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Introduction

• Problem: count Goldbach partitions to large limits
• Evaluate for all even n below cutoff point

R(n) = # {(p, q) : n = p + q ∧ p, q prime} (1)

• Can be done via a polynomial product ⇒ requires exact convolutionrequires exact convolution
• Number-theoretic transforms (NTTs) enable fast exact
convolutions
• “DFTs with modular arithmetic”
• Used extensively for bignum and polynomial arithmeticpolynomial arithmetic
• Because we want to achieve very large limits, we need a

distributed implementationdistributed implementation
• NTTs rely on modular arithmetic

• Tends to hinder vectorisation (lack of suitable instructions)
• SVE supports the required operationsSVE supports the required operations
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Modular arithmetic

• Elementary operations: addition, subtraction, and multiplication

z± = (x± y) mod N ; z× = (xy) mod N

• Additions and subtractions are trivial, multiplications are harder
• The Montgomery method is a well-known algorithm for doing fast
modular multiplication
• For R > N and gcd(R, N) = 1:

Let x̃ = (xR) mod N, N ′ =
(
−N−1) mod R, and (2)

REDC(T ) = [T + N ((TN ′) mod R)] /R mod N †. Then (3)

x̃y = REDC(x̃ỹ) (4)

†If 0 ≤ T < RN , mod N can be replaced by a conditional subtraction.
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Modular arithmetic with SVE

• Additions and subtractions are the
same in Montgomery representation:

x̃± y = (x̃± ỹ) mod N

• For multiplications:

x̃y = w −N [w ≥ N ]

• With R = 264 the highhigh and lowlow parts
of intermediate products are
manipulated almost independentlyindependently
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⇒ modular arithmetic loops can be efficiently vectorised with SVE
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Number-theoretic transforms (NTTs)

• A generalisation of the Discrete Fourier Transform (DFT)
defined over a ring or field

Xk =
m−1∑
j=0

xjg−jk mod p (5)

• Operations are devoid of errors
• Used to perform convolutions with guarantee of exact results
• Most FFT algorithms can be used with NTTs, as long as
operations are recast to the new domain
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Optimising NTTs with SVE (I)

• Tests on an A64FXA64FX processor
• SVE version implemented

with ACLE intrinsics
• Major compilers

• Arm 21.0
• Cray 10.0.1†

• Fujitsu 4.3.1,
• Gnu 10.2 & 11

inline svuint64_t
mul_sve ( svbool_t pg , svuint64_t a, svuint64_t b)
{

svbool_t pc;
svuint64_t m, xh , xl , z;

/* x = a*b */
xl = svmul_x (pg , a, b);
xh = svmulh_x (pg , a, b);

/* m = (x*N ’) mod R */
m = svmul_x (pg , xl , N_prime );

/* c = (x mod R)+(m*N mod R) >= R */
pc = svcmpgt (pg , xl , svmla_x (pg , xl , m, N));

/* z = (x+m*N)/R + c */
z = svadd_x (pg , xh , svmulh_x (pg , m, N));
z = svadd_m (pc , z, (uint64_t)1);

/* adjust result */
pc = svcmpge (pg , z, N);
return svsub_m (pc , z, N);

}

†Did not support SVE intrinsics.
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Optimising NTTs with SVE (II)
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Distributing and parallelising NTTs (I)

• Hybrid MPI and OpenMP implementation
• Adaptation of Bailey’s four-step algorithm1

0. Organise array of m points into a H ×W distributed matrix
1. Perform NTTs on the columns
2. Apply twiddle factors
3. Partially transpose the matrix*
4. Perform NTTs on the rows*

• Each MPI process works on a portion of the global matrix
• OpenMP threads do the work in parallel

1David H. Bailey (1990). “FFTs in external or hierarchical memory”.
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Distributing and parallelising NTTs (II)

1© Each process starts with a slice of
columns H × w
• Compute NTTs of the columns in

parallel and apply twiddle factors
• Master thread exchanges columns

with other processes
2© Once all blocks have been exchanged,

rearrange data into slice of rows
• Can be seen as transposing a P × w
matrix, moving h elementsmoving h elements at a time

• Done in-place by following cycles
and utilising tasks for parallelism

3© Perform NTTs on the rows in bulk


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Distributing and parallelising NTTs (III)

• NTTs on the columns done with Stockham algorithm1

• Requires an additional buffer, but output is in-order
• NTTs on the rows done in bulk with DIF/DIT algorithms1

• In-place algorithms (no additional buffer required)
• Bit-scrambling unnecessaryBit-scrambling unnecessary
• Two possibilities for parallelisation

i. Subdivide the rows amongst the threads
ii. Parallelise the butterfly loops

• Typical loop structure for DIF
for( ulong k = m/2; k > 0; k >>= 1) {

for( ulong j = 0; j < k; j++)
for( ulong i = j; i < m; i += 2*k) {

/* ... */
}

}

• DIF with butterfly loops collapsed
for( ulong k = m/2; k > 0; k >>= 1) {
# pragma omp for schedule (...)

for( ulong h = 0; h < m/2; h++) {
ulong i = h/k, j = h&(k-1);
/* ... */

}
}

1Richard Crandall & Carl Pomerance, “Fast Algorithms for Large-Integer
Arithmetic”, in Prime Numbers: A Computational Perspective.
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Computation breakdown of distributed NTTs †
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†On Fulhame (HPE Apollo 70).
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Distributed and parallel NTTs on other systems

• Isambard 1 (Cray XC50) shows ~10% slowdown wrt Fulhame
• SVE delivers over 3.5x speedup on Isambard 2 (HPE Apollo 80)
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Preliminary results on Goldbach partitions

• Counts up to 240 in less than 10 minutes
• In the near future, our goal is to reach at least 245

• The analysis of these results will be the subject of another
publication
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Conclusions

• SVE shows great potential for methods that utilise modular
arithmetic
• Easily achieved speedups greater than 4
• Competitive even for extremely short transform sizes

• Our NTT methods scale well on the Arm-based systems we tested
• MPI almost perfectly overlapped with computation
• Enables fast, efficient, and exact convolutions
• Underlying ideas can be applied to FFTsUnderlying ideas can be applied to FFTs

• These methods have been put into action to compute the number
of Goldbach partitions of all even numbers up to 240 (soon 245)
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Questions?

Contact: rjj@ed.ac.uk
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