Architecture and Performance of Perlmutter’s 35 PB
ClusterStor E1000 All-Flash File System

Glenn K. Lockwood, Alberto Chiusole, Lisa Gerhardt, Kirill Lozinskiy, David Paul, Nicholas J. Wright
Lawrence Berkeley National Laboratory
{glock, chiusole, Igerhardt, klozinskiy, dpaul, njwright} @Ibl.gov

Abstract—NERSC’s newest system, Perlmutter, features a 35
PB all-flash Lustre file system built on HPE Cray ClusterStor
E1000. We present its architecture, early performance figures,
and performance considerations unique to this architecture. We
demonstrate the performance of E1000 OSSes through low-level
Lustre tests that achieve over 90% of the theoretical bandwidth
of the SSDs at the OST and LNet levels. We also show end-to-end
performance for both traditional dimensions of I/0O performance
(peak bulk-synchronous bandwidth) and non-optimal workloads
endemic to production computing (small, incoherent I/Os at
random offsets) and compare them to NERSC’s previous system,
Cori, to illustrate that Perlmutter achieves the performance of a
burst buffer and the resilience of a scratch file system. Finally,
we discuss performance considerations unique to all-flash Lustre
and present ways in which users and HPC facilities can adjust
their I/0 patterns and operations to make optimal use of such
architectures.

I. INTRODUCTION

The Perlmutter supercomputer deployed at NERSC is an
HPE Cray EX system with performance that is 3-4x higher
than NERSC’s current-generation HPC system, Cori. In ad-
dition to the extreme computational performance afforded by
over 6,000 NVIDIA A100 GPUs and 7,500 AMD Epyc 7763
CPUs, Perlmutter will also deliver extreme I/O performance
through its 35 PB all-NVMe flash-based Lustre file system.
This file system was designed to combine the performance of
a burst buffer with the stability and ease-of-use of a traditional
disk-based parallel file system. Once fully configured, it will
be capable of delivering terabytes per second of bandwidth
while providing sufficient capacity for users to retain their
data for periods of weeks [1].

Although the Perlmutter file system delivers extreme I/O
performance in the conventional senses of peak bandwidth, the
all-NVMe design of the file system opens up new dimensions
of performance as well. As is experienced with many HPC data
centers, NERSC’s I/O demands come from a combination of
large 1/Os and large files and small I/Os and small files [2],
[3], [4], [1]. Designing a file system on all flash allows us to
address the latter demands, which have historically performed
poorly on all-hard disk drive (HDD) file systems, since solid-
state drives (SSDs) can place data blocks in arbitrary locations
with extremely low latency by virtue of having no moving
parts. Thus, Perlmutter scratch represents one of the first
extreme-scale parallel file systems that can effectively serve
the I/O needs of both workloads optimized for traditional HPC
and workloads that have historically performed poorly in HPC

YTy —
1,536 GPU nodes (

1x AMD Epyc 7763

16 Lustre MDSes)

1x AMD Epyc 7502

4x NVIDIA A100 2x Slingshot NICs
4x Slingshot NICs Slingshot Network _24x 1536 TBNVMe)
200 Gb/s - ~
)
2-level dragonfly 16 Lustre OSSes
3,072 CPU nodes 1x AMD Epyc 7502

2x AMD Epyc 7763

1x Slingshot NICs 2x Slingshot NICs

_ 24x 15.36 TB NVMe

2 Arista 7804 routers
400 Gb/s/port

> 10 Tb/s routing

2x Slingshot NICs

24 Gateway nodes
2x 200G HCAs

Fig. 1. Composition of the compute and I/O subsystems of the Perlmutter
supercomputer.

environments.

This new dimension of performance afforded by all-flash
also introduces new concerns around the efficiency of the
hardware and software systems that reside between the raw
solid-state disks (SSDs) and user applications. Any bottle-
necks or inefficiencies in this data path can have dramatic
impacts on the overall performance of the file system, since
extreme-performance flash requires every other component to
have commensurately extreme performance. As a result, the
hardware architecture of the storage servers, their integration
with the networks over which compute nodes and storage
communicate, and the parallel file system software atop this
hardware may require more consideration than previous HDD-
based file systems.

In this work, we present the architecture of the Perlmutter
file system at all of these levels and consider performance in
terms of both bandwidth and IOPS. In addition, we examine
the performance efficiency of the hardware and software of
the file system to determine how much of the raw NVMe
performance is lost at its different levels. To understand
how much of an improvement in performance users may
expect to experience in going from the previous-generation
hybrid HDD+SSD storage architectures to all-flash, we also
compare the performance of Perlmutter scratch servers to that
of NERSC'’s previous system, Cori. Finally, we discuss several
unexpected performance effects that are unique to all-flash file
systems.

