CSC

ICT Solutions for
Brilliant Minds

Porting Codes to LUMI
Cray User Group
May 5%, 2021

George S. Markomanolis
Lead HPC Scientist, CSC — IT Center for Science Ltd.

i
£ Fr

Ad)

J
44

7,
'y
o

a1

Outline

LUMI

Approaches to port codes on LUMI

Benchmarking

Profiling

Tuning

LUMI

LUMI

LUMI, the Queen of the North

LUMI is a Tier-o GPU-accelerated _ N
supercomputer that enables the LUMIG: —— | Tier-o GPU partition: over
convergence of high- o GPU Tt 550 Pﬂﬂp{r s powered by
performance computing, LUMI-C: artition g AMD Instinct GPUs
artificial intelligence, and high- Paigﬁ - Analytics —
performance data analytics. / Pardition Interactive partition with 32
* Supplementary CPU LUMIK: TB of memory and graphics

partition Container High-speed Aéﬁ:‘::ﬁi;ﬂ GPUs_for_clata analytics and
* ~200,000 AMD EPYC Cloud interconnect Storage visualization

CPU cores ol

7 PB Flash-based storage

Possibility for combining LUMI-Q: LUMI-P- layer with extreme I/O
different resources within a Erergifg Nystre bandwidth of 2 TB/s and
single run. HPE Slingshot tech LUMI-O: Storage IOPS capability. Cray
technology. S:ig;‘; ClusterStor E1000.
30 PB encrypted object Se(vice
storage (Ceph) for storing, / 80 PB parallel file system
ShEII'iI"Ig and 51-'39"”9 data www.lumi-supercomputer.euy #lumisupercomputer #lumisurohpc

AMD GPUs (M1100 example)

Shader Engine Shader Engine Shader Engine Shader Engine

cu cu cu cu
3 5
3 3
] (=]
é <

0
> cu cu cu cu 3
a =3
E g
= 7
ACE |ACEHWS
p— L2 L2 p—
ACE |ACE DMA

cu cu
= cu cu =
E 3
- (=]
5 2
v} 0
== =
g 2
E =
s T

cu cu cu cu

Shader Engine Shader Engine Shader Engine Shader Engine
PCl Gend4 M ultimedia Engine ‘ ‘ XGMI Links

INFINITY FABRIC

LUMI will have a
different GPU

csc

Differences between HIP and CUDA

AMD GCN hardware wavefronts size is 64 (like warp for CUDA), some terminology is different

Some CUDA library functions do not have AMD equivalents

Shared memory and registers per thread can differ between AMD and NVIDIA hardware

ROCM 4.1 just released and improves some functionalities (Warp-Level primitives was not
supported by HIP but maybe this is improved)

Porting Codes to LUMI

‘ Porting codes to LUMI ‘
Do you want to try
Parallel code wiout GPU ‘ ‘ Parallel code with GPU ‘ new libraries and
Do you want to try re-write parts of the code?
new libraries?
Alpaka, SYCL
Kokkos, Raja
Alpaka, SYCL (not all programming
Kokkos, Raja Eii i languages supported)
(not all programming Goaslithave
languages supported) OpenMP?
Is it C/C++ code? ‘ ‘ Is it Fortran code? ‘

Is performance
good?

A Y

Use hipfort and
Advanced programmer with Use hipify tools prepare the kernels
knowledge on GPUs and Port to OpenMP Use Reveal* tool or port through Profile and port the OpenACC calls to
enough available resources Offloading for GPU profiling and identify important OpenMP Offloading to GPU
and time loops to OpenMP

Is performance
qood? Profile, tune OpenMP calls

Iz performance
and data transfers &

Fix code, if any, that was not
converted to HIP (for C/C++).
Profile and tune, use hip libraries
where possible

‘ Is the code in C/C++47

Is the code in Fortran?

* Need to check which programming languages

will be supported
J
v Profile, identify kernels,
use hipfort, prepare the kernels
6 Pr:'l:fe' :F:EI% Eﬁ?f&i’e according to the instructions for
B2 Fortran, port kernels to HIP
and tune

I

Porting Codes to LUMI (experimental)

csc

| Porting codes to LUMI ‘

Parallel code w/out GPU ‘

Do you want to try
| new libraries and

‘ Parallel code with GPU

Do you want to try
new libraries?

