers were able to vectorise such loops automatically.
For this reason, the SVE versions of modular addition and
subtraction presented above are necessary to glue together the
SVE-based modular multiplication we present next with the
rest of the code.

B. Multiplication

Modular multiplication is an operation far more expensive
than modular addition or subtraction. Formally, we want to
compute

mul_mod (a, b) = (a · b) mod N, (3)

where N , as before, is a 64-bit integer. The extra cost of
modular multiplications arises due to the more costly modular
reduction step that needs to be performed, which in the case
of modular addition and subtraction can be effected trivially
via a conditional subtraction or addition.

A possible naïve modular multiplication implementation
might look like this (once again assuming 0 ≤ a, b < N ):
1 inline umod_t mul_mod_naive(umod_t a, umod_t b)
2 {
3 return (a*b) % N;
4 }

However, this approach is flawed in two fundamental ways.
Firstly, N is effectively restricted to half the size of the
umod_t type, or else the intermediate product of a and b may
overflow. Since umod_t is a 64-bit unsigned integer type, this
implies N ≤ 232, which is not practical for our purposes where
we need N to be large. Secondly, computing the remainder of
the product of a and b by N directly is, in virtually all CPUs,
very expensive for all but a small selection of values of N .
For example, in the A64FX processor a remainder operation
with 64-bit unsigned operands is typically implemented via
an unsigned division followed by a fused multiply-subtract.
The division operation alone takes between 9–41 cycles, and
it cannot be pipelined [6]. On top of that, several of these
divisions need to be executed to compute the remainder of
a 128-bit dividend and 64-bit divisor—the actual case we
are interested in as we shall see next. For these reasons, no
nontrivial division or modulo operations should take part in
an efficient implementation of modular multiplication.

The first issue can be circumvented by computing the full
128-bit product of the two 64-bit operands, and only then
taking the remainder of the 128-bit result by N . Computing
128-bit products can be achieved either by using 128-bit
integer arithmetic (where supported), or with a mix of integer
and floating-point arithmetic (in the latter case, a floating-point

multiplication is used to compute the high part of the product
of two numbers, and thus N becomes limited by the size of
the mantissa of the floating-point type used). An approach
using only integer arithmetic is usually simpler and more
efficient, as it avoids conversions from integer to floating-point
representations and back, and for this reason it is the strategy
we use. For an example of a mixed integer and floating-point
approach refer to [7, §39.1]. For compilers that support 128-
bit integer types, the following C function-like macro can be
used to compute the 128-bit product of two 64-bit integers:

1 // u128 is a 128-bit unsigned integer type
2 #define umul128(ph, pl, m0, m1) do { \
3 u128 __p = (u128)(m0)*(m1); \
4 (ph) = __p >> 64; \
5 (pl) = __p; \
6 } while(0)

Alternatively, for AArch64 targets the macro may be imple-
mented utilising inline assembly has follows:

1 #define umul128(ph, pl, m0, m1) do { \
2 uint64_t __m0 = (m0), __m1 = (m1); \
3 __asm__ ("umulh\t%0, %1, %2" \
4 : "=r" (ph) \
5 : "r" (__m0), "r" (__m1)); \
6 (pl) = __m0 * __m1; \
7 } while(0)

Meanwhile, we can avoid taking the remainder by N
explicitly by utilising an efficient modular reduction algo-
rithm. The most common strategies for this are the long
divide algorithm of Knuth [8, Algorithm 4.3.1D], and the
Barrett [9] and Montgomery methods [1]. All these strategies
involve some pre-calculation dependent on the modulus N ,
and consequently they are most effective when several modular
multiplications have to be performed for a fixed modulus (as is
the case with NTTs or, for example, power ladders in modular
exponentiation). Here we have chosen to use the Montgomery
method, as it has been been reported to be slightly faster than
the other strategies [10], [11], and as we shall see below, it
lends itself well to an SVE-based implementation.

We now briefly describe the Montgomery method. For a
more extensive discussion and proofs refer to the original
paper [1].

Let R be an integer such that R > N and gcd(N,R) = 1,
and define N ′ =

(
−N−1

)
mod R (N ′ being one of the pre-

computed constants required by this method). The idea is to,
instead of working with numbers modulo N directly, work in a
different modular representation where a particular reduction
step exists and that is “easy” to compute (compared to the
naïve modulo N reduction). In this sense, let x̃ denote the
Montgomery representation of x, defined as

x̃ = (xR) mod N. (4)

Then, for any integer T we have the reduction

REDC(T ) = [T +N ((TN ′) mod R)] /R mod N, (5)

with
REDC(T ) ≡ TR−1 (mod N). (6)



Moreover, when 0 ≤ T < RN , either the reduction (5) with
the mod N operation omitted equals

(
TR−1

)
mod N , or it

exceeds it by N . Crucially, if we let T = x̃ỹ we obtain
REDC(T ) = REDC(x̃ỹ) ≡ (x̃ỹ)R−1 ≡ (xR) (yR)R−1 ≡
xyR ≡ x̃y (mod N), and since 0 ≤ T < N2, the mod
N operation in (5) can be replaced with a conditional sub-
traction. In other words, the reduction (5), without the mod
N operation, plus a trivial adjustment step can be used to
reduce the product of two numbers in Montgomery form
to the Montgomery form of their product modulo N , with
the only division or modulo operations required having R as
divisor. Provided division and modulo by R can be computed
efficiently (see below), this strategy tends to be significantly
faster than calculating the remainder by N directly. As we
have mentioned previously, this is especially true when several
modular products are to be performed over the same modulus,
since in this case the overhead of calculating the auxiliary
constant N ′ and of moving back and forth between standard
and Montgomery representations can be amortised over the
several multiplications that have to be performed. Finally, it
should be noted that the addition and subtraction modulo N
of two operands in Montgomery form equals the Montgomery
form of their sum and difference, i.e.

x̃± y = (x̃± ỹ) mod N, (7)

and so the routines we have presented previously for effecting
these operations require no modification whatsoever to work
with numbers in Montgomery form.