II. ARCHITECTURE

The Perlmutter supercomputer is based on the Cray EX
platform and is built around a 200 Gb/s Slingshot high-speed

network connected in a two-level dragonfly topology. Compute
nodes and storage nodes are both directly integrated into this
network as shown in Figure 1. This high-speed network is
connected to NERSC’s Ethernet networks through Arista 7804
routers that are directly connected to Slingshot switches; this
enables high-bandwidth connectivity between compute nodes
and external data sources such as NERSC’s 200 PB HPSS tape
archive, Internet-connected experimental facilities, and the
cloud. In addition, dedicated gateway nodes enable Perlmutter
to mount NERSC’s 128 PB center-wide Community File
System over InfiniBand. The remainder of this paper focuses
on the high-performance file system integrated into Perlmutter.

A. Storage Subsystem Architecture

The Perlmutter file system, hereafter referred to as Perlmut-
ter scratch, provides over 35 PB (35 x 10*° bytes) of usable
capacity and is composed entirely of NVMe SSDs; it contains
zero HDDs. It is a scratch file system designed to deliver
the highest performance for I/O-intensive parallel applications
running on the Perlmutter system and it is not intended to
be a center-wide resource for long-lived data. To this end,
NERSC opted to deploy an all-NVMe file system instead of a
hybrid flash-HDD since the added cost of HDDs would reduce
the amount of SSDs (and therefore total performance) the file
system could deliver for a fixed cost.

Perlmutter scratch uses the Lustre file system [5] and is
comprised of 16 metadata servers (MDSes), 274 object storage
servers (OSSes), and a total of 3,480 NVMe drives. The file
system is directly integrated on to the same Slingshot network
as the compute nodes so there are no LNet routers in the entire
Perlmutter system. However, all Lustre servers are segregated
into distinct /O groups on the dragonfly network which allows
the file system to remain up and accessible to users even when
the compute node subsystem is powered off for maintenance.
This network design also allows the I/O subsystem to achieve
the full cross-sectional bandwidth and network path diversity
of the dragonfly network between compute nodes and Lustre
servers, providing optimal performance, resilience, and avail-
ability.

Perlmutter has a total of four I/O groups on the dragonfly
network, and each I/O group is directly connected to:

o each compute group via 4x 200 Gb/s global links;

o each other I/O group via 6x 200 Gb/s global links;

o the Perlmutter’s service group via 6x 200 Gb/s global

links.
The Perlmutter service group contains user login nodes, system
management nodes, and the Arista routers.

Each of the four I/O groups is comprised of four racks,
and each rack is comprised of approximately ten HPE Cray
ClusterStor E1000 enclosures, two gateway nodes, and four
64-port Slingshot switches as shown in Figure 2.

Lustre OSS and MDS nodes are hosted within ClusterStor
E1000 enclosures which are optimized for reliability and
contain no single points of failure. Each E1000 enclosure
contains two server canisters, two power supplies, redundant
fans and fan controllers, and the necessary infrastructure to

Switches

MDS/OSS
MDS/OSS
MDS/OSS
MDS/OSS
MDS/OSS

MDS/OSS
MDS/OSS
MDS/OSS
MDS/OSS
MDS/OSS

Fig. 2. Composition of a typical rack of Perlmutter scratch. The number of
nodes in each rack differs slightly.

' |200G Slingshot
- 9 AMD

' 2006 slingshot = EPYC 7502

9INAN X 21

Fig. 3. Composition of a single HPE Cray ClusterStor E1000 enclosure with
one of two servers highlighted. Servers act as active/active high-availability
pairs, each responsible for half of the enclosure’s NVMe drives during normal
operation.

support heartbeating and failover between its two servers.
Each E1000 also contains 24 front-loaded, hot-swappable U.2
NVMe SSDs which are dual-ported such that both servers in
the E1000 are connected to all 24 NVMe drives to further
facilitate failover. All E1000 enclosures in Perlmutter scratch
use 15.36 TB Samsung PM1733 NVMe drives.

B. Node Architecture

Whereas the E1000 enclosures that comprise Perlmutter
scratch are designed for resilience, the two servers within
each enclosure are architected for performance. As depicted
in Figure 3, each server is built around a single-socket AMD
Epyc 7502 CPU with 128 lanes of PCle Gen4 and eight
channels of DDR4-3200 DRAM. 48 PCle lanes are used to
connect each of the enclosure’s 24 NVMe drives via Gen4
x2 links, and 32 lanes are used to connect two 200 Gb/s
Slingshot network adapters. By using AMD-based servers
with PCle Gen4, Perlmutter’s Lustre OSSes and MDSes were
able to employ a switchless PCle topology and non-blocking
PCle bandwidth between NVMe drives and NICs. In addition,
the single-socket configuration reduces the complexity of the
NUMA topology within each server.

