Vectorising and distributing NTTs to count Goldbach partitions on Arm-based supercomputers

Ricardo Jesus¹ Tomás Oliveira e Silva² Michèle Weiland¹

¹EPCC, The University of Edinburgh

²IEETA/DETI, Universidade de Aveiro

May 2021

Contact: rjj@ed.ac.uk

- Introduction
- Vectorising modular arithmetic loops with SVE
- Distributing and parallelising NTTs
- Preliminary results on counting Goldbach partitions
- Conclusions

- Problem: count Goldbach partitions to large limits
 - Evaluate for all even n below cutoff point

$$R(n) = \# \{ (p,q) : n = p + q \land p, q \text{ prime} \}$$
(1)

- Can be done via a polynomial product \Rightarrow requires exact convolution
- Number-theoretic transforms (NTTs) enable fast exact convolutions
 - "DFTs with modular arithmetic"
 - Used extensively for bignum and polynomial arithmetic
 - Because we want to achieve very large limits, we need a <u>distributed implementation</u>
- NTTs rely on modular arithmetic
 - Tends to hinder vectorisation (lack of suitable instructions)
 - <u>SVE supports the required operations</u>

• Elementary operations: addition, subtraction, and multiplication

$$z_{\pm} = (x \pm y) \mod N; \quad z_{\times} = (xy) \mod N$$

- Additions and subtractions are trivial, multiplications are harder
- The Montgomery method is a well-known algorithm for doing fast modular multiplication
 - For R > N and gcd(R, N) = 1:

Let
$$\tilde{x} = (xR) \mod N$$
, $N' = (-N^{-1}) \mod R$, and (2)
 $\operatorname{REDC}(T) = [T + N((TN') \mod R)] / R \mod N^{\dagger}$. Then (3)
 $\boxed{\widetilde{xy} = \operatorname{REDC}(\tilde{x}\tilde{y})}$ (4)

[†]If $0 \leq T < RN$, mod N can be replaced by a conditional subtraction.

Modular arithmetic with SVE

epcc

• Additions and subtractions are the same in Montgomery representation:

$$\widetilde{x\pm y}=(\tilde{x}\pm \tilde{y}) \bmod N$$

• For multiplications:

$$\widetilde{xy} = w - N \left[w \ge N \right]$$

 With R = 2⁶⁴ the <u>high</u> and <u>low</u> parts of intermediate products are manipulated almost <u>independently</u>

\Rightarrow modular arithmetic loops can be efficiently vectorised with SVE

Ricardo Jesus et al. Vectorising and distributing NTTs on Arm-based supercomputers May 2021

• A generalisation of the Discrete Fourier Transform (DFT) defined over a ring or field

$$X_{k} = \sum_{j=0}^{m-1} x_{j} g^{-jk} \mod p$$
 (5)

- Operations are devoid of errors
- Used to perform convolutions with guarantee of exact results
- Most FFT algorithms can be used with NTTs, as long as operations are recast to the new domain


```
• Tests on an <u>A64FX</u> processor
```

- SVE version implemented with ACLE intrinsics
- Major compilers
 - Arm 21.0
 - Cray 10.0.1[†]
 - Fujitsu 4.3.1,
 - Gnu 10.2 & 11

```
inline svuint64_t
mul_sve(svbool_t pg, svuint64_t a, svuint64_t b)
  svbool_t pc;
  svuint64_t m, xh, xl, z;
  /* x = a*b */
  xl = svmul_x(pg, a, b);
  xh = symulh x(pg, a, b);
  /* m = (x*N') mod R */
  m = svmul_x(pg, xl, N_prime);
  /* c = (x \mod R) + (m*N \mod R) >= R */
  pc = svcmpgt(pg, xl, svmla_x(pg, xl, m, N));
  /* z = (x+m*N)/R + c */
  z = svadd_x(pg, xh, svmulh_x(pg, m, N));
  z = svadd_m(pc, z, (uint64_t)1);
  /* adjust result */
  pc = svcmpge(pg, z, N);
  return svsub_m(pc, z, N);
}
```

[†]Did not support SVE intrinsics.

7/16

Optimising NTTs with SVE (II)

May 2021

8/16

- Hybrid MPI and OpenMP implementation
- Adaptation of Bailey's four-step algorithm¹
 - 0. Organise array of m points into a $H\times W$ distributed matrix
 - 1. Perform NTTs on the columns
 - 2. Apply twiddle factors
 - 3. Partially transpose the matrix*
 - 4. Perform NTTs on the rows*
- Each MPI process works on a portion of the global matrix
 - OpenMP threads do the work in parallel

¹David H. Bailey (1990). "FFTs in external or hierarchical memory".

(1) Each process starts with a slice of columns $H \times w$

- Compute NTTs of the columns in parallel and apply twiddle factors
- Master thread **exchanges columns** with other processes
- ② Once all blocks have been exchanged, rearrange data into slice of rows
 - Can be seen as transposing a P × w matrix, moving h elements at a time
 - Done in-place by following cycles and utilising tasks for parallelism
- ③ Perform NTTs on the rows in bulk

epcc

- NTTs on the columns done with Stockham algorithm¹
 - Requires an additional buffer, but output is in-order
- NTTs on the rows done in bulk with DIF/DIT algorithms¹
 - In-place algorithms (no additional buffer required)
 - <u>Bit-scrambling_unnecessary</u>
 - Two possibilities for parallelisation
 - i. Subdivide the rows amongst the threads
 - ii. Parallelise the butterfly loops

```
    Typical loop structure for DIF
```

```
for(ulong k = m/2; k > 0; k >>= 1) {
  for(ulong j = 0; j < k; j++)
    for(ulong i = j; i < m; i += 2*k) {
        /* ... */
    }
}</pre>
```

DIF with butterfly loops collapsed

```
for(ulong k = m/2; k > 0; k >>= 1) {
    #pragma omp for schedule(...)
    for(ulong h = 0; h < m/2; h++) {
        ulong i = h/k, j = h&(k-1);
        /* ... */
    }
}</pre>
```

¹Richard Crandall & Carl Pomerance, "Fast Algorithms for Large-Integer Arithmetic", in *Prime Numbers: A Computational Perspective.*

[†]On Fulhame (HPE Apollo 70).

Ricardo Jesus et al. Vectorising and distributing NTTs on Arm-based supercomputers May 2021

Distributed and parallel NTTs on other systems

- Isambard 1 (Cray XC50) shows $\sim 10\%$ slowdown wrt Fulhame
- SVE delivers over 3.5x speedup on Isambard 2 (HPE Apollo 80)

- Counts up to 2^{40} in less than 10 minutes
- ullet In the near future, our goal is to reach at least 2^{45}
- The analysis of these results will be the subject of another publication

- SVE shows great potential for methods that utilise modular arithmetic
 - Easily achieved speedups greater than 4
 - Competitive even for extremely short transform sizes
- Our NTT methods scale well on the Arm-based systems we tested
 - MPI almost perfectly overlapped with computation
 - Enables fast, efficient, and exact convolutions
 - <u>Underlying ideas can be applied to FFTs</u>
- These methods have been put into action to compute the number of Goldbach partitions of all even numbers up to 2⁴⁰ (soon 2⁴⁵)

Questions?

Contact: rjj@ed.ac.uk