Advanced programmer with

re-write parts of the code?
\ Alpaka, 5YCL

Kokkeos, Raja
Alpaka, SYCL (not all pregramming
Kokkos, Raja CER e languages supported)
(not all programming o
languages supported) QpenMP?
Is it C/C++ code? ‘ ‘ Is it Fortran code? ‘ ‘ Cray ftn ‘ ‘ Clace ‘ -—‘ GCC ‘

!

Y

Use hipfort and
prepare the kernels

Y
Use hipify tools

knowledge on GPUs and
enough available resources
and time

Port to OpenMP
Offloading for GPU

DR

ls performance
good?

Use Reveal® tool or port through
profiling and identify important
loops to OpenMP

Is performance
good?

‘ Is the code in C/C++7

Y
Profile, identify kernels,
7 port them in HIP and tune

Profile and port the OpenACC calls to
OpenMP Offloading to GPU

Profile, tune OpenMP calls
and data transfers

Is performance
a7

Fix code, if any, that was not
converted to HIP (for C/C++).
Profile and tune, use hip libraries
where possible

Is the code in Fortran?

* Need to check which programming languages
will be supported

¥

Profile, identify kernels,
use hipfort, prepare the kernels
according to the instructions for
Fortran, port kernels to HIP
and tune

OpenMP Offload

There are many tutorials about OpenMP Offloading

» Some basic OpenMP useful constructs:

o #pragma omp target enter/exit data map
o #pragma omp target teams distribute parallel for simd
o thread_limit(X) num_teams(Y)

* There are a lot of tutorials about OpenMP Offloading

* OpenMP 5.0, what is new: https.//www.openmp.org/spec-html/5.0/openmpse71.html

e OpenMP 5.1, what is new: https://www.openmp.org/wp-content/uploads/OpenMP-
API-Additional-Definitions-2-0.pdf

* OpenMP 5.0 tutorial:
https://ecpannualmeeting.com/assets/overview/sessions/ff2020%20ECP-Tutorial-
with-ECP-template.pdf

https://www.openmp.org/spec-html/5.0/openmpse71.html
https://www.openmp.org/wp-content/uploads/OpenMP-API-Additional-Definitions-2-0.pdf
https://ecpannualmeeting.com/assets/overview/sessions/ff2020%20ECP-Tutorial-with-ECP-template.pdf

BabelStream (default settings)

BabelStream (MI100)

SO0000
800000
F00000
600000
" 500000

E‘g 400000 mAOMP-11.12-0
300000
200000
100000
0

Copy Mul Add Triad Dot

Case

mproving performance on BabelStream for M1100

Original call:

#pragma omp target teams distribute parallel for simd

Optimized call

#pragma omp target teams distribute parallel for simd thread_limit(256) num_teams(240)

11

For the dot case we used 720 teams

csc

BabelStream, tune AOMP

BabelStream (MI100)

800000
F00000 = Copy
600000 o Mul
Add
200000 W Triad
A00000 m Dot
300000
200000
100000
0

AOMP-11.12-0 ACOMP* 11-12-0

MB/s

Introduction to HIP

HIP: Heterogeneous Interface for Portability is developed by AMD to program on AMD GPUs

It is a C++ runtime API and it supports both AMD and NVIDIA platforms

HIP is similar to CUDA and there is no performance overhead on NVIDIA GPUs

Many well-known libraries have been ported on HIP

New projects or porting from CUDA, could be developed directly in HIP
https://github.com/ROCm-Developer-Tools/HIP

16

https://github.com/ROCm-Developer-Tools/HIP

csc

Hipify

Hipify tools convert automatically CUDA codes

It is possible that not all the code is converted, the remaining needs the implementation of the developer

Hipify-perl: text-based search and replace

Hipify-clang: source-to-source translator that uses clang compiler

Porting guide: https://github.com/ROCm-Developer-
Tools/HIP/blob/main/docs/markdown/hip_porting_guide.md

https://github.com/ROCm-Developer-Tools/HIP/blob/main/docs/markdown/hip_porting_guide.md

csc

Hipify-perl

« |t can scan directories and converts CUDA codes with replacement of the cuda to hip (sed —e ’s/cuda/hip/g’)

$ hipify-perl --inplace filename
It modifies the filename input inplace, replacing input with hipified output, save backup in .prehip file.
$ hipconvertinplace-perl.sh directory

It converts all the related files that are located inside the directory

18

csc

Hipify-perl (cont).