Each OSS and MDS in Perlmutter scratch nominally hosts
a single Lustre Object Storage Target (OST) or Metadata
Target (MDT) comprised of 12 NVMe drives. Both OSTs

and MDTs use Idiskfs instead of ZFS in Perlmutter because
Idiskfs delivers significantly higher bandwidth and IOPS over
ZFS and Perlmutter scratch was designed principally to deliver
the highest possible performance. OSTs use parity-declustered
RAID6 implemented through GridRAID [6] in an 842 con-
figuration with one distributed spare to best balance NVMe
capacity, bandwidth, and fault tolerance. MDTs are configured
as 11-way RAIDI10 arrays to best balance NVMe IOPS and
fault tolerance. All E1000 enclosures act as active/active
failover pairs so that if one of the OSSes or MDSes within
an E1000 enclosure fails, its failover partner will serve both
OSTs or MDTs. As a result, both servers in a single E1000
must fulfill the same role as either OSSes or MDSes.

III. METHODS

We used the IOR benchmark [7] version 3.3.0 to measure
the bandwidth and IOPS of Perlmutter scratch for reads and
writes. The tests were configured as follows; in all cases, the
files read and written used a stripe width of 1 and stripe size
of 1 MiB, and all files were restricted to a single OST. All
I/O was also buffered; the O_DIRECT option was not used in
any tests. In the remainder of this paper, we define 1 GB as
10? bytes, 1 GiB as 230 bytes, and 8 Gb as 1 GB.

Write bandwidth was measured by creating and writing
one file per MPI process using contiguous 64 MiB (64 x 220
bytes) transfers for 45 seconds. After 45 seconds of I/O, the
largest amount of I/O written by a single rank was determined
(Bmax), and all other ranks were forced to “catch up” so that
they all wrote the same number of bytes to their respective
files, resulting in a total I/O volume of Nynks X Bmax- IOR
refers to this form of test as “stonewalling with wear-out.” The
total bandwidth is calculated as Nyynks X Bmax /tmax> Where tpax
is the time taken by the slowest rank to write and fsync B,
bytes; tmax does not include the time required to create, open,
or close files. This test was constructed to reflect the I/O of
a coherent checkpoint operation where a parallel application
cannot proceed until the slowest rank completes all of its I/O.

Read bandwidth was measured by first generating a multi-
file dataset and using stonewalling with wear-out to ensure
that all files created had identical sizes. We ensured that this
dataset was at least twice as large as the total DRAM on the
Lustre OSSes to which the data was written to avoid the effects
of server-side read caching, and all client caches were flushed
after this dataset generation phase. This dataset was then read
using one file per process using contiguous 1 MiB transfers
for at least 45 seconds. Stonewalling wear-out was not used
for this test, as our goal was to determine the peak aggregate
read bandwidth of a single OSS and OST rather than try to
emulate any specific application workload.

Write IOPS were measured by creating and writing one file
per MPI process using 4 KiB transfers at random offsets for
45 seconds. Stonewalling wear-out was not applied for this
test since a bulk-synchronous yet completely random write
workload does not represent a real workload of interest to
NERSC; rather, we aimed to test the peak capability of the
OSS and OST under the intense workload of hundreds of users

[Write I Read
)
§ 200 1
S)
o
[9)]
v 100 1
o
0+— |
0.80 0.85 0.90 0.95 1.00

Fraction of Peak OST Bandwidth

Fig. 4. Distribution of bandwidths measured using obdfilter-survey for 273
Perlmutter OSTs. One OST was undergoing hardware maintenance at the time
of testing and is not represented.

attempting to write to different locations throughout the file
system at once. As with the write bandwidth test though, we
use the time taken by the slowest rank to pass the 45 second
limit and fsync its file (¢yax) as the denominator in our IOPS
calculation.

Read IOPS were measured by first generating a dataset
as was done for the read bandwidth test using one file per
process. We then wrote arbitrary data to the same OSTs as
our dataset for 45 seconds to ensure that none of the target
dataset remained resident in OSS DRAM cache, and confirmed
that the data volume written during this cache-flush stage was
greater than twice the DRAM of the OSSes. We then read
our dataset using one file per process and 4 KiB transfers
at random offsets for 300 seconds. As with the write IOPS
test, we did not use stonewalling wear-out because our goal
was to emulate the behavior of hundreds of users reading files
located randomly across the file system rather than a single
bulk-synchronous random read workload.

In addition to these IOR tests, we also performed tests
using the obdfilter-survey [8] and LNet Self-Test [9]. obdfilter-
survey was run on each OST using 1 object, 1024 threads, 4
MiB records, and 512 MiB total size. LNet Self-Test was run
against each OSS tested as a sink from two sources using eight
concurrent requests and 1 MiB I/O sizes in bulk read-write
mode. These tests were used to qualify the RAID subsystem
and network performance of each Lustre OSS, respectively.

IV. PERFORMANCE

At the time of writing, Perlmutter scratch was still being
tuned for full scale and not yet in a production configuration.
Rather than publish full-scale performance measurements that
we know to be suboptimal, we choose to defer publication of
Perlmutter’s scale performance and instead focus on single-
server performance in this paper. Thus, the findings presented
in this section reflect the capabilities of the all-NVMe building
blocks from which Perlmutter scratch is built.

