
Porting Codes to LUMI
Cray User Group
May 5th, 2021

George S. Markomanolis

Lead HPC Scientist, CSC – IT Center for Science Ltd.

Outline

• LUMI

• Approaches to port codes on LUMI

• Benchmarking

• Profiling

• Tuning

2

LUMI

3

AMD GPUs (MI100 example)

4

LUMI will have a

different GPU

Differences between HIP and CUDA

• AMD GCN hardware wavefronts size is 64 (like warp for CUDA), some terminology is different

• Some CUDA library functions do not have AMD equivalents

• Shared memory and registers per thread can differ between AMD and NVIDIA hardware

• ROCM 4.1 just released and improves some functionalities (Warp-Level primitives was not

supported by HIP but maybe this is improved)

5

Porting Codes to LUMI

6

Porting Codes to LUMI (experimental)

7

OpenMP Offload

• There are many tutorials about OpenMP Offloading

• Some basic OpenMP useful constructs:

o #pragma omp target enter/exit data map

o #pragma omp target teams distribute parallel for simd

o thread_limit(X) num_teams(Y)

• There are a lot of tutorials about OpenMP Offloading

• OpenMP 5.0, what is new: https://www.openmp.org/spec-html/5.0/openmpse71.html

• OpenMP 5.1, what is new: https://www.openmp.org/wp-content/uploads/OpenMP-

API-Additional-Definitions-2-0.pdf

• OpenMP 5.0 tutorial:

https://ecpannualmeeting.com/assets/overview/sessions/ff2020%20ECP-Tutorial-

with-ECP-template.pdf

9

https://www.openmp.org/spec-html/5.0/openmpse71.html
https://www.openmp.org/wp-content/uploads/OpenMP-API-Additional-Definitions-2-0.pdf
https://ecpannualmeeting.com/assets/overview/sessions/ff2020%20ECP-Tutorial-with-ECP-template.pdf

BabelStream (default settings)

10

Improving performance on BabelStream for MI100

• Original call:

#pragma omp target teams distribute parallel for simd

• Optimized call

#pragma omp target teams distribute parallel for simd thread_limit(256) num_teams(240)

• For the dot case we used 720 teams

11

BabelStream, tune AOMP

12

Introduction to HIP

• HIP: Heterogeneous Interface for Portability is developed by AMD to program on AMD GPUs

• It is a C++ runtime API and it supports both AMD and NVIDIA platforms

• HIP is similar to CUDA and there is no performance overhead on NVIDIA GPUs

• Many well-known libraries have been ported on HIP

• New projects or porting from CUDA, could be developed directly in HIP

https://github.com/ROCm-Developer-Tools/HIP

16

https://github.com/ROCm-Developer-Tools/HIP

Hipify

• Hipify tools convert automatically CUDA codes

• It is possible that not all the code is converted, the remaining needs the implementation of the developer

• Hipify-perl: text-based search and replace

• Hipify-clang: source-to-source translator that uses clang compiler

• Porting guide: https://github.com/ROCm-Developer-

Tools/HIP/blob/main/docs/markdown/hip_porting_guide.md

17

https://github.com/ROCm-Developer-Tools/HIP/blob/main/docs/markdown/hip_porting_guide.md

Hipify-perl

• It can scan directories and converts CUDA codes with replacement of the cuda to hip (sed –e ’s/cuda/hip/g’)

$ hipify-perl --inplace filename

It modifies the filename input inplace, replacing input with hipified output, save backup in .prehip file.

$ hipconvertinplace-perl.sh directory

It converts all the related files that are located inside the directory

18

Hipify-perl (cont).

1) $ ls src/

Makefile.am matMulAB.c matMulAB.h matMul.c

2) $ hipconvertinplace-perl.sh src

3) $ ls src/

Makefile.am matMulAB.c matMulAB.c.prehip matMulAB.h matMulAB.h.prehip matMul.c matMul.c.prehip

No compilation took place, just convertion.

19

Hipify-perl (cont).

• The hipify-perl will return a report for each file, and it looks like this:

info: TOTAL-converted 53 CUDA->HIP refs (error:0 init:0 version:0 device:1 ... library:16

... numeric_literal:12 define:0 extern_shared:0 kernel_launch:0)

warn:0 LOC:888

kernels (0 total) :

hipFree 18

HIPBLAS_STATUS_SUCCESS 6

hipSuccess 4

hipMalloc 3

HIPBLAS_OP_N 2

hipDeviceSynchronize 1

hip_runtime 1

20

Differences between CUDA and HIP API

#include “cuda.h”

cudaMalloc(&d_x, N*sizeof(double));

cudaMemcpy(d_x,x,N*sizeof(double),

cudaMemcpyHostToDevice);

cudaDeviceSynchronize();

