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Abstract—We present results of a performance evaluation of a
LANL 3D multi-physics continuum mechanics code — Pagosa
— on an HPE Apollo 80 system. The Apollo 80 features the
Fujitsu A64FX ARM processor with Scalable Vector Extension
(SVE) support and high bandwidth memory. This combination
of SIMD vector units and high memory bandwidth offers the
promise of realizing a significant fraction of the theoretical
peak performance for applications like Pagosa. In this paper we
present performance results of the code using the GNU, ARM,
Fujitsu, and CCE compilers, analyze these compilers’ ability
to optimize performance critical loops when targeting the SVE
instruction set, and describe code modifications to improve the
performance of the application on the A64FX processor.
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I. INTRODUCTION

We present results of a performance evaluation of a LANL
3D multi-physics continuum mechanics code - Pagosa [1]
- on an HPE Apollo 80 system [2]. This system features
Fujitsu A64FX processors, 32 GiB of high bandwidth memory
(HBM2), and an Nvidia IB HDR network. The system also
comes with the HPE Cray Compiling Environment (CCE).

The Fujitsu A64FX processor supports the ARMvS.2-A ISA
in addition to Scalable Vector Extension (SVE) [3] and HBM2
memory. The processor operates at 1.8 GHz, leading to a peak
floating point performance of 2.8 Tflops double precision and
5.5 Tflops single precision when using SVE SIMD (512b)
vector instructions. Each processor has four NUMA nodes
with 12 compute cores. Each core has 64 KiB L1 data and
instruction caches. The cores in a NUMA node share an 8
MiB L2 cache. Each NUMA node is connected directly to one
of the HBM2 memory banks. The HBM2 memory subsystem
offers a memory bandwidth of 1024 GB/sec. This combination
of SIMD vector units and high memory bandwidth offers the
promise of realizing a significant fraction of the theoretical
peak performance for applications like Pagosa. Compared to
other contemporary processors however, the scalar perfor-
mance of the A64FX is not very impressive.

Our evaluation focused on single node performance of the
system. In particular, we wished to evaluate the ability of
compilers to vectorize the application so as to make efficient
use of the A64FX processor’s SVE features, and investigate
code restructuring and compiler optimization features to im-
prove the performance of the application on the Apollo 80.
We analyze performance-limiting features of Pagosa and how
effective CCE and other compilers are at optimization and

resulting performance. Our evaluation showed the vectoriza-
tion and loop-nest-optimization capabilities of compilers have
a very large impact on observed Pagosa performance seen on
the A64FX processor. We also show that performance can be
improved by refactoring selected sections of source-code by
conversion of array-syntax to equivalent loops.

Finally, we compare performance for a single node of
Apollo 80 with A64FX processors to other contemporary
nodes with AMD Rome, Intel Xeon Cascade Lake and Intel
Xeon Ice Lake.

II. PAGOSA APPLICATION CHARACTERISTICS

Pagosa is a 3D multi-material, multi-physics continuum
mechanics simulation code. The 3D grid or mesh is a struc-
tured Cartesian mesh with either uniform or non-uniform grid
spacing. Pagosa is written primarily in Fortran 95 making
heavy use of Fortran array-syntax and has a small amount of
C code. Pagosa uses MPI only parallelism and has a constraint
that the computational mesh including ghost cells can be
evenly divided by a processor mesh to facilitate load balancing.
The physics model equations are solved using explicit time
integration. The code can be built to use either single or
double precision but the most common use case is single
precision. Pagosa is able to exploit problem symmetry such
that a symmetric problem can be run with fewer grid cells.

Pagosa’s dominate coding style is Fortran array-syntax.
Fortran array-syntax style is concise compared to multi-nest
loops, but presents challenges for compilers to optimize well.
Each array-syntax statement contains an array or array-section
left-hand-side (LHS) assigned from the right-hand-side (RHS)
containing array(s) and operator(s). An array-syntax statement
is usually implemented by a compiler as an n-depth loop-
nest for arrays or array-section of n-dimensions. Each array-
element on the RHS must be loaded from memory and every
array-element of the LHS must be stored back to memory.
Therefore, memory bandwidth is implied by each array-syntax
statement. Fortran semantics dictate the RHS is computed,
stored to an array-temp, and finally stored to the LHS though
compilers typically optimize the temp-array away.