1) $ Is src/
Makefile.am matMulAB.c matMulAB.h matMul.c
2) $ hipconvertinplace-perl.sh src

3) $ Is src/
Makefile.am matMulAB.c matMulAB.c.prehip matMulAB.h matMulAB.h.prehip matMul.c matMul.c.prehip

No compilation took place, just convertion.

Hipify-perl (cont).

* The hipify-perl will return a report for each file, and it looks like this:

info: TOTAL-converted 53 CUDA->HIP refs (error:0 init:0 version:0 device:1 ... library:16
... humeric_literal:12 define:0 extern_shared:0 kernel _launch:0)
warn:0 LOC:888

kernels (O total) :

hipFree 18

HIPBLAS STATUS SUCCESS 6

hipSuccess 4

hipMalloc 3

HIPBLAS OP N2

hipDeviceSynchronize 1

hip_runtime 1

20

Differences between CUDA and HIP API
CUDA HIP

#include “‘cuda.h” #include “hip/hip runtime.h”

cudaMalloc(&d_x, N*sizeof(double)); hipMalloc(&d_x, N*sizeof(double));

hipMemcpy(d_x,x,N*sizeof(double),

cudaMemcpy(d_x,x,N*sizeof(double), hipMemcpyHostToDevice);

cudaMemcpyHostToDevice);

_ _ hipDeviceSynchronize();
cudaDeviceSynchronize();

21

Launching kernel with CUDA and HIP
CUDA HIP
kernel _name <<<gridsize, blocksize, hipLaunchKernelGGL (kernel name,
shared_mem_size, gridsize,
stream>>> blocksize,
(argO, argl, ...); shared_mem_size,
stream,

arg0, argl, ...);

22

NVIDIA

CUBLAS

CURAND

CUFFT

CuUSPARSE

NCCL

CuUB

HIP
hipBLAS
hipRAND
hipFFT

hipSPARSE

hipCUB

Libraries (not exhaustive)

ROCm

rocBLAS

rocRAND

rocFFT

rocSPARSE

RCCL

rocPRIM

Description

Basic Linear Algebra Subroutines
Random Number Generator Library
Fast Fourier Transfer Library
Sparse BLAS + SPMV

Communications Primitives Library based on the MPI equivalents

Low Level Optimized Parallel Primitives

csc

Benchmark MatMul cuBLAS, hipBLAS

Use the benchmark https://github.com/pc2/OMP-Offloading

Matrix multiplication of 2048 x 2048, single precision

All the CUDA calls were converted and it was linked with hipBlas

CUDA (V100)

matMulAB (10) : 1011.2 GFLOPS 12430.1 GFLOPS
« HIP (MI100)

matMulAB (10) : 2327.6 GFLOPS 22216.7 GFLOPS

« MI100 achieves close to the theoretical peak for single precision

https://github.com/pc2/OMP-Offloading

csc

N-BODY SIMULATION

N-Body Simulation (https://github.com/themathgeek13/N-Body-Simulations-CUDA) AllPairs_ N2

171 CUDA calls converted to HIP without issues, close to 1000 lines of code

32768 number of small particles, 2000 time steps

CUDA execution time on V100 : 68.5 seconds

HIP execution time on MI1100: 95.57 seconds, 39.5% worse performance

Tune the number of threads per block to 256 instead of 1024, then:

HIP execution time on Mi100: 54.32 seconds, 26.1% better performance than V100

https://github.com/themathgeek13/N-Body-Simulations-CUDA

csc

Fortran

* First Scenario: Fortran + CUDA C/C++
o Assuming there is no CUDA code in the Fortran files.
o Hipify CUDA
o Compile and link with hipcc
« Second Scenario: CUDA Fortran
o There is no HIP equivalent
oHIP functions are callable from C, using "extern C
o See hipfort

26

csc

Hipfort

The approach to port Fortran codes on AMD GPUs is different, the hipify tool does not support it.