21

#include “hip/hip_runtime.h”

hipMalloc(&d_x, N*sizeof(double));

hipMemcpy(d_x,x,N*sizeof(double),

hipMemcpyHostToDevice);

hipDeviceSynchronize();

CUDA HIP

Launching kernel with CUDA and HIP

kernel_name <<<gridsize, blocksize,

shared_mem_size,

stream>>>

(arg0, arg1, ...);

22

hipLaunchKernelGGL(kernel_name,

gridsize,

blocksize,

shared_mem_size,

stream,

arg0, arg1, ...);

CUDA HIP

Libraries (not exhaustive)

23

Benchmark MatMul cuBLAS, hipBLAS

• Use the benchmark https://github.com/pc2/OMP-Offloading

• Matrix multiplication of 2048 x 2048, single precision

• All the CUDA calls were converted and it was linked with hipBlas

• CUDA (V100)

matMulAB (10) : 1011.2 GFLOPS 12430.1 GFLOPS

• HIP (MI100)

matMulAB (10) : 2327.6 GFLOPS 22216.7 GFLOPS

• MI100 achieves close to the theoretical peak for single precision

24

https://github.com/pc2/OMP-Offloading

N-BODY SIMULATION

• N-Body Simulation (https://github.com/themathgeek13/N-Body-Simulations-CUDA) AllPairs_N2

• 171 CUDA calls converted to HIP without issues, close to 1000 lines of code

• 32768 number of small particles, 2000 time steps

CUDA execution time on V100 : 68.5 seconds

HIP execution time on MI100: 95.57 seconds, 39.5% worse performance

• Tune the number of threads per block to 256 instead of 1024, then:

HIP execution time on Mi100: 54.32 seconds, 26.1% better performance than V100

25

https://github.com/themathgeek13/N-Body-Simulations-CUDA

Fortran

• First Scenario: Fortran + CUDA C/C++

oAssuming there is no CUDA code in the Fortran files.

oHipify CUDA

oCompile and link with hipcc

• Second Scenario: CUDA Fortran

oThere is no HIP equivalent

oHIP functions are callable from C, using `extern C`

oSee hipfort

26

Hipfort

• The approach to port Fortran codes on AMD GPUs is different, the hipify tool does not support it.

• We need to use hipfort, a Fortran interface library for GPU kernel *

• Steps:

1) We write the kernels in a new C++ file

2) Wrap the kernel launch in a C function

3) Use Fortran 2003 C binding to call the function

4) Things could change in the future

• Use OpenMP offload to GPUs

* https://github.com/ROCmSoftwarePlatform/hipfort

27

Fortran CUDA example

• Saxpy example

• Fortran CUDA, 29 lines of code

• Ported to HIP manually, two files of 52 lines, with more than 20 new lines.

• Quite a lot of changes for such a small code.

• Should we try to use OpenMP offload before we try to HIP the code?

• Need to adjust Makefile to compile the multiple files

• Example of Fortran with HIP: https://github.com/cschpc/lumi/tree/main/hipfort

28

https://github.com/cschpc/lumi/tree/main/hipfort

BabelStream on MI100 (HIP vs AOMP)

29

Megahip

• https://github.com/zjin-lcf/oneAPI-DirectProgramming

• 115 Applications/Examples with CUDA, SYCL, OpenMP offload and HIP

• Testing hipify tool, create a megahip script to convert all the CUDA examples to HIP

• ./megahip.sh

3287 CUDA calls were converted to HIP

115 applications totally 45692 lines of code, there are warnings for 4 of them, there

are totally 24 warnings that something was wrong, check warnings.txt

Application Success 96.5217%

Conversion Success 99.2699%

30

https://github.com/zjin-lcf/oneAPI-DirectProgramming

OpenACC

• GNU will provide OpenACC (Mentor Graphics contract, now called Siemens EDA)

• HPE will use the provided GNU compiler for OpenACC support

• HPE will support for OpenACC v2.0 for Fortran. This is quite old OpenACC version.