A. Fortran array-syntax

The following style of declarations is common within
Pagosa source. The grid has a shape of (0:mx,0:my,0:mz)
where mx, my, mz are set at runtime based on the input



grid-size and number of processors the grid is mapped into.
Therefore, array-sizes are unknown at compile-time though
strides are known to be unit.

real, dimension(0:mx,0:my,0:mz) :: \

a,b,c,d,e

Below is a ’kernel” made up of two array-syntax statements
based on the above declarations. Note that array ~a” is
DEFINED by the first statement and USED in the second
statement. The arrays in their entirety on the RHS must be
read from a cache-level or memory. The array ~a” will be
written to. The level of cache or memory where these arrays
are loaded or stored will depend on the size of the grid. For a
large problem, data will likely reside in LLC (last level cache)
or memory.

a=>b *x c
d=a + e

which are semantically equivalent to two triple-nested loops:

do k = 0, mz
do j =0, my
do 1 = 0, mx
a(i,j, k) =
end do
end do
end do

b(i,3j,k) ~ c(i,3,k)

do j = 0, my
do i =0, mx
d(i,j, k) =
end do
end do
end do

a(i,j, k) + e(i,J, k)

B. Loop-fusion

Note that array “a” is DEFINED in the first loop-nest and
USED in the 2nd loop-nest. If compiler fuses at all 3-loop-
levels, ”a” can be reused from a vector-register thereby reduc-
ing memory-bandwidth. If array a” is a local temporary-array,
a smart compiler will remove the store, reducing bandwidth

further.

do j =0, my
do i =0, mx
a(i,j, k) = b(i, 3, k) = c(i,3,k)
d(i,j,k) = a(i,j, k) + e(i, I, k)
enddo
enddo
enddo

C. Loop-collapse

Another compiler loop-nest optimzation called loop-
collapse (also called loop-coalescing or loop-flattening) con-

verts a multi-nested loop structure to a lesser or in best case,
a single-nested loop. This transformation can be seen in the
loop below where we now have a single-nest loop with the
loop extent the product of the previous 3-loop extents. The
subscript ”i” will over-index into the following two subscripts.
The optimization impact of loop-collapse is a reduction
in loop overhead and an improvement in vector efficiency
particularly with strong scaling. Without loop-collapse, only
the inner-loop, index i, is vectorized but with collapse results
in a much longer vector trip-count with more time spent in the
actual vector-kernel and less in supporting vector code such
as a peel-loop and remainder-loop. The number of non-SIMD
instructions executed can be significantly reduced.

do i = 0, (mx+1)=*(my+1)* (mz+1)
a(i,0,0) = b(i,0,0) % c(i,0,0)
d(i,0,0) = a(i,0,0) + e(i,0,0)
end do

D. Re-allocation of allocatable-arrays

The Fortran 2003 standard was changed for array-syntax
statements with an allocatable-array on the LHS to be checked
at runtime for being allocated and with RHS array-shape
conformance. If either check fails, the LHS is reallocated
to the shape of array(s) on the RHS. The check, unneeded
by current Pagosa source code, comes at a runtime cost and
has the additional negative effect of making loop-fusion less
likely. Therefore, this unneeded check was turned off via
option specific to most compilers. Using the CCE compiler,
performance loss of Pagosa without the -dw option was 11%.

III. PAGOSA CODE REFACTORIZATION

Realizing better performance of array-syntax depends on the
ability of compilers to fuse individual array-syntax statements
into a single object loop to allow temporal data reuse from
registers rather than cache or memory. Reusing data from
registers saves memory bandwidth and reduces instructions
executed, particularly load and store instructions. But what if
available compilers do not automatically perform the desired
loop-fusion?

To lessen dependence on compilers, selected array-syntax
statements from code-sections high in the performance profile
were recoded as Fortran do-loops and consecutive loops were
manually fused to promote data reuse within the resultant loop-
body. Further bandwidth was saved by replacement of local
temporary arrays with scalar-temps thereby saving the store.

Conversion of array-syntax to loops also increases vector-
ization though sometimes requiring use of OpenMP pragma
simd. Another barrier to vectorization can be reference to
Fortran math intrinsics such as COS, ACOS or exponentiation.
Some compilers do not have SIMD versions of math libraries
allowing contained loops to vectorize. Another possible prob-
lem is though SIMD versions may be available, their precision
may be insufficient for the application.