Assuming N ≥ 3 and odd, as is the case in nearly all
cases of practical interest (usually N is a large prime as we
shall see later), R can be chosen to be any sufficiently large
power of two—thus rendering the division and mod operations
in (5) trivial. It turns out that the choice R = 264 is especially
suitable for an SVE implementation, since it simplifies the in-
termediate calculations that have to be performed considerably.
With this choice of R and assuming N ′ has been precomputed,
the modular product of two integers (in Montgomery form),
via reduction (5), can be implemented in C as follows:

1 inline umod_t mul_mod(umod_t a, umod_t b)
2 {
3 umod_t m, xh, xl, yh, yl, z;
4 umul128(xh, xl, a, b); // x = a*b
5 m = (umod_t)(xl*N_prime); // m = (x*N’) mod R
6 umul128(yh, yl, m, N); // y = m*N
7 z = xh+yh+((xl+yl) < xl); // z = (x+y)/R
8 return z >= N ? z-N : z;
9 }

This implementation has been purposely written in a way
that can be easily translated into SVE. The key observation is
that, with R = 264, the operations on the low and high parts of
the 128-bit products that are calculated (x and y in the code)
are carried out almost independently, with the exception of the
carry for determining z—but this carry can easily be accounted
for with an extra overflow check. Putting everything together,
we obtain the following SVE code:

1 inline svuint64_t mul_mod_sve(
2 svbool_t pg, svuint64_t a, svuint64_t b)

3 {
4 svbool_t pc;
5 svuint64_t m, xh, xl, z;
6

7 /* x = a*b */
8 xl = svmul_x(pg, a, b);
9 xh = svmulh_x(pg, a, b);

10

11 /* m = (x*N’) mod R */
12 m = svmul_x(pg, xl, N_prime);
13

14 /* c = (x mod R)+(m*N mod R) >= R */
15 pc = svcmpgt(pg, xl, svmla_x(pg, xl, m, N));
16

17 /* z = (x+m*N)/R + c */
18 z = svadd_x(pg, xh, svmulh_x(pg, m, N));
19 z = svadd_m(pc, z, (uint64_t)1);
20

21 /* adjust result */
22 return svsub_m(svcmpge(pg, z, N), z, N);
23 }

Finally, we need to consider how to efficiently move back
and forth between standard and Montgomery representations.
Formally, we want to compute

to_mont(x) = (xR) mod N = x̃ (8)

from_mont (x̃) =
(
x̃R−1

)
mod N = x. (9)

Using an extra auxiliary constant Q = R2 mod N and
resorting to the mul_mod routine presented above (or its SVE
version), these operations can be implemented efficiently via

to_mont(x) = mul_mod(x,Q), (10)
from_mont(x̃) = mul_mod(x̃, 1). (11)

Evidently, in the case of from_mont further optimisations
are possible by expanding the mul_mod call and removing
the operations that become redundant due to the superfluous
multiplication by one.

We note that, for the computations described in Sec. IV, we
do not need to transform data to and from Montgomery forms
explicitly—i.e. we never actually need to call the conversion
routines above. On the one hand, we can trivially generate
the inputs for our computations directly in Montgomery form
(see Sec. IV-A). On the other hand, since the last modular
multiplication we perform when computing intermediate re-
sults is a multiplication by a constant (the final normalisation
in the inverse transform of Sec. III-D), we can combine
this multiplication with the conversion from Montgomery to
standard representations by not converting the constant to
Montgomery representation beforehand. This happens because
if we reduce the product of a number in Montgomery form
(x̃) with a number in standard form (y) we get

REDC(x̃y) = ((xR)y)R−1 mod N (12)
= xy mod N, (13)

which is precisely the modular product of x and y in standard
representation.

III. DISTRIBUTED NUMBER-THEORETIC TRANSFORMS

In this section we present the implementation of a dis-
tributed number-theoretic transform (NTT) with applications



to the computation of very large integer convolutions. Fur-
thermore, we describe how the SVE routines for modular
arithmetic presented in Sec. II are utilised to optimise the local
transforms performed throughout the distributed computation.

A. Background

Number-theoretic transforms are a generalisation of the
discrete Fourier transform (DFT) obtained by performing the
transform over a ring or field instead of the usual complex do-
main, and recasting the arithmetic operations of the transform
in terms of the new domain [2, §9.5.5]. In practice, this usu-
ally means replacing the conventional additions, subtractions,
and multiplications in a DFT by their modular counterparts,
whereby the modulus, usually a prime number, has to satisfy
some properties. First, for a NTT of length m in the ring of
integers modulo n, there needs to be a m-th root of unity
modulo n (a number r is called a primitive m-th root of
unity modulo n if rk 6≡ 1 (mod n) for 1 ≤ k < m and
rm ≡ 1 (mod n)). Secondly, for the inverse transform, m
has to invertible modulo n, which implies that m and n must
be coprime.

In our work we restrict the choice of modulus to the prime
numbers. In particular, for a NTT of length m we choose a
prime modulus p of the form p = km + 1 for some positive
integer k, whereby an appropriate primitive m-th root of unity
g can be found as per [7, §39.6]. Then, the (forward) NTT of
a sequence of length m can be expressed as

Xk =

m−1∑
j=0

xjg
−jk mod p, (14)

whilst the respect inverse transform is given by

xj = m−1
m−1∑
k=0

Xkg
jk mod p, (15)

where m−1 is the multiplicative inverse of m mod p (which
under our choice of modulus is guaranteed to exist).

Given the similarities between NTTs and the DFT, NTTs
can in general be computed with efficient FFT-based algo-
rithms by simply translating those algorithms into the domain
of the NTT. Hence, just like the DFT, NTTs can be computed
in O(m logm) time (m being the length of the transform). Un-
like the DFT, however, NTTs do not transform to a meaningful
“frequency” domain. Despite this, they do can be utilised to
effect integer convolutions via the convolution theorem [2,
Theorem 9.5.11]:

x× y = NTT−1 (NTT(x) ∗NTT(y)) , (16)

where x×y is the cyclic convolution of the integer sequences
x and y (of the same length), and ∗ denotes element-wise
multiplication. Since with the underlying modular arithmetic
no rounding errors occur, the main application of NTTs is the
computation of fast exact integer convolutions. Incidentally,
the computation of NTTs is inherently more computationally
demanding than that of conventional DFTs, mainly because
the former require more arithmetic operations to effect the

modular arithmetic, and because those modular operations
(especially the modular reductions) complicate common op-
timisations such as vectorisation. For these reasons, despite
their practical utility, NTTs are often avoided unless when
exact results are paramount.