We need to use hipfort, a Fortran interface library for GPU kernel *

Steps:
1) We write the kernels in a new C++ file
2) Wrap the kernel launch in a C function
3) Use Fortran 2003 C binding to call the function
4) Things could change in the future

Use OpenMP offload to GPUs

* https://github.com/ROCmSoftwarePlatform/hipfort

csc

Fortran CUDA example

Saxpy example

Fortran CUDA, 29 lines of code

Ported to HIP manually, two files of 52 lines, with more than 20 new lines.

Quite a lot of changes for such a small code.

Should we try to use OpenMP offload before we try to HIP the code?

Need to adjust Makefile to compile the multiple files

28

Example of Fortran with HIP: https://github.com/cschpc/lumi/tree/main/hipfort

https://github.com/cschpc/lumi/tree/main/hipfort

BabelStream on M1100 (HIP vs AOMP)

BabelStream (MI100)

1200000
1000000
W Copy
£ o Mul
£ 600000 add
= ® Triad
400000 m Dot
200000
0

ACMP AOMP* HIP*

Programming Model

csc

Megahip

https://qithub.com/zjin-Icf/one API-DirectProgramming

115 Applications/Examples with CUDA, SYCL, OpenMP offload and HIP

Testing hipify tool, create a megahip script to convert all the CUDA examples to HIP

/megahip.sh

3287 CUDA calls were converted to HIP

115 applications totally 45692 lines of code, there are warnings for 4 of them, there
are totally 24 warnings that something was wrong, check warnings.txt

Application Success 96.5217%

Conversion Success 99.2699%

https://github.com/zjin-lcf/oneAPI-DirectProgramming

OpenACC

GNU will provide OpenACC (Mentor Graphics contract, now called Siemens EDA)

HPE will use the provided GNU compiler for OpenACC support

HPE will support for OpenACC v2.0 for Fortran. This is quite old OpenACC version.

Clacc from ORNL: https://github.com/llvm-doe-ora/llvm-project/tree/clacc/master

OpenACC from LLVM only for C (Fortran and C++ in the future)
o Translate OpenACC to OpenMP Offload

https://github.com/llvm-doe-org/llvm-project/tree/clacc/master

csc

Clacc

* It supports C programming language, Fortran is on the way, C++ not started(??) yet

$ clang -fopenacc-print=omp -fopenacc-structured-ref-count-omp=no-hold -fopenacc-present-omp=no-
present jacobi.c

Original code:
#pragma acc parallel loop reduction(max:Inorm) private(i,j) present(newarr, oldarr) collapse(2)
for(i=1,i<nx+1;i++){

forg=1j<ny+1;j++){

New code:
#pragma omp target teams map(alloc: newarr,oldarr) map(tofrom: Inorm) shared(newarr,oldarr)
firstprivate(nx,ny,factor) reduction(max: Inorm) \
#pragma omp distribute private(i,j) collapse(2)
for(i=1;i<nx+1;i++){
for(g=1;j<ny+1;j++){

SYCL Implementations in Development ——

csc

SYCL implementations are available from an increasing number of vendors, including adding support for diverse acceleration APl back-ends in addition to OpenCL.

SYCL, OpenCL and SPIR-V, as open industry & SYCL enables Khronos to
standards, enable flexible integration and SYCL. ‘ influence I1SO C++ to (eventually) @
deployment of multiple acceleration technologies Source Code support heterogeneous compute

& XILINX

triSYCL hipSYCL neoSYCL
Open source CUDA and SX-AURORA
HIP/ROCm TSUBASA

¢ codeplay’

C ComputeCpp

DPC++
Uses LLVMW/Clang

Part of oneAP!