Selected code refactoring results in speedups relative to the
original source code; the amount of speedup depends on the
compiler and compiler options. Compilers such as CCE see



less speedup from refactoring because of strong optimization
of the original source code especially in the areas of loop-
fusion, loop-collapse and vectorization. Compilers unable to
optimize array-syntax well see more performance advantage
from the refactored source code.

Three versions of pagosa were built and run:

¢ Version 0: original source with all array-syntax

e Version 1: a small number of high-profile subroutines
were recoded with do-loops

e Version 2: dominate kernel was recoded to manually
inline, fuse and use scalar-temps

Version 2 will be discussed in greater detail.

A heavily executed kernel in Pagosa is called ”Vofid” which
references subroutines Normal_Order, PCalc and VCalc. The
”3D” version of Vofid is structured as follows:

Subroutine Vofid_ 3D
Call Normal_Order —--> Normal_Order_3D
Call PCalc ——-> PCalc_3D
{set of array-syntax statements}
Call VCalc -—-> VCalc_3D
End Subroutine Vofid_3D

As part of Version 1, array-syntax statements within subrou-
tines Vofid_3D, Normal_Order_3D, PCalc_3D and VCalc_3D
were converted to a single triple-nested loop. As indicated,
each of the 3-subroutine calls were made to dimension-neutral
versions; these calls were short-circuited to ”3D” versions,
each of which was manually inlined into Vofid_3D:

Subroutine Vofid_ 3D
triple-nested loop from contents
of Normal_Order_3D
triple—nested loop from contents
of PCalc_3D
triple-nested loop from original
array—syntax statements
triple-nested loop from contents
of VCalc_3D
End Subroutine Vofid_3D

Each of 4 triple-nested loops were then manually fused into
a single triple-nested loop:

Subroutine Vofid_ 3D
triple-nested loop
End Subroutine Vofid_3D

Finally many of the array-temps were replaced with scalar-
temps to save store-bandwidth. These source modifications
resulted in bandwidth reduction of approximately 5x relative
to Version 1.

IV. RESULTS

A. System Configurations

In addition to the Apollo80/A64FX system described in
Section I, the performance results of Pagosa on several x86_64
processor types were obtained:

o Intel Cascade Lake Platinum model 8260 at 2.40 GHz
and 48 cores/node

e Intel Ice Lake pre-production at 2.3 GHz and 48
cores/node

e AMD EPYC_7702_64 (Rome) at 2.0 GHz and 128
cores/node

For SIMD support, the Intel processors offer the AVX512
instruction set, while the AMD processor supports AVX?2
instruction set.

B. Test Case and Methodology

The test case used in this study is a 25 material, high
explosive shaped charge problem which produces a jet along
a coordinate axis and features a multi-material target plate
for the jet to interact with. See Figure 1. A combination of
analytic equation-of-state (EOS) approximations for some of
materials and a tabular EOS model for the remaining ones
is used. Two grid configurations were used in this work. For
both configurations, a 1 mm mesh resolution was used. The
first mesh used was 120x120x256 and had the jet aligned with
the z-axis. The second mesh used was 256x120x120 and had
the jet aligned with the x-axis. The benefit of the second mesh
configuration was that it provided the largest trip count for the
innermost loop over the mesh and was also an integral multiple
of the longest vector length of 16. Both meshes had the same
number of cells, 3.69 million, and a memory size of 14.06
MiB in single precision for a mesh quantity.

For this study, Pagosa was instrumented with Caliper [4]
to collect hardware counter data on the different node types.
This hardware counter data is used in at least two ways.
First, it is used to measure the data required to produce
roofline performance plots for both individual subroutines
and the Pagosa timestep loop as a whole. Second, it is
used to explore details of processor execution in order to
identify performance bottlenecks and determine next steps for
subsequent optimization attempts. The individual subroutines
investigated and optimized in this work were the following.

advect_basic, advect_hydro
eos_driver, ses_eval
strengthl, strength2

recon, gradvof, wvofid

Together, these subroutines consume 80 percent of the total
run time for the test problem on the Intel Cascade Lake node
when the original array syntax version of Pagosa, Version_0,
is compiled with the Intel compiler and run with a single
MPI rank per core. Because of the multi-material nature of
this test problem and the non-uniform distribution of materials
across the computational mesh, it is possible to get significant
load imbalance across MPI ranks. MPI barriers were added at
the beginning and end of each of these subroutines to make
sure that measured run times and hardware counters were
properly attributed to the correct subroutine. Pagosa was also
instrumented with Caliper at the main timestep loop level to
collect hardware counters. When collecting performance data
at the main timestep loop level, Pagosa was compiled with the



extra MPI barrier calls and lower level Caliper calls removed.
The test problem was also configured such that no significant
I/0 was performed during the main timestep loop for all runs.