B. Outline of computation

In this section we present a simplified top-down view of
the algorithm we use to compute distributed NTTs. The goal
is to outline the steps we will carry out, whilst deferring the
details of the computation to subsequent sections. The skeleton
of the algorithm follows Bailey’s “four-step” algorithm for
hierarchical memory systems [3]. In this sense, let m = H×W
be the size of the array x whose NTT we wish to compute,
m a power of two. In practice, x will be distributed amongst
several processes, but we will ignore this aspect for the time
being. The algorithm proceeds as follows:

1) Let A be a H × W “matrix view” of x, where Aj,k

corresponds to xjW+k, with 0 ≤ j < H and 0 ≤ k < W
(i.e. x is organised in row-major order in A);

2) Replace each column A:,k with its transform NTT(A:,k)
3) Multiply each element Aj,k by g−jk, g a primitive m-th

root of unity in the appropriate domain;
4) Replace each row Aj,: with its transform NTT(Aj,:)

After these steps, the transform elements {Xk}m−1k=0 are the
elements of A read in column-major order (i.e., after the
transform, Aj,k corresponds to Xj+kH ).

This process computes the forward NTT of x. The inverse
transform can be obtained by replacing the forward NTT calls
in steps 2 and 4 with inverse NTTs, using gjk in step 3 instead
of g−jk, and following steps 2 to 4 in reverse order, assuming
the transformed elements Xk are organised in column-major
order in A as per the output of the forward transform. The
output of the inverse transform will be, once again, in row-
major order.

C. Local transforms

In this section we present the “FFT-based” algorithms we
use to compute local NTTs. These algorithms are utilised in
steps 2 and 4 of Sec. III-B to compute NTTs on the rows and
columns of the matrix mentioned therein.

1) Stockham algorithm: The Stockham algorithm is a
method for computing the FFT of a signal in-order and with an
innermost loop with unit stride memory accesses [12], [13].
Because the transform is computed in-order, the Stockham
algorithm does not require the bit-scrambling procedures used
by the Cooley-Tukey and Gentleman-Sande methods (see next
section). The cost of these properties is that one must use an
extra copy of the data.

The Stockham algorithm can be readily adapted to NTTs. In
fact, since its innermost loop runs sequentially through mem-
ory, it is fairly straightforward to vectorise it. In pseudocode,
we have:

Algorithm 1 (Stockham NTT.) Given an array a of l integers
and an auxiliary buffer b of the same size, compute the NTT



of a. We use C syntax for pointers a and b, so that &a[k]
is the address of the element of a at index k. All modular
operations are performed over an implicit modulus N , and g
is a suitable primitive root of unity.

a′ ← a; . Pointer assigment
for(k ← 1, half ← l/2; k ≤ half ; k ← 2k) {

for(m← 0; m < half ; m← m+ k)
stockham_butterflies(

&a[m], &a[m+ half ],
&b[2m], &b[2m+ k],
g−m, k); . gm for denormalised NTT−1

a, b← b, a; . Swap pointers
}
if(a 6= a′) for(0 ≤ i < l) a′[i]← a[i];

The “stockham_butterflies” routine can be implemented
utilising the SVE methods described in Sec. II as follows (we
assume all operands are given in Montgomery form):

1 inline void stockham_butterflies(
2 umod_t const * restrict al,
3 umod_t const * restrict ah,
4 umod_t * restrict bl,
5 umod_t * restrict bh,
6 umod_t w, ulong k)
7 {
8 ulong j = 0;
9 svbool_t pg = svwhilelt_b64(j, k);

10 svuint64_t al_vec, ah_vec, bl_vec, bh_vec;
11 svuint64_t w_vec = svdup_u64(w);
12

13 do {
14 al_vec = svld1(pg, al+j);
15 ah_vec = svld1(pg, ah+j);
16

17 bl_vec = add_mod_sve(pg, al_vec, ah_vec);
18 bh_vec = sub_mod_sve(pg, al_vec, ah_vec);
19 bh_vec = mul_mod_sve(pg, w_vec, bh_vec);
20

21 svst1(pg, bl+j, bl_vec);
22 svst1(pg, bh+j, bh_vec);
23

24 j += svcntd(), pg = svwhilelt_b64(j, k);
25 } while(j < k);
26 }

2) Cooley-Tukey and Gentleman-Sande NTTs: The Cooley-
Tukey and Gentleman-Sande algorithms are two analogous
methods for computing the FFT of a signal [14]. Unlike
the Stockham algorithm they work in-place, but require bit-
scrambling routines to reshuffle the data at the beginning
(Cooley-Tukey) or at the end (Gentleman-Sande) of the com-
putation. Moreover, they access data with power-of-two strides
in their innermost loops. The need to perform bit-scrambling
and the power-of-two memory accesses tend to make these
routines less efficient than the Stockham algorithm. However,
due to how we employ them to compute convolutions in
Alg. 4, in practice we can circumvent both of these issues.

First, if one performs a transform using the Gentleman-
Sande algorithm, followed by one using the Cooley-Tukey al-
gorithm, the scrambling routines become superfluous because
they cancel each other out. Because of this, when computing
a convolution (which requires the computation of forward

followed by inverse transforms, see (16)), we use Gentleman-
Sande form for the forward NTTs, and Cooley-Tukey form
for the inverse NTT, in both cases omitting the scrambling
procedures.

Secondly, in practice we use these algorithms to compute
not just one but several transforms arranged in a certain
way, all at once. This allows us to avoid the aforementioned
memory locality issues. The data layout we use for this
computation is the one discussed in stage 3© of Sec. III-D,
whereby we have a matrix r × l, stored by column, and we
wish to compute a transform on each row of the matrix.
By computing the r transforms all at once, we effectively
perform all operations with unit stride memory accesses.
Furthermore, we can efficiently parallelise this computation
by having different threads compute butterflies concurrently
in each stage of the transform. Putting it all together, we have
the following pseudocode:

Algorithm 2 (Cooley-Tukey and Gentleman-Sande NTTs.)
Given a matrix a with dimensions r × l stored by col-
umn, compute the NTT of each row using the Cooley-Tukey
or Gentleman-Sande algorithm. The output (input) of the
Gentleman-Sande (Cooley-Tukey) method is in bit-scrambled
order. OpenMP is used to illustrate how the computation can
be parallelised. As in Alg. 1, we use C-based pointer syntax
for a. If gjv is used instead of g−jv, these algorithms compute
denormalised inverse NTTs.