A. Intra-OSS Performance Efficiency

The obdfilter-survey tool is routinely used to identify faulty
storage hardware since it tests the performance of storage

100] EEE Write [Read

)

% 801

O 601
wn

v 401
o

20

0

0.80 0.85 0.90 0.95 1.00
Fraction of Peak Network Bandwidth
Fig. 5. Distribution of bandwidths measured using LNet Self-Test for 271

Perlmutter OSSes. Three OSSes undergoing maintenance were not included
in this test.

volume underlying the OST in the absence of effects caused by
the Lustre client or network stack. Because it tests the storage
media in relative isolation, we can use it to also measure
the performance efficiency of each OST by normalizing the
obdfilter-survey bandwidth to the aggregate performance of
the SSDs; this effectively quantifies the overheads of the RAID
subsystem and the parts of Lustre which interact directly with
it. The Samsung PM1733 NVMe SSDs used in Perlmutter
scratch are connected to their host OSSes using two PCle
Gen4 lanes, and each SSD is specified to deliver up to 3.5
GB/s for reads and 3.2 GB/s for writes'. Given that there
are twelve SSDs per OST, the peak read performance of an
OST should be 42 GB/s. Because two parity blocks must be
synchronously written for every eight data blocks written, the
peak write performance of an OST should be 80% of 38.4
GB/s, or 30.7 GB/s.

Figure 4 shows the distribution of read and write bandwidth
efficiencies measured using obdfilter-survey and demonstrates
that Perlmutter’s OSTs are extremely efficient at delivering
bandwidth. Virtually all OSTs are capable of delivering over
90% of the bandwidth advertised by the underlying PM1733
SSDs; the median efficiency at the OST level is 92.6% for
writes and 99.9% for reads. While this latter figure seems
implausibly high, we have found that individual Samsung
PM1733 SSDs are able to exceed their read bandwidth spec-
ification which suggests that the advertised device peak is an
underestimate of the true hardware capability.

These results demonstrate that the combined overheads of
Idiskfs-based OSTs and declustered RAID6 are not significant
and still allow the Perlmutter OSTs to deliver a high fraction of
the raw SSD bandwidth. In addition, this shows that the AMD
7502 processor in each OSS is sufficiently capable of driving
the GridRAID data protection scheme such that it is able to
distribute data across SSDs, compute parity, and update file
system and RAID data structures without greatly impacting
streaming bandwidth.

'Because Perlmutter uses only two PCIe Gen4 lanes to connect each SSD
to its active OSS, each SSD’s performance is effectively equivalent to the
PM1733 specification for four lanes of PCle Gen3.

TABLE I
CLIENT PERFORMANCE MEASURED WITH IOR

Metric Write Read
Bandwidth 27.1 GB/s 40.8 GB/s
10PS 28.8 KIOPS 1452.1 KIOPS
Bandwidth efficiency 88.4% 97.2%
IOPS efficiency 5.33% 15.1%

We also examine the efficiency of the Lustre networking
layer, LNet, using the LNet Self-Test tool provided with
Lustre. The Slingshot NICs used in Perlmutter scratch are
each capable of 200 Gb/s for a total of 400 Gb/s (50 GB/s)
of peak network bandwidth per OSS using Lustre’s multi-rail
capabilities. As shown in Figure 5, the NICs, LNet, and multi-
rail are also very efficient; the median efficiency across all
OSSes was 97.0% for reads (egress) and 84.8% for writes
(ingress). We also note that these LNet Self-Tests used the
same two source OSSes to test each sink OSS. As such,
the global links between the four I/O groups in Perlmutter
were exercised for ¥ of the OSSes tested, and we attribute
the broader distribution of bandwidths in Figure 5 (relative to
Figure 4) to this.

To contextualize these LNet performance measurements to
peak SSD bandwidth, this demonstrates that OSSes can deliver
38.7% and 15.6% greater LNet bandwidth than peak SSD
bandwidth on average. Thus, the bandwidth of these all-NVMe
OSTs are limited by OST performance rather than network
performance, and OST performance is over 90% that of the
raw SSD performance. This observation confirms the design
goal that Perlmutter’s OSSes maximize performance; there are
no bottlenecks within the servers that severely constrain the
bandwidth of the NVMe drives.

B. End-to-end Performance

Section IV-A demonstrated that individual OSSes are
performance-efficient, and it follows that a single OSS should
be able to deliver a significant fraction of this performance
to Lustre clients through the other components of the Lustre
data path. Table I shows the peak performance measured
from Lustre clients on Perlmutter to a single OST using
the IOR tests described in Section III. These performance
metrics were all measured from the same single OST, and
the specific OST tested was chosen at random; as a result,
these measurements most likely correspond to the the median
performance measurements shown in Figures 4 and 5.