Three types of Pagosa runs were performed for each com-
bination of CPU node type and compiler. First, a base run
was performed where the problem was run for 35 pseconds of
simulation time, see Figure 1d, with MPI barrier calls activated
and no data collection by Caliper. These runs generated
performance timing data representative of a complete physics
simulation and produced a restart dump file which was used
for subsequent Caliper data collection runs. Second, a set of
Caliper collection data runs were run for 1 psecond of sim-
ulation time using the restart dump file from 35 pseconds as
the initial starting point with Caliper data collection enabled at
the individual subroutine level. A separate run was performed
for each hardware counter that was collected. Third, a set
of Caliper collection data runs were run for 1 psecond of
simulation time using the restart dump file from 35 pseconds
as the initial starting point with Caliper data collection enabled
at the main timestep loop level. A separate run was performed
for each hardware counter that was collected. For these runs,
the extra MPI barrier calls and lower subroutine level Caliper
calls were disabled. This strategy for collecting hardware
counter data was chosen because approximately 100 hardware
counters were collected and the total run time would have been
prohibitive using the original base runs.

For all runs of the 25 material shaped charge problem, the
same problem was run on a single node of each processor
type using all of the cores and hardware threads available. For
single rank per core runs on Intel Cascade Lake and Icelake
and for runs on Fujitsu A64FX, there were 48 ranks used
with each rank bound to a core. For these runs, the same
MPI domain decomposition was used. For two ranks per core
runs on Intel Cascade Lake and Icelake, the same MPI domain
decomposition was used and it was identical to the single rank
per core runs except in one coordinate direction. Only runs on
the AMD Rome nodes used a significantly different domain
decomposition.

C. Compiler Performance Comparison

The 25 material shaped charge problem was compiled and
run with each of the available compilers on four processor
node types. On the Intel Cascade Lake and Icelake nodes,
the Intel and GNU compilers were used. On the AMD Rome
nodes, the Intel, GNU, CCE and AMD AOCC compilers
were used. On the Fujitsu A64FX nodes, the Fujitsu, CCE,
ARM and GNU compilers were used. The compilers which
produced the most performant executable code were the Intel
compiler on Intel Cascade Lake and Icelake nodes, the Intel
and CCE compilers on AMD Rome nodes and the Fujitsu
and CCE compilers on the Fujitsu A64FX nodes. Because of
their superior performance in compiling Fortran code, more
attention was given to optimizing the use of these compilers.
Significantly less effort was devoted to optimizing the use
of the GNU compiler and the Clang based ARM and AMD
AOCC compilers. A primary objective of this work was to

Time =0 ps

Time = 10 ps

(a) Time: 0 pseconds. (b) Time: 10 pseconds.

Time = 20 ps Time = 35 ps

(c) Time: 20 pseconds. (d) Time: 35 pseconds.

Fig. 1: Time evolution of 25 material shaped charge problem.

maximize performance of Pagosa using all of the available
options and capabilities of the compilers. A requirement
for performance optimizations to be incorporated into the
production version of Pagosa is acceptable performance on
the extensive regression test suite. Determining the compiler
options and source code changes necessary to pass all the tests
in the regression test suite for new, unsupported processor node
types and compilers is a major task that was beyond the scope
of this work. None of the processor node types in this work
are supported by the Pagosa Team and only the Intel and GNU
compilers are supported compilers.
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Fig. 2: Main timestep performance versus version for compiler
and CPU.



Figure 2 shows the performance of the main timestep loop
of Pagosa and is an approximate representation of whole
code performance. Figure 2a shows the performance as a
function of the three source code versions for the different
combinations of processor node type and compiler using the
total run time as the performance metric. Figure 2b shows the
performance as a function of the three source code versions
for the different combinations of processor node type and
compiler using the speedup relative to that of the original
array syntax source code as the performance metric. Using
speedup as a performance metric gives an indication of how
well the source code modifications helped the compiler to
achieve better performance for a given combination of node
type and compiler but do not indicate how the performance of
a given combination of node type and compiler compares to
that of another. Less capable compilers can sometimes achieve
larger speedups than the more capable compilers because the
more capable compiler is able to perform some of the source
code changes like loop fusion on the original source code that
must be done manually for the less capable compilers.

