
An Evaluation of the A64FX Architecture
for HPC Applications

Si Hammond
Andrew Younge

Sandia National
Laboratories

Andrei Poenaru
Tom Deakin
Simon McIntosh-Smith

University of Bristol
HPC Research Group

Introduction to the GW4 Isambard 2 supercomputer
• Isambard 2 is a £4.1M EPSRC project, run by a consortium of the

GW4 Alliance, the Met Office, HPE/Cray, Fujitsu and Arm, to
deliver a Tier-2 HPC service to researchers across the UK and
around the world

• Funded in late 2019, Isambard 2 builds on Isambard 1’s
achievements as the world’s first Arm64-based production
supercomputer

• Isambard 1 has been a huge success, proving for the first time that
Arm works for supercomputing in production environments

Isambard 2 production system

• 21,504 ARMv8 cores (336n x 2s x 32c)
• Marvell ThunderX2 32 core @ 2.5 GHz

• Cray XC50 ‘Scout’ with Aries interconnect
• Cray HPC optimised software stack

• Compilers, math libraries, CrayPAT, …
• Also comes with all the open source software

toolchains: GNU, Clang/LLVM etc.
• Multi-Architecture Comparison System
• HPE Apollo 80 A64FX system
• Hosted for the Consortium by the Met

Office in Exeter

Isambard 2’s A64FX system
• HPE Apollo 80 system with A64FX

CPUs from Fujitsu
• 72 nodes connected with 100 Gbps IB

• 3,456 cores, 72 TB/s memory bandwidth,
202 TFLOP/s 64-bit

• Comes with a Cray software stack
• CCE, GNU, Arm, Fujitsu Compilers

Fujitsu’s A64FX
• 48 cores, 1.8 – 2.2GHz
• 4 CMGs

• >2.7 TFLOP/s double precision
• 2x 512-bit vector pipelines per core
• ARMv8.3-A + SVE

• 1 TByte/s main memory bandwidth
• 4 stacks of HBM2

• ~170 Watts
• High speed interconnect
• 8.7B transistors, 7 nm

http://www.fujitsu.com/global/about/resources/news/press-releases/2018/0822-02.html

https://github.com/fujitsu/A64FX

http://www.fujitsu.com/global/about/resources/news/press-releases/2018/0822-02.html
https://github.com/fujitsu/A64FX

A new generation of Arm-based processors
Platform Cores Clock Speed Peak FLOP/s (d.p.) Peak memory BW

Fujitsu A64FX 1 x 48 1.8 GHz 2.8 TFLOP/s 1,024 GB/s

AWS Graviton 2 1 x 64 2.5 GHz 1.3 TFLOP/s 205 GB/s

Ampere Altra 2 x 80 3.0 GHz 3.8 TFLOP/s 410 GB/s

Marvell ThunderX2 2 x 32 2.5 GHz 1.3 TFLOP/s 320 GB/s

No special configuration required on any platform
• Arm and GNU compilers support all
• Cray supports A64FX† and TX2
• Fujitsu supports A64FX

• Trad and Clang mode

† SVE support in CCE is still beta

• A high fraction of the HBM2 peak
bandwidth is achievable in
practice

• In order to avoid reads into cache
before streaming writes, FCC
uses zero-fill instructions
• Compiler flags can be used to tune

prefetching if desired

• XOS_MMM_L_PAGING_POLICY=
demand:demand:demand

BabelStream

0

100

200

300

400

500

600

700

800

900

A64FX Altra Graviton 2 ThunderX2

GB
/s

Triad Bandwidth

Arm 21.0 CCE Fujitsu 4.3 GCC 10.3

• CloverLeaf is generally bandwidth-
bound, but there are also divisions
and trigonometry
• With the Fujitsu Compiler, the benefit

of the HBM2 is clear
• Arm compiler optimises division

(-fiterative-reciprocal)
• GCC produces bad SVE vector code

• CloverLeaf is hybrid MPI+OMP
• Results here are the best in each case

CloverLeaf

0

200

400

600

800

1000

1200

1400

A64FX Altra Graviton 2 TX2

To
ta

l t
im

e
(s

)

bm16

Arm 21.0 CCE Fujitsu 4.3 GCC 10.3

• On A64FX, hybrid MPI is generally
the best choice
• One rank per NUMA node
• Not all MPI/OpenMP

implementations place and bind
ranks/threads the same way!

• Flat MPI and hybrid are close on
the other platforms

• Flat OpenMP is slightly slower on
multi-socket systems (Altra, TX2)

CloverLeaf MPI–OpenMP placement

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Arm 21.0 CCE 10.0 Fujitsu 4.3 GCC 10.3

Pe
rfo

rm
an

ce

Fraction of Best Result

Flat MPI Flat OpenMP Hybrid (4x12)

SPARTA

0

100

200

300

400

500

600

700

800

900

A64FX GCC 7.2 A64FX GCC
10.2

A64FX Arm
20.3

TX2 GCC 7.2 TX2 Arm 20.1

Lo
op

 S
ol

ve
 T

im
e

(5
00

0
Ite

ra
tio

ns
)

Single Node Compiler Comparison

4 Ranks 8 Ranks MPI Only

• SPARTA is an open-source direct-simulation Monte-Carlo
(DSMC) application
• Scaled out to the largest NNSA/ASC computing platforms

including BG/Q, Sierra and Trinity platforms
• Written using MPI and Kokkos

• Parallelization/threading of kernels is still being optimized
• Kokkos provides best mapping of flags
• GCC 7.2 does not have A64FX or SVE-512 flags
• GCC 10.2/Arm 20.3 have SVE code generators

• Utilized in particle collision benchmarks at 10M particles
per node

• Results use a single node a decompose 48 cores using N
rank and 48/N OpenMP threads

• Fujitsu C++ compiler produces segmentation faults in the
code in the MPI operations (no results)

• MPI everywhere results are very similar between
compilers. When using OpenMP threads, GCC 10.2
provides the fastest performance.