Following our definition of performance efficiency from
Section IV-A, Table I shows that Lustre clients are able to draw
over 85% of the bandwidth of the SSDs which is a testament
to Lustre’s capabilities as an all-flash file system. Conversely,
Lustre is not able to deliver similarly high fractions of peak
SSD IOPS capability. Intuitively, we attribute this to the fact
that the SSD drive specifications are measured at the raw block
device level using the fio benchmark? but IOR tests at the file
level. The file system introduces significant latency since it
requires copying data to and from the kernel on the client side,

2Flexible I/O Tester. https://github.com/axboe/fio. Accessed June 10, 2021.

TABLE I
CORI STORAGE SYSTEMS

Scratch Burst Buffer
File System Lustre DataWarp
Platform Cray ClusterStor 9000 Cray XC-40
Data servers 248 288

41 HDDs/server
Seagate ST4000NMO0034

4 SSDs/server
Intel P3608

Drive count
Drive model

and file I/O must also transit the OST subsystem (including
Idiskfs and the GridRAID software stack) before reaching the
block level at which the SSD drive specification was measured.
The Lustre client and server are also separated by the Slingshot
network which requires traversing one global link between
compute group and I/O groups, but this 2 us latency [10] is
at least an order of magnitude smaller than the random access
latency of Perlmutter’s PM1733 SSDs. In addition, the IOR
IOPS tests described in Section III are designed to saturate
the OSS by employing the optimal number of clients and IOR
processes, masking the effects of network latency on any given
client.

The 3:1 asymmetry between read and write IOPS efficiency
is the result of our choice to use RAID6. While our 8+2
configuration results in a 20% penalty to streaming bandwidth
as discussed in Section IV-A, this data protection scheme
incurs a 3x penalty for write IOPS at minimum. Every 4
KiB write requires its 128 KiB RAID block to be read,
modified, and synchronously written back along with two 128
KiB parity blocks. This effectively triples the number of write
operations that must complete synchronously for each random
write generated by IOR. By comparison, there is no analogous
I/O amplification penalty for random reads since Perlmutter
scratch is not configured to check parity on reads.

C. Performance vs. Cori

NERSC chose to pursue an all-flash file system to reduce the
complexity of having separate scratch and burst buffer tiers.
As such, the Perlmutter file system was designed to deliver
performance commensurate to a burst buffer and provide
capacity commensurate to a disk-based performance tier. To
assess the veracity of this goal, we compare the performance
of a single OSS presented in Section IV-B to the performance
of NERSC'’s previous-generation system, Cori.

The Cori file systems targeted by this comparison are
summarized in Table II, and their respective architectures
are detailed in previous works [11], [12]. In addition, the
performance figures we cite for Cori come from full-system
I/O tests performed when these storage systems were being
first deployed in 2015 and 2016. Those IOR tests were
configured to deliver the peak performance of their respective
storage systems and did not use the parameters described in
Section III. We consider this comparison reasonable despite
the difference in test configuration since both Cori and Perl-
mutter IOR tests were designed to deliver optimal performance
on their respective platforms. That said, it is important to
recognize that the test conditions between Cori and Perlmutter
are not identical in the following discussion.

I GB/s
15001 g3 xiops
E 1000
Q]
o
500 1
2.7 6.0 40.8
0 GB/s GB/s pemmmey _GB/s
50 1
2 27.1
k=
= 251
5.5
3.0
GB/S GB/S
0- X .
Cori Cori Perlmutter
CS9000 DataWarp E1000
(normalized) (normalized)
Fig. 6. Single-server performance of a Perlmutter E1000 OSS, Cori

ClusterStor 9000 OSSes, and Cori DataWarp burst buffer nodes. Perlmutter
performance was directly measured from a single server, but Cori performance
is normalized to a single server from full-system runs (248 ClusterStor 9000
OSSes and 288 DataWarp nodes).

Figure 6 shows the results of a single Perlmutter OSS as pre-
sented in Section IV-B compared to Cori’s ClusterStor 9000-
based scratch and DataWarp-based burst buffer. We normalize
Cori’s data to a single server to facilitate comparison with
the Perlmutter data and demonstrate the capability of a single
parallel building block of each storage system. Furthermore,
since Perlmutter scratch has roughly the same total storage
servers as Cori (274 Perlmutter OSSes vs. 248 Cori OSSes and
288 burst buffer nodes), this comparison also offers a rough
qualitative comparison of the systems’ overall capabilities.

As expected, the bandwidth of a single Perlmutter OSS
is significantly higher than Cori scratch OSSes on the basis
that 12 SSDs provide much higher bandwidth than 41 HDDs.
Relative to Cori’s burst buffer, the per-server bandwidth of
Perlmutter is also significantly higher as a result of (1) each
Perlmutter OSS having three times as many NVMe drives as
a single Cori burst buffer server, and (2) Perlmutter’s PM 1733
drives using a newer and higher-performance NVMe controller
and NAND configuration relative to Cori’s Intel P3608 NVMe
drives. While Perlmutter does use PCle Gen4 for NVMe
connectivity, it only uses two lanes to connect to its OSS
whereas Cori’s burst buffer uses four lanes of PCle Gen3.
Thus, the effective PCle bandwidth per-drive on Perlmutter is
the same as Cori’s burst buffer, and Perlmutter’s PCle Gen4
does not give a significant performance uplift over Cori in this
regard.