Many of the source code modifications made in Version_1
and Version_2 of the source code had the objective of reducing
the amount of data moved to and from main memory in
order to more efficiently use the limited amount of memory
bandwidth available. A common result of these source code
changes were more complex and extensive loop bodies that
were often much more difficult to vectorize for the less
capable compilers. As a result, a significant reduction in the
amount of data moved to and from main memory could be
achieved but performance would be slower because of less or
no vectorization. An example of this is the ARM compiler on
the Fujitsu A64FX. The source code modifications going from
Version_1 to Version_2 were much more extensive compared
to those going from Version_0 to Version_l and achieved
much more dramatic reductions in the amount of data moved
to and from main memory but also resulted in a much more
complex loop that was challenging to vectorize for even the
most capable compilers on Fujitsu A64FX. For the Fujitsu
compiler on A64FX, it was necessary to perform some manual
loop versioning to hoist some loop invariant conditional logic
out of a performance critical loop in order to get that loop to
vectorize. This same manual loop versioning was not sufficient
to allow the very capable CCE compiler to vectorize that loop
on A64FX. As a result, on A64FX, the Fujitsu compiler shows
a speedup for Version_2 relative to Version_1 but the CCE
compiler shows a significant slowdown going from Version_1
to Version_2 because of the failure to vectorize this single
performance critical loop. It should be noted that on AMD
Rome, the CCE compiler is able to vectorize this performance
critical loop and show a speedup going from Version_1 to
Version_2. This may indicate a lack of maturity for the CCE
compiler when targeting the A64FX relative to that of AMD
Rome.

Figure 3 shows the performance of the Vofid subroutine
which has received the most attention in this current work.
Figure 3a shows performance as a function of the three source
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Fig. 3: Vofid performance versus version for compiler and
CPU.

code versions for the different combinations of processor
node type and compiler using run time as the performance
metric. Figure 3b shows the performance as a function of the
three source code versions for the different combinations of
processor node type and compiler using the speedup relative
to that of the original array syntax source code as the perfor-
mance metric. Vofid is an ideal candidate for an initial attempt
at optimization because it is at or near the top of the list
of performance intensive subroutines in the Pagosa internal
timing report and it performs pointwise local calculations on
a given mesh point and thus has no stencil operations or MPI
communication. Included in the list of floating point operations
performed by Vofid are several math functions such as cos,
acos, sqrt, pow and numerous divisions.

The performance increase of Vofid when going from Ver-
sion_0 to Version_1 and then to Version_2 is the greatest on
Cascade Lake nodes which have the smallest amount of mem-
ory bandwidth for the node types in this study. Performance of
Vofid increases by nearly 8x on Cascade Lake when using the
Intel compiler. The strong cores of Cascade Lake are able to
effectively exploit the additional performance room that comes
from increasing the arithmetic intensity of the subroutine by
reducing the amount of data moved to and from main memory.
Intel Icelake and AMD Rome also perform well on Vofid
with their strong cores but do not show as much speedup
as Cascade Lake because they have more available memory
bandwidth and are thus able to run the original source code
faster. However, the relatively weak cores of A64FX are not
able to achieve the same level of speedup as the stronger
cores of the other processors when the arithmetic intensity
increases from the reduction in data movement. On A64FX,
the CCE compiler is able to achieve maximum performance



for Version_0 consistent with its arithmetic intensity but the
Fujitsu compiler is not. For Version_1 and Version_2, neither
the CCE compiler or the Fujitsu compiler is able to achieve
the peak performance for the increased arithmetic intensity.
CCE does show about a 2x speedup for Vofid on A64FX but
the Fujitsu compiler shows a much smaller speedup and the
ARM compiler shows a slowdown because of not vectorizing
the much more complex loop of Version_2.

