
Vectorising and distributing NTTs to count Goldbach
partitions on Arm-based supercomputers

Ricardo Jesus1 Tomás Oliveira e Silva2 Michèle Weiland1

1EPCC, The University of Edinburgh

2IEETA/DETI, Universidade de Aveiro

May 2021

Contact: rjj@ed.ac.uk

mailto:rjj@ed.ac.uk

Outline

• Introduction

• Vectorising modular arithmetic loops with SVE

• Distributing and parallelising NTTs

• Preliminary results on counting Goldbach partitions

• Conclusions

Ricardo Jesus et al. Vectorising and distributing NTTs on Arm-based supercomputers May 2021 2⁄16

Introduction

• Problem: count Goldbach partitions to large limits
• Evaluate for all even n below cutoff point

R(n) = # {(p, q) : n = p + q ∧ p, q prime} (1)

• Can be done via a polynomial product ⇒ requires exact convolutionrequires exact convolution
• Number-theoretic transforms (NTTs) enable fast exact
convolutions
• “DFTs with modular arithmetic”
• Used extensively for bignum and polynomial arithmeticpolynomial arithmetic
• Because we want to achieve very large limits, we need a

distributed implementationdistributed implementation
• NTTs rely on modular arithmetic

• Tends to hinder vectorisation (lack of suitable instructions)
• SVE supports the required operationsSVE supports the required operations

Ricardo Jesus et al. Vectorising and distributing NTTs on Arm-based supercomputers May 2021 3⁄16

Modular arithmetic

• Elementary operations: addition, subtraction, and multiplication

z± = (x± y) mod N ; z× = (xy) mod N

• Additions and subtractions are trivial, multiplications are harder
• The Montgomery method is a well-known algorithm for doing fast
modular multiplication
• For R > N and gcd(R, N) = 1:

Let x̃ = (xR) mod N, N ′ =
(
−N−1) mod R, and (2)

REDC(T) = [T + N ((TN ′) mod R)] /R mod N †. Then (3)

x̃y = REDC(x̃ỹ) (4)

†If 0 ≤ T < RN , mod N can be replaced by a conditional subtraction.
Ricardo Jesus et al. Vectorising and distributing NTTs on Arm-based supercomputers May 2021 4⁄16

Modular arithmetic with SVE

• Additions and subtractions are the
same in Montgomery representation:

x̃± y = (x̃± ỹ) mod N

• For multiplications:

x̃y = w −N [w ≥ N]

• With R = 264 the highhigh and lowlow parts
of intermediate products are
manipulated almost independentlyindependently

×

x̃ ỹ

t

0127

× N ′

m

× N

u+

v

w

⇒ modular arithmetic loops can be efficiently vectorised with SVE

Ricardo Jesus et al. Vectorising and distributing NTTs on Arm-based supercomputers May 2021 5⁄16

Number-theoretic transforms (NTTs)

• A generalisation of the Discrete Fourier Transform (DFT)
defined over a ring or field

Xk =
m−1∑
j=0

xjg−jk mod p (5)

• Operations are devoid of errors
• Used to perform convolutions with guarantee of exact results
• Most FFT algorithms can be used with NTTs, as long as
operations are recast to the new domain

Ricardo Jesus et al. Vectorising and distributing NTTs on Arm-based supercomputers May 2021 6⁄16

Optimising NTTs with SVE (I)

• Tests on an A64FXA64FX processor
• SVE version implemented

with ACLE intrinsics
• Major compilers

• Arm 21.0
• Cray 10.0.1†

• Fujitsu 4.3.1,
• Gnu 10.2 & 11

inline svuint64_t
mul_sve (svbool_t pg , svuint64_t a, svuint64_t b)
{

svbool_t pc;
svuint64_t m, xh , xl , z;

/* x = a*b */
xl = svmul_x (pg , a, b);
xh = svmulh_x (pg , a, b);

/* m = (x*N ’) mod R */
m = svmul_x (pg , xl , N_prime);

/* c = (x mod R)+(m*N mod R) >= R */
pc = svcmpgt (pg , xl , svmla_x (pg , xl , m, N));

/* z = (x+m*N)/R + c */
z = svadd_x (pg , xh , svmulh_x (pg , m, N));
z = svadd_m (pc , z, (uint64_t)1);

/* adjust result */
pc = svcmpge (pg , z, N);
return svsub_m (pc , z, N);

}

†Did not support SVE intrinsics.
Ricardo Jesus et al. Vectorising and distributing NTTs on Arm-based supercomputers May 2021 7⁄16

Optimising NTTs with SVE (II)

20 23 26 29 212 215 218 221 224 227

transform size

10−5

10−4

10−3

10−2

10−1

100

101

102

ti
m

e
(s

ec
on

d
s)

Non-SVE SVE

Arm

Cray

Fujitsu

GCC 10

GCC 11

Arm (SVE)

Fujitsu (SVE)

GCC 10 (SVE)

GCC 11 (SVE)

20 23 26 29 212 215 218 221 224 227

transform size

0

2

4

6

8

10

12

n
or

m
al

is
ed

ti
m

e

21 22 23 24 25 26 27 28 29 210

transform size

1.0

1.1

1.2

1.3

1.4

n
or

m
al

is
ed

ti
m

e

20 23 26 29 212 215 218 221 224 227

transform size

1.0

1.1

1.2

1.3

1.4

n
or

m
al

is
ed

ti
m

e

Ricardo Jesus et al. Vectorising and distributing NTTs on Arm-based supercomputers May 2021 8⁄16