1: (Cooley-Tukey.)
for(k ← 1, v ← l/2; k < l; k ← 2k, v ← v/2) {

#pragma omp for schedule(dynamic)
for(h← 0; h < l/2; h← h+ 1) {

i← bh/kc, j ← h mod k;
s← jr + 2ikr, t← s+ kr;
twist_butterfly(&a[s], &a[t], g−jv , r);

}
}

2: (Gentleman-Sande.)
for(k ← l/2, v ← 1; k > 0; k ← k/2, v ← 2v) {

#pragma omp for schedule(dynamic)
for(h← 0; h < l/2; h← h+ 1) {

i← bh/kc, j ← h mod k;
s← jr + 2ikr, t← s+ kr;
butterfly_twist(&a[s], &a[t], g−jv, r);

}
}

The routine “twist_butterfly” can be implemented using the
SVE-based modular arithmetic routines of Sec. II as follows:
1 inline void twist_butterfly(
2 umod_t * restrict a,
3 umod_t * restrict b,
4 umod_t w, ulong r)
5 {
6 ulong j = 0;
7 svbool_t pg = svwhilelt_b64(j, r);
8 svuint64_t a_vec, b_vec, w_vec = svdup_u64(w);
9

10 do {



11 b_vec = mul_mod_sve(pg, svld1(pg, b+j), w_vec);
12 a_vec = svld1(pg, a+j);
13

14 svst1(pg, a+j, add_mod_sve(pg, a_vec, b_vec));
15 svst1(pg, b+j, sub_mod_sve(pg, a_vec, b_vec));
16

17 j += svcntd(), pg = svwhilelt_b64(j, r);
18 } while(j < r);
19 }

Analogously, “butterfly_twist” can be implemented as
“twist_butterfly”, but replacing lines 11–15 with:
1 a_vec = svld1(pg, a+j);
2 b_vec = svld1(pg, b+j);
3

4 svst1(pg, a+j, add_mod_sve(pg, a_vec, b_vec));
5 b_vec = sub_mod_sve(pg, a_vec, b_vec);
6 svst1(pg, b+j, mul_mod_sve(pg, b_vec, w_vec));

D. Distribution and parallelisation

As we have mentioned previously, our main goal with the
utilisation of NTTs is to compute the convolution of very large
integer sequences. In practice, these sequences are so large that
we need the aggregated memory of several compute nodes to
store them. Hence, the steps described in Sec. III-B to compute
a NTT have to be carried out in a distributed fashion. In this
section we describe how this computation is performed.

Our implementation uses a mix of MPI and OpenMP, the
former for interprocess communication, and the latter for
(intraprocess) parallelisation. In general, we are aiming for a
scenario where we run one MPI process per NUMA domain,
and as many OpenMP threads per MPI process as possible
so that, in total, we have one OpenMP thread per core (and
an equal amount of OpenMP threads per MPI process). In
practice, we also bind all OpenMP threads to cores and place
them such that they are as close as possible in hardware for
each MPI process (e.g. belonging to the same NUMA domain).
Only the master thread of an MPI process issues MPI calls.

As before, let x be an integer array of length m = H ×
W whose NTT we wish to compute, m being a power of
two. Let A be a matrix-view of x with dimensions H ×W ,
where element Aj,k corresponds to xjW+k, with 0 ≤ j < H
and 0 ≤ k < W (i.e. A is a view of x organised in row-
major order). Furthermore, let P be the number of processes
over which the computation is distributed. For simplicity, we
assume min(H,W ) is divisible by P , so that all processes
hold portions of x of equal sizes. Finally, let h = H/P and
w = W/P .

Initially, each process starts with a group of w adjacent
columns of A, i.e. one process contains columns numbered
[0, w), another [w, 2w), and so on. The data is stored column
by column, so that two elements Aj,k and Aj+1,k reside at
adjacent memory addresses. This corresponds to the region
marked by 1© in Fig. 1. Then, the computation proceeds in
the three major stages described below (all operations are
implicitly carried out modulo a suitable number N , with g
a m-th root of unity modulo N ).

1© (Column stage.) In this stage, the goal of each process
is to compute the NTT of each of its columns (step 2 of




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Figure 1. Computation of a distributed NTT, depicted for P = 4 processors
(description in text).

Sec. III-B), apply twiddle factors (step 3 of Sec. III-B),
and exchange data with other process in preparation for
the row transforms that are going to be performed in the
final stage of the computation. Let A:,k denote the k-th
column of A and p, 0 ≤ p < P , the index/rank of a
process. Then, in pseudocode, each process executes:

for(pw ≤ k < pw + w) {

1: (Compute NTT of column.)

A:,k ← NTT(A:,k); . via Alg. 1

2: (Apply twiddle factors.)

for(0 ≤ j < H) Ajk ← Ajkg
−jk;

3: (Exchange data.) Each process sends elements [0, h)
of their column to process 0, elements [h, 2h) to
process 1, and so on. The exchange is made in-place,
and only the master thread issues this exchange (see
below).

alltoall(A:,k, h);
}

In the code we process each column one by one for
illustration purposes. In practice, however, the compu-
tation is carried in tranches of C columns at a time
(C a user defined parameter). For each tranche, the C
columns are processed in parallel by the threads of a
process: each thread computes the NTT of a column,
applies the respective twiddle factors, and moves on to
the next column that has not yet processed. Once the C
columns have been processed, the master thread of the
process issues an all-to-all call to exchange C segments
of length h, one segment per column, with each of the
other processes. Process 0 gets the first h elements of the



columns, process 1 the next h, and so on, with the data
being exchanged in-place (i.e. the data sent to a process
is replaced with the data received from it). Whilst this
communication is happening, the remaining threads start
processing the next tranche, and so forth. This allows us
to overlap the MPI commutation with computations.
At the end of this stage, all columns will have been pro-
cessed as described above and the large blocks depicted
in Fig. 1 will have been exchanged.

2© (Transpose stage.) At this point, each process possesses
a group of h rows of the matrix A, i.e. each process
p holds the data that constitutes rows [ph, ph + h), but
this data is scrambled in a “block-based” format. This
happens because the data exchange in the previous stage
was performed in-place. Consequently, the h rows that
each process possesses are stored as follows: first sub-
column 0, then sub-column w, then sub-column 2w, and
so on until sub-column (P−1)w; then sub-column 1, sub-
column w+1, and so forth until sub-column (P−1)w+1;
then sub-column 2, and so on. More precisely, let

A
(p)
:,k =


Aph,k

Aph+1,k

...
A(p+1)h−1,k

 ,

i.e. A(p)
:,k is the length h portion of the k-th column of A

stored by process p. At the beginning of this stage, each
process p has the following elements of A in its memory
(read top-to-bottom, left-to-right):

A
(p)
:,0 A

(p)
:,1 · · · A

(p)
:,w−1

A
(p)
:,w A

(p)
:,w+1 · · · A

(p)
:,2w−1

...
...