D. Processor Performance Comparison

Roofline plots [5] [6] are an excellent way to explore the
performance of an application with a focus on processor
specific performance issues and bottlenecks. A roofline plot
consists of two types of processor specific information. First,
there is the peak measured performance for the processor
for both the memory subsystem and the compute cores.
This performance data is measured using various performance
micro-kernels. For this work, the maximum achieved memory
bandwidth performance in GB/s is measured and plotted for
each level of the cache hierarchy and main memory. For
core performance the maximum measured flop rate in GF/s
is measured in single precision for the core vector units at
maximum supported vector length using FMA (Fused Multiply
and Add) vector operations and plotted. Additional core per-
formance lines are then scaled from the single precision FMA
vector performance for the non-FMA case and the non-FMA
scalar case. This data is processor specific and reflects the
differences between processors of their memory subsystems
and core design. This data was measured on a compute node
basis using all of the available compute resources of the
node. This data is plotted on a log-log plot of GF/s versus
Al (Arithmetic Intensity) where Al is the number of flops
computed per byte of data moved to and from a level of the
memory subsystem. An Al can be measured for each level of
the memory subsystem. This data is plotted using lines.

The second type of processor specific data plotted on a
roofline plot is that of the individual performance of a specific
application or part of an application in terms of its flop rate and
Al This data is plotted using points where each point shows
the measured flop rate of the application at a measured Al. The
flop rate and Al are typically computed from measured vendor
specific hardware counters using software such as Caliper
and PAPI [7] to instrument the application. Both Intel Xeon
processors and the Fujitsu A64FX have outstanding hardware
counter support and documentation. In this work, roofline
performance data is measured for both Cascade Lake and
A64FX. At the time this data was collected, PAPI did not
have support for the uncore counters of Icelake Xeons which
are needed to measure data flow to and from the main memory
controllers and which are needed to compute the Al needed
for roofline application performance points. For AMD Rome,
it has been difficult to measure hardware counter performance
data that can be used for useful roofline performance plots and
how to accomplish this is still under investigation. Because of
these limitations, this work concentrated on generation and
analysis of roofline data for Cascade Lake and A64FX.

Figure 4 shows roofline plots of the performance of 9
subroutines and the main timestep loop for the original array
syntax version, Version_0, of Pagosa on Cascade Lake and
A64FX. Several observations can be made from these plots.
The theoretical peak performance of a Cascade Lake node is
about 25 to 30 percent higher than that of A64FX. However,
the available memory bandwidth for A64FX is more than 3x
larger than that of Cascade Lake. For both Cascade Lake
and A64FX, the performance for most of the subroutines
appears to be limited by the available memory bandwidth.
In these cases, in order to improve the performance of these
subroutines, the performance point needs to move to the
right through an increase in the AI by either increasing
the number of flops computed or decreasing the amount of
data moved. For Cascade Lake, the ses_eval and gradvof
subroutines and the main timestep loop of Pagosa do not
achieve the maximum performance allowed for their measured
Al Part of the issue with ses_eval is that it is making
library calls to the tabular EOS library. Another issue is that
this subroutine performs many high cost operations such as
several dynamic memory allocations and deallocations per
call, makes several conversions of single precision data to and
from double precision to support the double precision tabular
EOS library and uses Fortran PACK and UNPACK intrinsics.
Exploration of the performance of ses_eval is left to future
work. The advect_basic, advect_hydro, recon and gradvof
subroutines all perform stencil operations which requires MPI
communication. It is not clear why only gradvof of these four
subroutines does not achieve the full performance allowed by
its measured Al

There is some disparity between the performance of various
subroutines on A64FX when using the two most performant
compilers, CCE and FUJ. Figure 4b shows the performance
using CCE as the compiler and Figure 4c shows the perfor-
mance using the Fujitsu compiler. For the Vofid subroutine,
CCE achieves the full performance available for its Al but the
Fujitsu compiler does not and instead produces a core limited
performance value. The CCE compiler excels at fusing and
collapsing array syntax statements relative to other compilers
and this may be the reason for this performance difference. For
the Strengthl and Strength2 subroutines, the Fujitsu compiler
achieves the full performance available for their Al values
while CCE does not and instead produces a core limited
performance result. The Strengthl and Strength2 subroutines
and their child subroutines have a lot of conditional logic
which the Fujitsu compiler is better able to vectorize when
compared to CCE. The performance of ses_eval is quite poor
on A64FX for both compilers.