• OpenFOAM v2006, DrivAer test case,
simpleFoam solver

• Benchmark time: last – first
• CCE: compilation errors
• In general very memory-bandwidth-

bound, but compute performance
does matter
• Vectorisation is low

• A64FX result faster than TX2, but
shows memory bandwidth is not every
thing

• Rome and Altra are the fastest
• Both have large caches…

OpenFOAM

0

20

40

60

80

100

120

140

A64FX Altra Graviton 2 ThunderX2

Be
nc

hm
ar

k
tim

e
(s

)

DrivAer 11M

Arm 21.0 CCE Fujitsu 4.3 GCC 10.3

• miniBUDE is heavily compute-
bound [1]
• Achieves ~60% of peak FLOP/s

• On A64FX it benefits greatly from
compiler unrolling, interleaving,
and software pipelining

• On Graviton 2 and TX2, short
vectors are the main limitation

• Altra performance is competitive
with Cascade Lake and Rome

miniBUDE: Molecular Docking

0

200

400

600

800

1000

1200

A64FX Altra Graviton 2 ThunderX2

Ti
m

e
(m

s)

OpenMP bm1

Arm 21.0 CCE Fujitsu 4.3 GCC 10.3

• Computation naturally suited for task-
based parallelism

• None of the compilers are able to
achieve good vectorisation
performance, with either SVE or NEON

• CCE-SVE is based on the older Cray C++
frontend and is less efficient with tasks
than the Clang-based frontend

• In contrast to BUDE, more threads do
not help here
• No performance gains over ~60 threads
• On Altra, using 160 threads is much slower

MiniFMM: Fast Multipole Method Mini-App

0

10

20

30

40

50

60

A64FX Altra Graviton 2 ThunderX2

To
ta

l t
im

e
(s

)

omp-task

Arm 21.0 CCE Fujitsu 4.3 GCC 10.3

• 2021.1, integrated PME benchmark
• Limited to 64 threads

• Only GNU supported for SVE
• With the other compilers, need to use

NEON version on A64FX

• Can use different FFT libraries
• For this benchmark, we found little

differences between FFTW and ArmPL
• Arm results use ArmPL, GNU use FFTW

GROMACS

0

2000

4000

6000

8000

10000

12000

14000

16000

A64FX Altra Graviton 2 ThunderX2

pa
irs

/µ
se

c

nonbonded-benchmark

Arm 21.0 CCE Fujitsu 4.3 GCC 10.3

Experience with Workloads on Isambard 2
• Everything works out-of-the-box!
• The same experience we had with ThunderX2 in Isambard 1
• No specific programming model or language needed

• Compiler support and libraries are already available
• Cray, Arm, Fujitsu support A64FX
• GCC support in 10.3 and 11 (released last week!)

• Optimised libraries and higher-level frameworks are continuously
being improved

• More full-scale benchmarks soon, e.g. NAMD, OpenSBLI, UM

Working with the Fujitsu A64FX
• No difference from working with other general-purpose CPUs
• 4 CMGs (NUMA nodes)
• Core binding is particularly important
• Some applications benefit from running 4 MPI ranks/node

• Out-of-Order architecture benefits from software pipelining and
optimised instruction scheduling
• Use a compiler with a good cost model

• There is a configurable “sector cache”…

It’s easy to apply for time on Isambard
• Please contact the Isambard PI, Prof. Simon McIntosh-Smith

simonm at cs.bris.ac.uk, who will help you determine if Isambard
will work for you. If it will, applying for an account is quick and
easy.

• Small amounts of pump-priming time are available for free, to try
porting, optimizing for Arm etc.

• Larger amounts of time for real science runs can be applied for via
the regular EPSRC “Access to HPC” calls, or via some CCPs.

mailto:simonm@cs.bris.ac.uk

Summary
• A64FX already looks very promising, beating cutting-edge dual-

socket nodes in many tests
• Easy to use – in most cases running unmodified flat MPI, or hybrid

MPI+OpenMP
• Performance is similar to GPUs, but with a significantly lower

barrier to entry in ease of use
• Isambard 2 makes most of the major technologies available in one

place, enabling rigorous comparative benchmarking

Thank you

• https://uob-hpc.github.io
• https://github.com/UoB-HPC/benchmarks
• https://github.com/UoB-HPC/performance-portability
• https://gw4-isambard.github.io/docs/index.html

[1] Andrei Poenaru, Wei-Chen Lin and Simon McIntosh-Smith. ‘A Performance
Analysis of Modern Parallel Programming Models Using a Compute-Bound
Application’. In: 36th International Conference, ISC High Performance 2021.
Frankfurt, Germany, 2021. In press.

https://uob-hpc.github.io/
https://github.com/UoB-HPC/benchmarks/
https://github.com/UoB-HPC/performance-portability
https://gw4-isambard.github.io/docs/index.html