. . .
...

A
(p)
:,(P−1)w A

(p)
:,(P−1)w+1 · · · A

(p)
:,W−1

 . (17)

However, for the row transforms in the next stage of the
computation we require the format[

A
(p)
:,0 A

(p)
:,1 · · · A

(p)
:,W−1

]
, (18)

so that two consecutive sub-columns are contiguous in
memory. This corresponds to the region marked by 3© in
Fig. 1.
Going from (17) to (18) can be seen as transposing the
layout (17), interpreting it as matrix with dimensions
P × w, in which each “cell” encompasses h elements
(the A

(p)
:,k ). This transposition has to be performed in-

place, since in general we cannot afford to replicated the
portions of A held by the processes. There are several
well-known methods for in-place matrix transposition,
most of which are based on “following cycles” [15].
These methods work by finding an element that has not
yet been visited, freeing it (whilst copying it to some-
where else), determining which element goes into the
place that became vacant, moving that element there, and
repeating until the element that goes into a newly vacated

place is the one that was initially freed. The process is
repeated until all elements of the matrix have been visited.
These algorithms usually exhibit poor memory locality
due to the somewhat arbitrary memory access patterns
they exhibit, but since each of our “cells” encompasses h
elements, in our case this problem does not apply (we pay
a penalty for moving the first element of each group of h,
but the remaining h−1 elements are moved sequentially).
Moreover, we can use a single thread to “swiftly” follow
the cycles, moving only the first element of each group of
h elements, and defer the bulk of the work, the movement
of the remaining h−1 elements, to other threads—which
allows us to parallelise the operation. Pseudocode for this
algorithm is provided in Alg. 5.

3© (Row stage.) At the beggining of this stage, each process
stores a “slice” of h rows of matrix A in the layout
given in (18), which corresponds to the region marked
by 3© in Fig. 1. All that is left to do is to compute the
NTT of each of these rows, which can be done for all h
rows of each process at once using the Gentleman-Sande
algorithm given in Alg. 2.

The steps above compute the forward NTT of A. To
compute the inverse transform, the steps must be followed
“in reverse” and with the following modifications:
• Use the Cooley-Tukey algorithm given in Alg. 2 to

perform denormalised inverse transforms in stage 3©.
• In stage 2©, instead of going from layout (17) to (18) we

want to do the opposite (go from (18) to (17)). This can
be achieved by transposing the portion of A each process
holds, interpreting it as a w × P matrix in which each
cell contains h elements.

• In stage 1©, the pseudocode is changed to:
for(pw ≤ k < pw + w) {

1: (Exchange data.)
alltoall(A:,k, h);

2: (Apply twiddle factors.)
for(0 ≤ j < H) Ajk ← Ajkg

jk;
3: (Compute inverse NTT of column.)

A:,k ← NTT−1(A:,k); . denormalised, Alg. 1
}

4: (Normalise.) Divide each element Aj,k by m (mod
N ). Do not convert m−1 to Montgomery form
beforehand to combine the normalisation with the
conversion of the data from Montgomery to standard
representation (see Sec. II-B).

for(0 ≤ j < H) Ajk ← m−1Ajk;

As for the forward transform, in practice this computation
proceeds in tranches, but this time the master threads
starts by exchanging C columns in an all-to-all fashion
amongst the processes, and once the communication
finishes the worker threads start processing them. Whilst
the worker threads process the first tranche, the master
thread starts exchanging the second tranche, and so forth.



IV. COUNTING GOLDBACH PARTITIONS

A pair of primes (p, q) that sum to an even number n = p+q
is known as a Goldbach partition (or representation) of n. If
we denote the number of such partitions for a given even n
by R(n), i.e.

R(n) = # {(p, q) : n = p+ q and p, q prime} , (19)

then the Goldbach conjecture states that R(n) > 0 for all
even n ≥ 4. In this section we outline our method to compute
R(n) for all even n below a large limit, based on a strategy
described in [2, p. 492].

Intuitively, the main idea is to take the odd primes
(3, 5, 7, 11, . . .) and count how many times each even number
(6, 8, 10, 12, . . .) comes up as the sum of any two primes of
the list (which will correspond precisely to the number of
Goldbach representations of those even numbers). To achieve
this, let us consider the binary sequence

(pk)k≥0 = (1, 1, 1, 0, 1, . . .), (20)

where pk is equal to 1 if 2k + 3 is prime, and 0 otherwise.
Then, the act of “counting how many times each even number
comes up as a sum of two odd primes” can be carried out by
convolving the sequence (pk) with itself. If we encode (pk)
into a formal power series

P (x) =

∞∑
k=0

pkx
k, (21)

the result of the aforementioned convolution is the sequence
(qk)k≥0 encoded in the coefficients of

Q(x) = P 2(x) =

∞∑
k=0

qkx
k, (22)

with

qk =

k∑
l=0

plpk−l = R(2k + 6). (23)

In practice, we cannot work with these infinite series directly
since there is no known tractable closed-form expression for
the sequence of primes. Instead, we can break Q(x) into
smaller polynomials of fixed-size, and express them as a
function of similar-sized sub-polynomials of P (x). In this
sense, let

Pi,l(x) =

il+l−1∑
k=il

pkx
k, i ≥ 0, l ≥ 1 (24)

be the i-th “chunk” of length l of P (x). Furthermore, let

Si,l(x) =

i∑
j=0

Pj,l(x)Pi−j,l(x), (25)

and

Li,l(x) = Si,l(x) mod xil+l (26)
Hi,l(x) = Si,l(x)− Li,l(x). (27)

Then,

Q0,l(x) = L0,l(x), (28)
Qi,l(x) = Li,l(x) +Hi−1,l(x), i ≥ 1, (29)

and

Qi,l(x) =

il+l−1∑
k=il

qkx
k, (30)

with qk as in (23). The idea is to break Q(x) into smaller
polynomials Qi,l(x), and express the latter as sums of products
of chunks of P (x) of length l. The computation then proceeds
as if multiplying two numbers using the schoolbook multipli-
cation algorithm: each sum of products Si,l(x) generates a low
and a high part, Li,l(x) and Hi,l(x), and each Qi,l(x) is equal
to the sum of the low part of the i-th sum with the high part
(“the carry”) of the previous sum.