A major focus of the source code transformations for
Version_1 and Version_2 of the source code was to reduce the
amount of data being moved to and from main memory and
increase the Al so that there would be a higher ceiling on the
available performance. So far, the source code modifications
made in both Version_1 and Version_2 have been very success-
ful at reducing the amount of data moved to and from main
memory and shifting the roofline performance points to the



right through an increase in their Al. Figure 4 shows roofline
plots of the performance of the subroutines and main timestep
loop for Version_2 of Pagosa on Cascade Lake and A64FX.
Relative to Version_1, Version_2 incorporates modifications
to advect_basic, advect_hydro, strengthl, strength2 and vofid.
Of these five subroutines, the modifications to vofid are the
most complete and mature followed by those to strengthl
and strength? and then the advect subroutines. The strengthl
and strength2 subroutines are significantly more complex than
vofid and the attempts to optimize them are in an early stage.

Figure 5a shows the change in performance on Cascade
Lake achieved by Version_2. The most dramatic performance
change is that of vofid where reducing the amount of data
moved to and from main memory results in a speedup of
about 3x relative to Version_1 and nearly 8x relative to the
original Version_0. The strong cores of Cascade Lake are
able to exploit much of the additional increase in performance
ceiling but are not able to achieve the full performance
potential suggested by the roofline plot. The performance
appears to have changed from memory bandwidth limited
to compute core limited. However, this speculation requires
further investigation. A consequence of reducing the amount
of data being moved to and from main memory is a heavier
reliance on the bandwidth available from the different levels of
cache. An effort is in progress to determine how to measure
with hardware counters the amount of data being moved to
and from each cache level so this information can be used
to calculate the AI for each of the cache levels. Then, the
current performance point for vofid on Cascade Lake needs to
be plotted using each of these cache specific values of Al in
order to determine if the current performance is being limited
by the available bandwidth from one of the cache levels. If not,
then the counter data for Cascade Lake needs to be explored to
search for a possible bottleneck that is limiting being able to
fully realize the performance potential indicated by the roofline
plot.

Figure 5b shows the performance of Version_2 of the source
code on A64FX using the CCE compiler. Figure 5c shows the
performance of Version_2 of the source code on A64FX using
the Fujitsu compiler. The results for A64FX are qualitatively
different from those for Cascade Lake. For vofid, there is a
large increase in Al but very little increase in performance.
Instead, the performance of vofid appears to be strongly core
limited which could be a consequence of the relative weakness
of A64FX cores relative to those of Cascade Lake. It should
be noted that the cores of both Cascade Lake and A64FX
have two 512 bit SIMD vector units. Also, both node types
each have 48 cores per node. The cores of Cascade Lake have
two hardware threads per core and when both are used, the
performance of vofid increase which suggests that the extra
hardware thread on Cascade Lake is being effectively used to
hide latency. A64FX only has a single thread per core and
attempts to rely on software pipelining and loop fissioning to
manage latency and register limitations. The Fujitsu compiler
has support for both loop fissioning and software pipelining.
An effort has been made to use these features of the Fujitsu

compiler but so far they have not resulted in a performance
increase. At this point, beyond exploring the hardware counter
data for vofid on A64FX, it is not clear how to remove or
mitigate the performance bottleneck for vofid on A64FX which
clearly exists.

Figure 5c also shows a significant performance improve-
ment for advect_basic and advect_hydro for Version_2 relative
to Version_0 when using the Fujitsu compiler. Changes to
these subroutines resulted in a modest increase in Al and
the Fujitsu compiler is able to take advantage of that and
increase performance up to the limit allowed by the roofline
constraint. On the much more complex strengthl and strength2
subroutines, the performance points when using the Fujitsu
compiler show an increase in Al but no significant perfor-
mance increase. This behavior is similar to that of vofid where
now there are much more complex loops to optimize and
unlike Cascade Lake, the weaker cores of A64FX are not able
to exploit the potential for greater performance using methods
which have been investigated such as the loop fission and
software pipelining support of the Fujitsu compiler. Access
to the Fujitsu compiler is a recent event - so, perhaps more
experience going forward will result in more success.

