
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Optimizing a 3D multi-physics continuum
mechanics code for the HPE Apollo 80 System

Vince Graziano
Howard Pritchard

David Nystrom
Brandon Smith
Brian Gravelle

5/5/2021

LA-UR-21-24202

Presentation Outline

6/23/20Los Alamos National Laboratory

• Description of Pagosa and
Shaped Charge

• Running Pagosa on HPE
Apollo 80 A64FX node

• Performance limitations
• Role of Compilers
• Code refactoring to improve

performance
• Compare to other Processor

types
• Conclusions

2

Pagosa

Los Alamos National Laboratory

• 3 dimensional, multi-material shock wave physics code
• Uses a structured cartesian mesh
• Explicit finite difference method in the Eulerian frame used to solve

equations of motion, etc.
• Material equations-of-state (EOS) can be evaluated analytically or via

tabular lookup
• Written in Fortran (F2003), makes extensive use of array syntax and

Fortran intrinsics
• Parallelism – MPI only
• Uses OpenMP for GPU offload (not subject of this talk)

3

Example Graphic of Pagosa Shaped_Charge

4

Running Pagosa on Apollo 80 A64FX node

Los Alamos National Laboratory

• One socket of A64FX with 48-cores
• ARMv8.2-A+SVE SIMD width of 512-bits
• 64GBs of HBM2 memory, no L3 cache

• Shaped Charge problem with 25-materials
• 0.5 mm mesh
• Mixture of analytic and tabular equations-of-state
• Typical of actual user problems

• Compilers:
• CCE 10.0.1: 675-seconds
• ARM 20.2.1: 1566-seconds
• GNU 10.2.0: functional problem
• Fujitsu: not available

5

Performance Limitations

Los Alamos National Laboratory

• Pagosa known to be memory bandwidth-limited

• Coded largely in Fortran array-syntax
• Difficult for compilers to optimize well
• Each array-syntax statement implies operations and bandwidth

• Depending on mesh size, data is streaming to and from LLC or
memory

• In the case of A64FX, data will stream from HBM2

• A64FX stats for CCE built version:
• 70.7% of instructions had backend stalls
• 24.1% of instructions were SIMD
• IRC of 0.56

6

Fortran Array-Syntax Patterns in Pagosa

Los Alamos National Laboratory 7

real, dimension(0:mx,0:my,0:mz):: a,b,c,d,e
a = b * c
d = a + e

do k = 0, mz
do j = 0, my

do i = 0, mx
a(i,j,k) = b(i,j,k) * c(i,j,k)

enddo
enddo

enddo
do k = 0, mz

do j = 0, my
do i = 0, mx ! reuse “a” from where?

d(i,j,k) = a(i,j,k) + e(i,j,k)
enddo

enddo
enddo

Semantically equivalent to

Fortran Array-Syntax Patterns in Pagosa

Los Alamos National Laboratory 8

do k = 0, mz
do j = 0, my

do i = 0, mx
a(i,j,k) = b(i,j,k) * c(i,j,k)
d(i,j,k) = a(i,j,k) + e(i,j,k)

enddo
enddo

enddo

- What should a compiler do to improve performance?

- If compiler fuses all 3-loops, “a” can be reused from a vector register
instead of memory or cache

Fortran Array-Syntax Patterns in Pagosa

Los Alamos National Laboratory 9

do i = 0, (mx+1)*(my+1)*(mz+1)
a(i,0,0) = b(i,0,0) * c(i,0,0)
d(i,0,0) = a(i,0,0) + e(i,0,0)

enddo

If the compiler can collapse the loops into a single loop-nest:

- reduces loop-overhead
- improves vector efficiency, esp with strong scaling
- CCE does extensive loop-collapse in Pagosa

Role of Compilers on A64FX

Los Alamos National Laboratory

• Why CCE does 2x better performance than ARM compiler?

• CCE compiler does:
• Significant fusion of array-syntax statements
• More Vectorization of loops/array-syntax
• Loop-collapse
• 512-bit fixed style of vector-code

• ARM compiler does:
• Limited fusion of array-syntax statements
• Much less vectorization
• no loop-collapse
• Vector-length-agnostic (VLA) vector-code

10

Example of CCE optimization for Array-Syntax

Los Alamos National Laboratory 11

Key: V – vectorized, f – loop-fusion, C – loop-collapse

52. fVC----<> Tmp1(:,:,:) = (Grad(:,:,:,1,1) + Grad(:,:,:,2,2) + Grad(:,:,:,3,3))
53.
54. f------<> dA(:,:,:) = (Grad(:,:,:,1,1) - Tmp1(:,:,:)) * dt
55. f------<> dB(:,:,:) = (Grad(:,:,:,2,2) - Tmp1(:,:,:)) * dt
56. f------<> dC(:,:,:) = (Grad(:,:,:,3,3) - Tmp1(:,:,:)) * dt
57. f------<> dD(:,:,:) = (.5 * (Grad(:,:,:,1,2) + Grad(:,:,:,2,1))) * dt
58. f------<> dE(:,:,:) = (.5 * (Grad(:,:,:,1,3) + Grad(:,:,:,3,1))) * dt
59. f------<> dF(:,:,:) = (.5 * (Grad(:,:,:,2,3) + Grad(:,:,:,3,2))) * dt
60.
61. f------<> W1(:,:,:) = (Grad(:,:,:,1,2) - Grad(:,:,:,2,1)) * dt2
62. f------<> W2(:,:,:) = (Grad(:,:,:,1,3) - Grad(:,:,:,3,1)) * dt2
63. f------<> W3(:,:,:) = (Grad(:,:,:,2,3) - Grad(:,:,:,3,2)) * dt2

Compare A64FX to other node types

Los Alamos National Laboratory

• AMD Rome with 2-sockets/node and 128-cores of AVX2
• Using 3-compilers: CCE, Intel and AOCC

• Intel Xeon Cascade Lake with 2-sockets/node and 48-cores of
AVX512

• Using Intel compiler

• Intel Xeon Ice Lake with 2-sockets/node and 48-cores of AVX512
• Using Intel compiler

12

0

200

400

600

800

1000

1200

1400

1600

1800

 A64FX 48-CORES ROME 128-CORES CASCADE LAKE 48-
CORES

ICE LAKE 48-CORES

Ru
nt

im
e

Se
co

nd
s

Pagosa Node Performance

CCE ARM INTEL AOCC

Could small source changes help performance?

Los Alamos National Laboratory

• Take selected array-syntax statements and recode as loops
• Kernels from routines high in profile
• Manual loop-fusion of recoded loops to get data reuse
• To make up for compiler optimization NOT doing it

• Answer: Yes, such source changes can help for some compilers

14

0

500

1000

1500

2000

A64FX
CCE

A64FX
ARM

ROME
CCE

ROME
INTEL

ROME
AOCC

R
un

tim
e

Se
co

nd
s

Modified Source Impact

Original Modified

Conclusions

Los Alamos National Laboratory

• Pagosa performance is dependent on the compiler ability to:
• Vectorize array-syntax well
• Loop-fusion of array-syntax statements
• Loop-collapse

• A node of Apollo 80 with A64FX socket performed:
• 2x faster built with CCE compared to ARM compiler
• Better than a node of Xeon Cascade Lake
• Slightly worse than a node of Xeon Ice Lake
• Worse than a node of AMD Rome probably because of core-count

disadvantage

• Making selected source changes can help compilers

16