The peak IOPS of Cori scratch was never measured because
HDDs are known to perform poorly for random workloads®, so
we do not compare the random I/O performance of Perlmutter

3The data sheet for Cori scratch’s ST4000NM0034 HDDs does not include
an IOPS specification, but we estimate a ceiling of 240 IOPS per drive (9.8
kIOPS/OST for reads) based on their 4.16 ms average latency specification.

to Cori scratch. Perlmutter’s random read performance is sig-
nificantly higher than the burst buffer though, and we attribute
this to newer drive architecture and larger number of SSDs per
server. Random read performance is especially crucial for the
NERSC workload because it resembles the aggregate workload
of many users performing many common operations including
1s -1 (gathering file sizes from OSTs) and reading many
small files (such as configuration files and Python libraries).
Many of these intense small-read workloads are performed
interactively by users and result in perceptible latency or lag
while operating in the terminal or running a Python script. In
turn, this interactive lag adversely impacts users’ perceptions
of how “fast” the file system is. Since the Perlmutter OSSes
are so much more capable at serving intensive bursts of small
reads at random locations, we anticipate the file system to feel
much more responsive to these users.

The random write performance of a Perlmutter OSS is
not as high as a DataWarp server, but this is unsurprising
given the steep random write performance penalty incurred by
Perlmutter’s RAID6 configuration discussed in Section IV-A.
By comparison, Cori’s burst buffer stripes data across all
SSDs without data protection, allowing applications to ac-
cess the full random write performance of its SSDs without
the overheads of parity updates or read-modify-write. This
represents a tradeoff of using an all-flash scratch versus a
burst buffer: Perlmutter scratch delivers less write IOPS than
Cori’s burst buffer, but it is also resilient to drive failures and
server crashes. Whereas single SSD or server failure on the
burst buffer will cause data loss, downtime, and the failure
of running jobs, Perlmutter can tolerate such failures while
remaining fully available.

It is important to stress that the comparisons in Figure 6
have large margins because the Cori measurements include
the effects of scaling while the Perlmutter measurements do
not. Scaling is undeniably critical to parallel I/O performance,
but Perlmutter clients were not appropriately tuned at the time
of testing. As a result, this discussion is merely indicative of
order-of-magnitude differences between Cori and Perlmutter,
and the Perlmutter numbers reflect an optimistic upper limit
on the performance that may be expected at scale.

V. CONSIDERATIONS FOR ALL-NVME LUSTRE

In many regards, understanding the performance of all-flash
Lustre is straightforward since the performance of SSDs is
superior to HDDs in every dimension. However, several unique
performance considerations have arisen over the course of
deploying Perlmutter scratch and transitioning from HDD to
all-flash.

A. Asymmetric I/O Variation

Figure 4 highlights that read and write bandwidth on flash
OSTs are very asymmetric, and this is to be expected since
(a) writes incur a 20% overhead due to RAID6 and (b) SSDs
can deliver more read bandwidth than write bandwidth (see
Section IV-A). However these obdfilter-survey results also
show that the variation in bandwidth is higher for writes than

—_
o
o

e
g
a1

Cumul. Distribution
o o
N (@]
i)

e
o
S

0.85 0.90 0.95 1.00

Fraction of Peak OST Bandwidth

0.80

Fig. 7. Cumulative distribution function of probability that a file of given
stripe width will be limited by the performance of a slow OST exhibiting the
given fraction of peak write bandwidth.

for reads. This is an important consideration in the context of
bulk-synchronous parallel I/O operations which are limited by
the slowest OST.

If a file is striped over a single OST, the probability of its
performance being any given fraction of peak is described by
the distribution in Figure 4. However with wider stripes, the
odds of a file stripe being placed on a “slow” OST increases
as illustrated in Figure 7. For example, we observed eighteen
OSTs whose write performance was 90% or worse than the
peak observed value. If a file is striped over a single OST,
the probability of that file being placed on such a slow OST
is approximately 6.6%. However that probability increases to
24% for files striped across four OSTs and to 67% for files
striped across sixteen. This suggests that there is a tradeoff for
bulk-synchronous write-heavy workloads: users should stripe
wide enough to achieve high peak bandwidth but not so wide
as to unduly increase the likelihood that a file will be affected
by a straggling OST.