A. Generating elements pk

Now we consider how to generate the terms of the sequence
(pk) for the polynomials Pi,l(x). Due to the memory layout
used for the distributed transforms (see Sec. III-D and Alg. 4),
we will consider a more general family of sequences of the
form (sk;a,b)k≥0, with a = 2d, d ≥ 1, b ≥ 3 and odd, and
where sk;a,b is equal to 1 if ak+ b is prime, and 0 otherwise.
Clearly, pk = sk;2,3. The algorithm works by sieving through
the sequence (b, a + b, . . . , (l − 1)a + b) in a similar fashion
to the segmented sieve of Eratosthenes.

Algorithm 3 (Generate pk in progression.) Given a, b as
defined above and l ≥ 1, compute (sk;a,b)

l−1
k=0. We assume the

set P of primes in [3,
√
(l − 1)a+ b] has been precomputed,

which can be done using any standard sieving method such
as [2, Algorithm 3.2.2] or a precomputed table.

1: (Initialise.)

for(0 ≤ i < l) si ← 1; . or Montgomery of 1, see below

2: (Sieve.)

for(p ∈ P) {
k ←

(
−ba−1

)
mod p;

if(ak + b = p) k ← k + p;
while(k < l) {

sk ← 0;
k ← k + p;

}
}

The inverses of a are guaranteed to exist since
∀p∈P gcd(a, p) = 1. Moreover, in practice a is a constant
throughout the whole computation (see steps 6 and 8 of
Alg. 4), and so its inverses modulo the primes in P can be
precomputed. Furthermore, since we use Montgomery repre-
sentation for the modular arithmetic operations, in practice
we perform the initialisation above with the Montgomery
representation of one instead of the literal unity, which spares
us from having to perform the conversion to Montgomery
representation explicitly.



B. Computing R(n) in chunks

The polynomial products Pj,l(x)Pi−j,l(x) in (25) can be
seen as the acyclic convolution of the coefficients of Pj,l(x)
and Pi−j,l(x). As we saw in Sec. III-A, the cyclic convolution
of two sequences can be computed by taking their discrete
Fourier (or similar) transform, multiplying the transformed
elements element-by-element, and taking the inverse transform
of the result. Acyclic convolution can be computed in a
similar fashion: if we double the length of the sequences being
convolved and set the higher-order coefficients of the result
to zero, the cyclic convolution of the doubled sequences will
match the acyclic convolution of the original sequence. Since
in our case the sequences we are working with are integer
sequences and we require all convolutions to be computed
exactly (so that the computations of R(n) are exact as well),
the best option is to use NTTs to perform these convolutions.
To this end, the computation of Goldbach partitions by means
of distributed NTT convolutions proceeds as follows.

Algorithm 4 (Compute R(n) in chunks.) Given l and m, with
l = 2d, d ≥ 0, and m mod l = 0, determine the number
of Goldbach partitions of the even numbers in [6, 2m+ 4], l
terms at a time. This algorithm requires three buffers A, B,
and C, each of length 2l. It uses the algorithm of Sec. III-D
to compute distributed length-2l NTTs.

1: Let 2l = H × W . Buffers A, B, and C are viewed
as matrices H × W that correspond to sequences a, b
and c. These sequences are organised conceptually in
row-major order in the matrices, i.e. Aj,k corresponds to
ajW+k (similarly for b and c), but are stored (physically, in
memory) in column-major order, so that elements ai and
ai+1 actually reside H elements apart (similarly for b and
c). In practice, A, B, and C are distributed across several
processes, with each process initially storing a group of
consecutive columns (see Sec. III-D). Finally, let Ai:j,k

denote the range elements Ai,k, Ai+1,k, . . . , Aj−1,k.
2: (Initialise.) Set initial carry to zero. Corresponds to

zeroing the l highest terms of c.

for(0 ≤ k < W ) CH/2:H,k ← 0;

3: (Compute each Qi,l(x).)

for(0 ≤ i < m/l) {

4: (Move carry out to carry in and transform it.)

for(0 ≤ k < W ) {
C0:H/2,k ← CH/2:H,k;
CH/2:H,k ← 0;

}
C ← NTT(C);

5: (Compute Si,l(x).)

for(0 ≤ j < di/2e) {

6: (Prepare inputs.) a gets the coefficients of Pj,l(x)
computed in a column-based arithmetic progression via
Alg. 3, and similarly for b (which gets the coefficients
of Pi−j,l(x)). Additionally, the sequences are padded

with l zeros to prepare for the acyclic convolution to be
computed.

for(0 ≤ k < W ) {
A0:H/2,k ← (sn;2W,2(jl+k)+3)

H/2−1
n=0

;
AH/2:H,k ← 0;
B0:H/2,k ← (sn;2W,2((i−j)l+k)+3)

H/2−1
n=0

;
BH/2:H,k ← 0;

}
7: (Polynomial product.) Compute Pj,l(x)Pi−j,l(x) via “in-

complete” convolution (i.e., for the time being, without
inverse transform) and accumulate.

C ← C + 2 ∗NTT(A) ∗NTT(B);
}

8: (If i is even, accumulate P 2
i/2,l(x).)

if(i mod 2 = 0) {
for(0 ≤ k < W ) {

A0:H/2,k ← (sn;2W,il+2k+3)
H/2−1
n=0 ;

AH/2:H,k ← 0;
}
C ← C +NTT(A)2; . Element-wise square

}
9: (Transform back.) This completes the convolutions.

C ← NTT−1(C);
10: (Process R(n).) At this point, we have

Cj,k = cjW+k = R(2(il + jW + k) + 6),

with 0 ≤ j < H/2 and 0 ≤ k < W .

In the algorithm above we make use of the symmetry
of the sum in (25) to reduce the number of polynomial
products required to evaluate Si,l(x) from i+1 to b(i+2)/2c.
Furthermore, due to the linearity property of the DFT, we
avoid computing one inverse transform per polynomial product
and, instead, accumulate the polynomial products in the trans-
formed space and compute a single inverse transform once all
polynomials have been accumulated.

V. RESULTS AND EVALUATION

In this section we present the main results of our work. We
list the compiler versions and optimisation flags utilised for
the compiler comparison of Sec. V-A in Tab. I. For all other
tests we used GCC 10.2 with the flags given in the same table.

Table I
COMPILER VERSIONS AND OPTIMISATION FLAGS.