• Clacc from ORNL: https://github.com/llvm-doe-org/llvm-project/tree/clacc/master

OpenACC from LLVM only for C (Fortran and C++ in the future)

oTranslate OpenACC to OpenMP Offload

32

https://github.com/llvm-doe-org/llvm-project/tree/clacc/master

Clacc

• It supports C programming language, Fortran is on the way, C++ not started(??) yet

$ clang -fopenacc-print=omp -fopenacc-structured-ref-count-omp=no-hold -fopenacc-present-omp=no-

present jacobi.c

Original code:

#pragma acc parallel loop reduction(max:lnorm) private(i,j) present(newarr, oldarr) collapse(2)

for (i = 1; i < nx + 1; i++) {

for (j = 1; j < ny + 1; j++) {

New code:

#pragma omp target teams map(alloc: newarr,oldarr) map(tofrom: lnorm) shared(newarr,oldarr)

firstprivate(nx,ny,factor) reduction(max: lnorm) \

#pragma omp distribute private(i,j) collapse(2)

for (i = 1; i < nx + 1; i++) {

for (j = 1; j < ny + 1; j++) {

33

35

hipSYCL and SYCL 2020: https://github.com/hipSYCL/featuresupport

SAXPY SYCL

sycl::queue q(sycl::default_selector{});

const float A(aval);

sycl::buffer<float,1> d_X { h_X.data(), sycl::range<1>(h_X.size()) };

sycl::buffer<float,1> d_Y { h_Y.data(), sycl::range<1>(h_Y.size()) };

sycl::buffer<float,1> d_Z { h_Z.data(), sycl::range<1>(h_Z.size()) };

q.submit([&](sycl::handler& h) {

auto X = d_X.template get_access<sycl::access::mode::read>(h);

auto Y = d_Y.template get_access<sycl::access::mode::read>(h);

auto Z = d_Z.template get_access<sycl::access::mode::read_write>(h);

h.parallel_for<class nstream>(sycl::range<1>{length}, [=] (sycl::id<1> it) {

const int i = it[0];

Z[i] = A * X[i] + Y[i];

});

});

q.wait();

36

sycl::queue q(sycl::host_selector{});
sycl::queue q(sycl::cpu_selector{});
sycl::queue q(sycl::gpu_selector{});
sycl::queue q(sycl::accelerator_selector{});

SYCL 2020
q.parallel_for(sycl::range<1>{length}, [=] (sycl::id<1> i) {

d_Z[i] += A * d_X[i] + d_Y[i];
});

create
queue

Declare SYCL buffers to handle data

on the device

SYCL accesors they generate a dataflow

graph that the compiler and runtime can

use to move data across devices

Results of BabelStream on Mi100 (AOMP vs HIP vs hipSYCL)

37

Profiling/Debugging

• AMD provides APIs for profiling and debugging

• Some simple environment variables such as AMD_LOG_LEVEL=4 will provide some information.

• More information about a hipMemcpy error:

hipError_t err = hipMemcpy(c,c_d,nBytes,hipMemcpyDeviceToHost);

printf("%s ",hipGetErrorString(err));

• ROCprofiler, ROCgdb

• Some profiling tools work with AMD GPUs

38

TAU profiling

39

tau_exec -T rocm,serial -rocm ./hip-stream

Rocprof

40

• Statistics for kernels and names (see the created csv fie):

rocprof --stats ./hip-stream

• Create a metrics.txt file with content (choose metrics):

pmc: GPUBusy Wavefronts VALUInsts SALUInsts SFetchInsts MemUnitStalled VALUUtilization

VALUBusy SALUBusy WriteUnitStalled

range: 0:100

gpu: 0

kernel: add_kernel copy_kernel triad_kernel dot_kernel mul_kernel

rocprof -i metrics.txt ./hip-stream

Tuning

• Multiple wavefronts per compute unit (CU) is important to hide latency and

instruction throughput

• Tune number of threads per block, number of teams for OpenMP offloading etc.

• Memory coalescing increases bandwidth

• Unrolling loops allow compiler to prefetch data

• Small kernels can cause latency overhead, adjust the workload

• Use of Local Data Share (LDS) memory

41

Conclusion/Future work

• A code written in C/C++ and MPI+OpenMP is a bit easier to be ported to OpenMP offload compared to other

approaches.

• The hipSYCL could be a good option considering that the code is in C++. Good support from hipSYCL.

• There can be challenges, depending on the code and what GPU functionalities are integrated to an application

• It will be required to tune the code for high occupancy

• Profiling should be used to identify bottlenecks

• Track historical performance among new compilers

• GCC for OpenACC and OpenMP Offloading for AMD GPUs

• Tracking how profiling tools work on AMD GPUs

• We have trained more than 80 people on HIP porting: http://github.com/csc-training/hip

42

http://github.com/csc-training/hip

Acknowledgements

• My colleagues from CSC

• Nicholas Malaya from AMD for the many conversations and emails that we have

exchanged

• Michael Klemm from AMD for the OpenMP discussions

• Many people from AMD discussing about issues and future

• HPE for the conversations and presentations

43

facebook.com/CSCfi

twitter.com/CSCfi

youtube.com/CSCfi

linkedin.com/company/csc---it-center-for-science

Kuvat CSC:n arkisto, Adobe Stock ja Thinkstock

github.com/CSCfi

Questions?

Georgios.Markomanolis@csc.fi

44