Figure 5b highlights some weaknesses of the CCE compiler
relative to that of the Fujitsu compiler. The major difference
is the performance of strengthl and strength2 for Version_2
where the Fujitsu compiler is able to vectorize a performance
critical loop resulting from the refactor of the code but CCE is
not. This vectorization issue is expected to be resolved with fu-
ture work but highlights the fact that compilers have strengths
and weaknesses relative to each other. It also highlights the
necessity when targeting multiple compute architectures and
compilers of needing to code to the least common denominator
of compiler capability. Another difference apparent in Fig-
ure 5b is the performance of advect_basic and advect_hydro
for Version_2 versus that of Version_0. Performance increases
significantly for the Fujitsu compiler but remains nearly the
same for the CCE compiler. Finally, Figure 5b shows that
the CCE compiler produces much higher performance for
vofid relative to the Fujitsu compiler although the performance
of both is core limited and much lower than the maximum
performance suggested by the roofline plot.

Figure 6 shows the performance of vofid on Cascade Lake
and AG64FX for the three source code versions. On Cascade
Lake, vofid is memory bandwidth limited for Version_0 and
Version_1 even though there is a significant decrease in
the amount of data moved to and from main memory and
consequently a significant increase in Al. As noted, Cascade
Lake has the smallest available memory bandwidth of the
processor node types considered. There is also a significant
increase in performance going from Version_0 to Version_l.
It is only when going from Version_1 to Version_2 that vofid
becomes compute or core limited.

Figure 6b shows the performance of vofid on A64FX using
the CCE compiler and Figure 6¢ shows the performance using
the Fujitsu compiler. The Fujitsu compiler results show a
larger increase in Al, both in the increase from Version_0



to Version_1 and the overall increase from Version_0 to
Version_2. However, the performance of the Fujitsu compiler
significantly underperforms that of CCE for all versions. It is
difficult to tell from the Fujitsu compiler optimization reports
what the performance problem is. The CCE compiler collapses
the loop nest and vectorizes it but the Fujitsu compiler
appears to only vectorize the inner loop. Various attempts
to use different granularities of loop fission and loop fission
stripmining seemed to work according to the compiler reports
but only resulted in no performance gain or a small reduction
in performance. More investigation is required to resolve the
performance difference for vofid between the CCE and Fujitsu
compilers. However, even though there is a significant perfor-
mance difference between the two compilers, neither compiler
is close to achieving the performance potential implied by the
roofline plot.

Figure 7 shows the performance of strengthl on Cascade
Lake and A64FX for the three source code versions. On
Cascade Lake, all three source code versions are still memory
bandwidth limited. There needs to be a more significant
increase in Al through a much larger reduction in data moved
to and from main memory before this subroutine becomes
compute bound on Cascade Lake. For A64FX, with much
higher memory bandwidth, this subroutine is starting to be
compute bound even for the original array syntax Version_0.
Dealing with the additional complexity of large loops with
significant conditional logic will be key to good performance
with the CCE compiler. Figure 7c shows that in contrast to
vofid, the Fujitsu compiler outperforms CCE on strengthl for
each version of the source code. Finally, it is important to
remark that the optimzation effort for strengthl and strength2
is in an early stage.

V. CONCLUSIONS

We studied the performance of LANL 3D multi-physics
continuum mechanics code, Pagosa on the HPE Apollo 80 sys-
tem featuring Fujitsu A64FX processors and HBM2 memory
making use of 4-compilers. Our research indicated compiler
capability to be critical for better performance of Pagosa based
on their abilities to fuse and vectorize loops for code written
in Fortran array-syntax style.

We showed selected code refactorization was effective for
improvement of Pagosa performance particularly for less capa-
ble compilers and that aggressive code refactoring could result
in performance greater than even the strongest compiler was
capable of.

Pagosa is known to be memory bandwidth-limited and
either compiler optimizations or code refactoring resulted in a
measurable reduction in bandwidth and correlated to improved
performance.

We found the Fujitsu A64FX processor to have a very
strong vector unit but its instruction-level-parallelism some-
times limited performance. Of the 4-compilers we studied,
the Fujitsu and CCE compilers were the most capable for
this code. The GNU 11.0.0 compiler appeared to be the least

capable compiler targeting A64FX though it was in the top
two compilers targeting AMD Rome.

When comparing the performance of the Fujitsu A64FX to
3-contemporary processors, we found the AMD Rome with
it’s overwhelming number of cores and Intel Xeon Ice Lake
outperform A64FX. Intel Xeon Cascade Lake showed the least
performance of the 4-node types.
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Fig. 4: Roofline performance plots for Version_0, XYZ mesh,

Cascade Lake and A64FX.
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Fig. 5: Roofline performance plots for Version_2, XYZ mesh,
Cascade Lake and A64FX.
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