Distributing and parallelising NTTs (I)

• Hybrid MPI and OpenMP implementation
• Adaptation of Bailey’s four-step algorithm1

0. Organise array of m points into a H ×W distributed matrix
1. Perform NTTs on the columns
2. Apply twiddle factors
3. Partially transpose the matrix*
4. Perform NTTs on the rows*

• Each MPI process works on a portion of the global matrix
• OpenMP threads do the work in parallel

1David H. Bailey (1990). “FFTs in external or hierarchical memory”.
Ricardo Jesus et al. Vectorising and distributing NTTs on Arm-based supercomputers May 2021 9⁄16

Distributing and parallelising NTTs (II)

1© Each process starts with a slice of
columns H × w
• Compute NTTs of the columns in

parallel and apply twiddle factors
• Master thread exchanges columns

with other processes
2© Once all blocks have been exchanged,

rearrange data into slice of rows
• Can be seen as transposing a P × w
matrix, moving h elementsmoving h elements at a time

• Done in-place by following cycles
and utilising tasks for parallelism

3© Perform NTTs on the rows in bulk





2

1

3

h

w

H

W

Ricardo Jesus et al. Vectorising and distributing NTTs on Arm-based supercomputers May 2021 10⁄16

Distributing and parallelising NTTs (III)

• NTTs on the columns done with Stockham algorithm1

• Requires an additional buffer, but output is in-order
• NTTs on the rows done in bulk with DIF/DIT algorithms1

• In-place algorithms (no additional buffer required)
• Bit-scrambling unnecessaryBit-scrambling unnecessary
• Two possibilities for parallelisation

i. Subdivide the rows amongst the threads
ii. Parallelise the butterfly loops

• Typical loop structure for DIF
for(ulong k = m/2; k > 0; k >>= 1) {

for(ulong j = 0; j < k; j++)
for(ulong i = j; i < m; i += 2*k) {

/* ... */
}

}

• DIF with butterfly loops collapsed
for(ulong k = m/2; k > 0; k >>= 1) {
pragma omp for schedule (...)

for(ulong h = 0; h < m/2; h++) {
ulong i = h/k, j = h&(k-1);
/* ... */

}
}

1Richard Crandall & Carl Pomerance, “Fast Algorithms for Large-Integer
Arithmetic”, in Prime Numbers: A Computational Perspective.

Ricardo Jesus et al. Vectorising and distributing NTTs on Arm-based supercomputers May 2021 11⁄16

Computation breakdown of distributed NTTs †

26 27 28 29 210 211

number of cores

234 235 236 237 238 239

transform size

0

5

10

15

20

25

30

ti
m

e
(s

)

Row transforms

Column transforms

Others

MPI Overhead

Forward transform

Inverse transform

26 27 28 29 210 211

number of cores

2−2

2−1

20

21

22

23

24

25

ti
m

e
(s

)

transform size = 234

†On Fulhame (HPE Apollo 70).
Ricardo Jesus et al. Vectorising and distributing NTTs on Arm-based supercomputers May 2021 12⁄16

Distributed and parallel NTTs on other systems

• Isambard 1 (Cray XC50) shows ~10% slowdown wrt Fulhame
• SVE delivers over 3.5x speedup on Isambard 2 (HPE Apollo 80)

26 27 28 29 210 211

number of cores

234 235 236 237 238 239

transform size

0

10

20

30

40

50

60

70

ti
m

e
(s

)

Forward transform (Fulhame)

Inverse transform (Fulhame)

Forward transform (Isambard 1)

Inverse transform (Isambard 1)

48 96 192 384 768 1536 3072

number of cores

231 232 233 234 235 236 237

transform size

0

2

4

6

8

10

12

14

ti
m

e
(s

) Forward transform (Isambard 2)

Inverse transform (Isambard 2)

Forward transform (with SVE)

Inverse transform (with SVE)

Ricardo Jesus et al. Vectorising and distributing NTTs on Arm-based supercomputers May 2021 13⁄16

Preliminary results on Goldbach partitions

• Counts up to 240 in less than 10 minutes
• In the near future, our goal is to reach at least 245

• The analysis of these results will be the subject of another
publication

0 2 4 6 8 10

n ×1011

0

2

4

6

8

10

12

R
(n

)

×109

100

101

102

103

104

105

106

107

108

109

Ricardo Jesus et al. Vectorising and distributing NTTs on Arm-based supercomputers May 2021 14⁄16

Conclusions

• SVE shows great potential for methods that utilise modular
arithmetic
• Easily achieved speedups greater than 4
• Competitive even for extremely short transform sizes

• Our NTT methods scale well on the Arm-based systems we tested
• MPI almost perfectly overlapped with computation
• Enables fast, efficient, and exact convolutions
• Underlying ideas can be applied to FFTsUnderlying ideas can be applied to FFTs

• These methods have been put into action to compute the number
of Goldbach partitions of all even numbers up to 240 (soon 245)

Ricardo Jesus et al. Vectorising and distributing NTTs on Arm-based supercomputers May 2021 15⁄16

Questions?

Contact: rjj@ed.ac.uk

mailto:rjj@ed.ac.uk