Compiler Flags

Arm 21.0 -O3 -march=armv8.2-a+sve -mcpu=a64fx -fopenmp
Cray 10.0.1 -O3 -h aggress,flex_mp=tolerant,vector3,omp
Fujitsu 4.3.1 -O3 -KA64FX,SVE,fast,preex,openmp,simd=auto
GCC 10.2 & 11 -O3 -march=native -mcpu=native -fopenmp

For the tests involving MPI and OpenMP, we have placed
one MPI process per NUMA domain (or Core Memory Group
in the case of the A64FX), and launched as many OpenMP
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Figure 2. Impact of using the SVE routines of Sec. II to implement a Stockham NTT. (a) average runtime per transform size for the compilers tested (number
of runs varies between 1000 for the smaller transforms and 10 for the larger ones); (b) average runtime normalised to the performance of the fastest compiler
per transform size (lower is better); (c) zoom in view of small transform sizes; (d) zoom in view of SVE-based implementations.

threads per MPI process as the number of cores in the NUMA
domain. All threads were pinned to cores. As mentioned in
Sec. III-D, only the master thread issues MPI calls. On Ful-
hame the MPI library used was OpenMPI 4.0.2, on Isambard
1 Cray MPICH 7.7.17, and on Isambard 2 OpenMPI 4.1.0.

A. Local transforms with SVE

In Fig. 2 we evaluate the impact of using the SVE-based
modular arithmetic routines described in Sec. II to vectorise
the innermost loop of a Stockham NTT (Alg. 1), using the
four major Arm compilers (Arm, Cray, Fujitsu, and Gnu) to
build the code. These tests were run on an A64FX core on
Isambard 2. Since the other two local NTT routines employed
in this work are used to compute multiple NTTs all at once,
they exhibit a similar inner loop structure to Stockham’s NTT,
and thus these results also apply to them.

In Fig. 2-a we plot the average time taken to perform
transforms of varying sizes. As the panel shows, the SVE
routines improve the runtime of the computation considerably.

To show the difference in performance between the compilers
and SVE/non-SVE versions more clearly, in Fig. 2-b we
have normalised the runtime of each compiler and version,
for each transform size, to the time obtained by the fastest
compiler/version for that size, so that the fastest configuration
has a normalised time of 1. This panel shows that, for
mid/long-sized transforms (over 214 points), the SVE versions
achieve a speedup of more than 4x over the fastest compilers
using the non-SVE versions of the modular arithmetic routines.
Moreover, GCC 10.2 and 11 exhibit a significant difference
in performance when using the non-SVE versions of the
modular arithmetic routines—the former being approximately
two times faster than the latter for mid/long-sized transforms.
This seems to be due to the cost model of the A64FX processor
which was introduced in GCC 11, although this requires
further investigation.

In Fig. 2-c we show a zoomed in view of Fig. 2-b for very
short transform sizes. It demonstrates that even for extremely
small sizes, the SVE versions still remain competitive with
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the non-SVE versions. Finally, in Fig. 2-d we show another
zoomed in view of Fig. 2, but this time focused on the
SVE versions (over the complete range of transform sizes
considered). Since we use SVE intrinsics to implement the
SVE modular arithmetic routines, we expected the compilers
to have little impact in the performance of the transforms
(because the compilers are essentially limited to reorder the
instructions). Whilst it is true that the differences amongst the
SVE versions are far less pronounced than those amongst non-
SVE versions, there are still a couple of interesting patterns
to observe. First, in this experiment the fastest compiler
turned out to be GCC in both versions 10.2 and 11, with
the former being slightly faster than the latter. Secondly, the
Arm compiler starts off being around 30–40% slower than
the fastest compiler (GCC 10.2), but this figure is reduced to
slightly below 10% as the transform sizes increase. Lastly, the
Fujitsu compiler seems to perform comparatively poorly with
respect to the fastest compiler for transform sizes between 210

and 223. The reason for this poorer performance is currently
not understood.

B. Distributed transforms

In Fig. 3 we show a breakdown of the time spent on
the major steps of the computation of distributed NTTs
(Sec. III). For all transforms computed, we took H = 216 and
W = m/H , where m is the transform size. These tests were
run on Fulhame, and thus they used the non-SVE versions
of the modular arithmetic routines. “Row/column transforms”
corresponds to the time spent computing local row/column
NTTs (stages 3© and 1© of Sec. III-D, respectively). “Others”
corresponds to intermediate computations, such as applying

twiddle factors in stage 1© and performing the in-place trans-
pose of stage 2©. “MPI Overhead” corresponds to the “dead
time” of the computation during which threads wait for MPI
communication and/or synchronisation during the exchange
of data of stage 1© (i.e. the time spent in MPI that is not
overlapped with computation).

The plots show that our methods are scaling almost per-
fectly, especially in the regime of weak scaling (left panel). In
this regime, since H is held constant for all transform sizes,
ideally the time spent on all steps except “row transforms”
would remain constant, and “row transforms” would increase
linearly with the logarithm of the transform size (due to the
logarithm factor in the O(n log n) asymptotic complexity of
NTTs), which would show up as a straight line in the plot
Indeed, we can see this is almost exactly what is happening.
Moreover, the wait time in MPI (the MPI overhead) remains
below 4% throughout the whole range of transform sizes
tested, which demonstrates that we have successfully managed
to overlap the MPI communications with the computations.
Our methods also exhibit good performance in the regime
of strong scaling (right panel), although in this case the
MPI overhead starts to take over a bigger percentage of the
computation time as the number of cores increases. This
is somewhat expected, since by holding H fixed while the
number of MPI processes increases, the number of columns
per MPI process is reduced to very low numbers that do not
allow for effective overlapping. A better strategy for improved
strong scaling would be to decrease H (or, equivalently,
increase W ) as the number of MPI processes increases, so
that the number of columns per MPI process is kept at a
relatively large number. However, to be most effective, this
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strategy should be combined with a different algorithm for the
transpose in stage 2© of Sec. III-D, as the algorithm we have
used works best when the number of rows per MPI process is
relatively large.

In Fig. 4 we show results of our distributed transforms
on other systems. On the left panel, we compare the results
obtained on Fulhame with those obtained on Isambard 1. This
is not a completely fair comparison, since Isambard 1 was
experiencing a much higher workload than Fulhame at the
time we conducted our experiment (in fact, on Fulhame, we
were at times able to run our tests in isolation). Nevertheless,
Isambard 1 still achieved results within 10% of those obtained
on Fulhame. Meanwhile, on the right panel, we compare the
performance of the distributed NTTs, with and without the
SVE-based modular arithmetic methods, on Isambard 2. As
the plot shows, the SVE-based methods provided a speedup
of more than 3.5x over the non-SVE routines.