The data shown in Figure 7 is derived from a snapshot in
time of obdfilter-survey results and should not be generalized
to suggest that files striped across four OSTs will always have
a 24% chance of achieving below 90% of peak. Many factors
contribute to straggling OSTs including hardware issues and
contention between users. We present these data to highlight
that performance variation intrinsic to all-flash OSTs are yet
another factor to consider when users determine their optimal
striping for write-intensive workloads. As shown in Figure 4,
there is no analogous wide variation in read bandwidth intrin-
sic to flash; this is a favorable finding for Perlmutter since the
majority of NERSC users’ I/0 to scratch is read-intensive [13].

B. Performance over Time

Storage drives have historically lost performance as more
data is written to them. In the context of HDDs, this is largely
due to disk fragmentation and the penalties associated with
sequential writes and reads requiring an increasing number
of physical seeks [14]. Defragmentation does remedy this
age-related performance loss, but the high cost of periodic
defragmentation on a large Lustre file system has rendered
this process impractical, and NERSC has accepted this per-

1.001
=
€ 0.95
2 U.951
572
5 ©
Sm 0.90
4
L o
[0
a 0.85
N+1.00 N+1.25 N+1.50 N+1.75 N+2.00
Full OST Writes
Fig. 8. Relative write bandwidth with increasing number of bytes written.

One OST stores 133.3 TB.

formance loss as unavoidable on its Cori scratch file system.
Although SSDs do not have such seek penalties, they do
require periodic garbage collection as erase blocks become
sparse, and this results in a distinct loss of bandwidth once
an SSD becomes sufficiently “dirty” [15]. I/O separation has
been shown to mitigate this age-related performance loss on
parallel file systems [16], but such techniques require hardware
support implemented in the file system, and Lustre does not
yet support any such capabilities.

We have purposely triggered this age-related performance
degradation on Perlmutter scratch to understand its impact. As
shown in Figure 8, there is a =~ 10% loss of write bandwidth
once an OST experienced enough writes and deletes, and the
transition to this age-induced degraded performance happens
very quickly. N was not carefully documented for the exper-
iment used to generate Figure 8 because we did not track the
total bytes written to the OST prior to the test. However, other
tests suggest N ~ 4 for Perlmutter’s E1000-based OSTs, and
performance loss begins after approximately 5 full OSTs worth
of data (= 665 TB) have been written and erased.

Fortunately, Lustre can recover from this age-related per-
formance loss by issuing TRIM commands to the underlying
SSDs, and this has been shown to fully restore the performance
of an OST once completed [17]. Unlike HDDs though, this
trim process takes hours rather than days and effectively
returns the drive to like-new performance, providing another
~ 5 full OST writes before the next onset of performance loss.
Given that Perlmutter is designed to support between 2,200 TB
and 2,900 TB of writes distributed over 274 OSTs per day [1],
we expect 6% - 8% of each OST’s capacity to be written daily,
and we expect to reach this 5 full OST writes watermark every
60 - 80 days. Assuming the aggregate user workload ages
Perlmutter’s OSTs at a rate faster than our synthetic testing,
we plan to trim Perlmutter scratch every month to maintain
optimal write bandwidth.

VI. CONCLUSION

We have presented the architecture of the Perlmutter scratch
all-flash Lustre file system and how this system has been
architected for extreme performance through direct integration
on to Perlmutter’s Slingshot fabric and a well-balanced data

path within each Lustre OSS. We demonstrated that its HPE
Cray ClusterStor E1000 building blocks can deliver over 85%
of the NVMe bandwidth and 5% - 15% of the NVMe IOPS
to Lustre clients. As a result, we have successfully positioned
Perlmutter scratch as having burst buffer-level performance
but file system-like resilience, effectively collapsing the two
tiers into one while keeping the best qualities of each. Finally,
we have identified that all-flash OSTs are susceptible to wider
variation in write performance and performance loss due to
age, but judicious striping and periodic trimming are sufficient
to mitigate these peculiarities.

ACKNOWLEDGMENT

The authors would like to thank John Fragalla, Jeff Hudson,
Peter Bojanic, Cory Spitz, and the HPE Cray ClusterStor
engineering team for their insights in designing, evaluating,
and deploying this platform.

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, under contract DE-
ACO02-05CH11231. This research used resources and data
generated from resources of the National Energy Research
Scientific Computing Center, a DOE Office of Science User
Facility supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] G. K. Lockwood, K. Lozinskiy, L. Gerhardt, R. Cheema, D. Hazen, and
N. J. Wright, “A Quantitative Approach to Architecting All-Flash Lustre
File Systems,” in High Performance Computing, M. Weiland, G. Juck-
eland, S. Alam, and H. Jagode, Eds. =~ Cham: Springer International
Publishing, 2019, pp. 183-197.