C. Counting Goldbach partitions

In Fig. 5 we show a histogram of the number of Goldbach
partitions R(n) of all even numbers in [4, 240]. These are
early results in preparation for a larger scale computation we
wish to undertake in the future to reach 245. Reaching 240,
already 2000x more than the previously published record [4],
took just under 10 minutes compute time using 32 nodes
of Fulhame (2048 cores in total), utilising intermediate dis-
tributed transforms of 238 points each. The correctness of the
results was independently verified in intervals of the form
[k238 − 126, k238], k = 1, 2, 3, 4 by computing the number
of Goldbach partitions in those intervals directly.

VI. RELATED WORK

Modular arithmetic is a crucial component of many algo-
rithms for computer algebra, cryptography, and several other
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Figure 5. Histogram in a 128×128 grid of the number of Goldbach partitions
of the even numbers up to 240.

areas. The most important operation to optimise is multipli-
cation modulo a fixed integer, as this is the building block of
other important nontrivial modular operations (e.g. exponen-
tiation). The most commonly used methods for performing
fast modular multiplications are based on Knuth’s long divide
algorithm [8, Algorithm 4.3.1D] and on the Barrett [9] and
Montgomery methods [1]. A survey on these and other mod-
ular multiplication strategies is given in [16]. A comparison
of them is also given in [10].

Whilst there has been extensive research on the optimisation
of modular multiplications for GPUs [17]–[20], efforts to
optimise modular operations for SIMD instruction sets have
been somewhat more scarce. Alongside their work modular
arithmetic optimisation for GPUs, in [17] the authors also
consider optimisations for several x86 CPUs supporting SSE2



(Streaming SIMD Extensions 2). A more extensive work on
modular arithmetic optimisation for x86 SIMD extensions
has been carried in [21], where the authors develop efficient
implementations of several modular operations for the SSE and
AVX instruction sets (in particular SSE4.2 and AVX2 for the
Barett and Montgomery methods). Taking the previous work
as a stepping stone, in [22] the authors implement an efficient
modular multiplication algorithm for AVX-512. To the best of
our knowledge, there has been no similar work considering
the implementation of efficient modular arithmetic methods
for Arm SVE.

Several optimisations for NTTs have also been proposed.
Some recent examples include an alternative modular reduc-
tion step that is more appropriate for relatively small moduli
(e.g. below 232) [23], and specialised butterflies that avoid
some intermediate adjustment steps [24]. NTT implementa-
tions on GPUs have also been considered [25].

Finally, to the best of our knowledge the largest published
computation of all Goldbach partitions to a large limit was
carried out by Richstein [4], who also utilised a method based
on the convolution of the sequence of odd primes, although
implemented in a different way.

VII. CONCLUSIONS

We have successfully shown that SVE can be utilised to
efficiently vectorise non-trivial modular arithmetic loops. By
implementing modular addition, subtraction and multiplication
with SVE intrinsics, we have achieved speedups of more
than 4 in number-theoretic transform codes. Moreover, we
have evaluated how efficiently the four major Arm compilers
(Arm, Cray, Fujitsu and Gnu) compile code involving modular
arithmetic, where we have observed a large discrepancy be-
tween compilers. Namely, when using the non-SVE routines
for modular arithmetic, GCC 10.2 is twice as fast as GCC 11.

Furthermore, we have successfully implemented distributed
number-theoretic transform methods that achieve nearly com-
plete overlap of MPI communication with computation. Addi-
tionally, by combining local NTT routines with different char-
acteristics, and working with a matrix-like layout where the
data is arranged (conceptually) by row, but stored (physically)
by column, we have been able to implement a very efficient
in-place parallel transpose algorithm. The result of combining
good overlapping of communication with computation, and
fast in-place transpose, is that our distributed transforms show
very good scalability to thousands of cores. For example,
the MPI communications’ wait time (i.e. time not overlapped
with computations) in a transform of 239 points using 32
ThunderX2-based nodes of Fulhame (2048 cores in total) is
less than 4% of the total running time of the transform, and
the time spent in the in-place transpose is a small fraction (less
than 5%) of the whole computation.

Ultimately, the distributed NTTs we have developed enabled
us to compute the number of Goldbach partitions of all even
numbers not greater than 240 via exact integer convolutions.
This corresponds to a 2000x improvement over previously
published results. In the near future, we plan to extend this

computation further up to 245, to study several properties of
these numbers.
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APPENDIX A
PSEUDOCODE FOR IN-PLACE PARALLEL TRANSPOSE

Algorithm 5 (In-place parallel transpose.) Given an array X
that stores in column-major order a matrix m×n where each
“cell” is r elements long (see (17) for an example), transpose
X in-place. We assume all numbers are stored modulo N (we
use this property to temporarily mark visited elements). We
utilise OpenMP to illustrate how to parallelise the algorithm.
Finally, we assume each thread has an auxiliary buffer T of
length r.

1: (Initialise.)
. A single thread follows the cycles ‘‘swiftly’’
#pragma omp single
for(k ← 0, k′ ← 0; k < mn; k ← k′ + 1) {

2: (Find next cycle.)
while(Xkr ≥ N ) k ← k + 1;
k′ ← (k mod m)n+ bk/mc;
if(k 6= k′) {

3: (Follow the cycle that starts at k.)
k0 ← k;
. Task thread moves elements [1, r)
#pragma omp task
{

for(0 < j < r) Tj ← Xkr+j ;
do {

for(0 < j < r) Xkr+j ← Xk′r+j ;
k ← k′;
k′ ← (k mod m)n+ bk/mc;

} while(k′ 6= k0);
for(0 < j < r) Xkr+j ← Tj ;

}
. Main thread moves only element [0]
{

t← Xkr;
do {

Xkr ← Xk′r +N ;
k ← k′;
k′ ← (k mod m)n+ bk/mc;

} while(k′ 6= k0);
Xkr ← t;

}
}

4: (Mark cycle k as followed.)
Xkr ← Xkr +N ;

}
5: (Clear all marks.)

#pragma omp for schedule(static)
for(0 ≤ k < mn) Xkr ← Xkr −N ;