[2] A. Uselton and N. J. Wright, “A File System Utilization
Metric for I / O Characterization,” in Proceedings of the
2013 Cray User Group, Napa, CA, 2013. [Online]. Available:
https://cug.org/proceedings/cug2013_proceedings/by_auth.html

[3] F. Wang, H. Sim, C. Harr, and S. Oral, “Diving into petascale production
file systems through large scale profiling and analysis,” in Proceedings
of the 2nd Joint International Workshop on Parallel Data Storage
& Data Intensive Scalable Computing Systems - PDSW-DISCS ’'17.
New York, New York, USA: ACM Press, 2017, pp. 37-42. [Online].
Available: http://dl.acm.org/citation.cfm?doid=3149393.3149399

[4] S. S. Vazhkudai, R. Miller, D. Tiwari, C. Zimmer, F. Wang,
S. Oral, R. Gunasekaran, and D. Steinert, “GUIDE: A Scalable
Information Directory Service to Collect, Federate, and Analyze Logs
for Operational Insights into a Leadership HPC Facility,” Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis on - SC 17, pp. 1-12, 2017. [Online].
Available: http://dl.acm.org/citation.cfm?doid=3126908.3126946

[5] P. Schwan, “Lustre: Building a File System for 1,000-node Clusters,”
Proceedings of the Linux Symposium, pp. 401-409, 2003.

[6] M. Swan, “Sonexion GridRAID Characteristics,” in Proceedings of the
2014 Cray User Group, Lugano, may 2014.

[7] J. Kunkel, G. K. Lockwood, C. J. Morrone, M. Chaarawi, J.-Y. Vet,
S. Snyder, R. Latham, A. Jackson, J. Inman, B. Kettering, E. Zickler,
A. Huebl, M. Nelson, N. Hjelm, J. Schwartz, O. Tatebe, V. Leung,
B. Crossman, A. Dilger, S. Didelot, A. Moody, A. Torrez, J. Bent,
O. Steffen, P. Koutoupis, S. Breuner, V. Hapla, A. Hiick, F. Gadban,
and G. Zheng, “hpc/ior: IOR version 3.3.0,” dec 2020. [Online].
Available: https://doi.org/10.5281/zenodo.4391430

[8] “Chapter 33. Benchmarking Lustre File System Per-
formance (Lustre IO Kit),” in Lustre Software Re-
lease 2.x Operations Manual. [Online]. Available:

https://doc.lustre.org/lustre_manual. xhtml#benchmark.ost_perf

[9] “Chapter 32. Testing Lustre Network Performance (LNet SelfTest),” in
Lustre Software Release 2.x Operations Manual. [Online]. Available:
https://doc.lustre.org/lustre_manual.xhtml#Inetselftest

[10] D. De Sensi, S. Di Girolamo, K. H. McMahon, D. Roweth, and
T. Hoefler, “An in-depth analysis of the slingshot interconnect,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC *20. IEEE Press,

2020.
[11] T. Declerck, K. Antypas, D. Bard, W. Bhimji, S. Canon,
S. Cholia, and Y. H. He, “Cori - A System to

Support Data-Intensive Computing,” in Proceedings of the
2016 Cray User Group, London, 2016. [Online]. Available:
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap171s2-
file2.pdf

[12] W. Bhimji, D. Bard, M. Romanus, D. Paul, A. Ovsyannikov, B. Friesen,
M. Bryson, J. Correa, G. K. Lockwood, V. Tsulaia, S. Byna, S. Farrell,
D. Gursoy, C. S. Daley, V. Beckner, B. V. Straalen, D. Trebotich, C. Tull,
G. Weber, N. J. Wright, K. Antypas, and Prabhat, “Accelerating Science
with the NERSC Burst Buffer Early User Program,” in Proceedings
of the 2016 Cray User Group, London, 2016. [Online]. Available:
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap162.pdf

[13] T. Patel, S. Byna, G. K. Lockwood, and D. Tiwari, “Revisiting
I/O behavior in large-scale storage systems,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. New York, NY, USA: ACM, nov 2019, pp. 1-13.
[Online]. Available: http://dl.acm.org/doi/10.1145/3295500.3356183

[14] J. Kaitschuck, “The Effects of Fragmentation and Capacity on Lustre
File System Performance,” in Proceedings of the 2017 Lustre User
Group, Bloomington, IN, 2017.

[15] J. Han, D. Koo, G. K. Lockwood, J. Lee, H. Eom, and S. Hwang,
“Accelerating a Burst Buffer via User-Level 1/0 Isolation,” in 2017 IEEE
International Conference on Cluster Computing (CLUSTER), 2017, pp.
245-255.

[16] D. Koo, J. Lee, J. Liu, E.-K. Byun, J.-H. Kwak,
G. K. Lockwood, S. Hwang, K. Antypas, K. Wu, and
H. Eom, “An empirical study of I/O separation for burst
buffers in HPC systems,” Journal of Parallel and Distributed
Computing, vol. 148, pp. 96-108, feb 2021. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0743731520303907

[17] S. Ihara, “Lustre Optimizations and Improvements for Flash,”
in Proceedings of the 2019 Lustre User Group, Houston,
TX, 2019. [Online]. Available: https://conference.cacds.uh.edu/wp-
content/uploads/2019/05/LUG2019-Shuhchiihara-v3.pdf