OpenCL+PTX
NVIDIA GPUs

- SP'R(V;
o Intel CPUs
GPR. NEC VEs
Intel CPUs Intel CPUs XILINX FPGAs
Intel GPUs Intel GPUs POCL
Intel FPGAs Intel FPGAs O Multiple Backends in Development
AMD S‘PUSM GPUs and more) SYCL beginning to be supported on multiple
Frpmen v N low-level APIs in addition to OpenCL
Arm Mali
e.g., ROCm and CUDA
IMG PowerVR T S
Renesas R-Car For more information: http://sycl.tech

hipSYCL and SYCL 2020: https://github.com/hipSY CL/featuresupport

SAXPY SYCL)

(g}
wn
(g}

o -
. e ———————————————— 2 sycl::queue g(sycl::host_selector{}); :
aLeean SyCIqueue q(SyCIdefaUIt_SeleCtor{}jl’.-. _________________________________ Syclqueue q(Syclcpu_Selector{}), i
const float A(aval); i sycl::queue qg(sycl::gpu_selector{}); :
— 1 Sycl::queue q(sycl::accelerator_selector{}); [
sycl::buffer<float,1>d_X { h_X.data(), sycl::range<1>(h_X.size()) }; i_ j
sycl::buffer<float,1>d_Y { h_Y.data(), sycl::range<1>(h_Y.size()) }} r=wmz—ee__ o s -
~-~~~: ————— I
sycl::buffer<float,1> d_Z { h_z.data(), sycl::range<1>(h_Z.size()) }; Ty Declare SYCL buffers to handle data |
. i on the device i
q.submit([&](sycl::handler& h) { — :______________________________________:
auto X =d_X.template get_access<sycl::access::mode::read>(h);
— SeEE T m————— Vo TTTTEmTmmmmm T L
auto Y = d_Y.template get_access<sycl::access::mode::read>(h); | TS~ __ : SYCL accesors they generate a dataflow i
auto Z =d_Z.template get_access<sycl::access::mode::read_write>(h); i graph that the compiler and _runt'me can i
- L _Use to move data across devices________1
h.parallel_for<class nstream>(sycl::range<1>{length}, [=] (sycl::id<1> it) {~~mmrcn_o______
. . I-——.—.—'—‘l-n- --------------------------------------
const int i = it[0]; SYCL 2020
q.parallel_for(sycl::range<1>{length}, [=] (sycl::id<1>1i) {

Z[i1=A* X[i] + Y[il; d_z[i] += A* d_X[i] + d_V[i];

b
e it
g.wait();

Results of BabelStream on Mi100 (AOMP vs HIP vs hipSYCL)

BabelStream (Mi100)

1 20000
1000
BOO00
GO0000
m Copy
. 400000 = Mul
fos] Add
= 200000 M Triad
0 | Dot
L's o Qﬁ-"
8 28
2 ;©
& &

Programming Models

csc

Profiling/Debugging

« AMD provides APIs for profiling and debugging

« Some simple environment variables such as AMD_LOG_LEVEL=4 will provide some information.

* More information about a hipMemcpy error:

hipError_t err = hipMemcpy(c,c_d,nBytes,hipMemcpyDeviceToHost);
printf(*'%s "*,hipGetErrorString(err));

* ROCprofiler, ROCgdb

« Some profiling tools work with AMD GPUs

TAU profiling

Mame & Exclusive TAUGPU... |Inclusive TAUGPU ... Calls Child Calls
TAU application .31 0.633 1 =201
void add kernel=double={double const* double const* double*) [clone kd] 0.08 0.08 100 0
void copy_kernel=double={double const* double*) [clone .kd] 0.052 0.052 100 0
void dot_kernel=double={double const* double const* double*, int) [clone kd] 0,059 0,059 100 0
void init_kernel=double={double* double* double* double, double, double) [clone .kt 0,001 0,001 1 o]
vaid mul_kernel=double={double* double const*} [clone .kd] 0.052 0.052 100 o]
void triad_kernel=double={double* double const* double const*) [clone kd] .08 .08 100 0

tau_exec -T rocm,serial -rocm ./hip-stream

csc

Rocprof

« Statistics for kernels and names (see the created csv fie):

rocprof --stats ./hip-stream

* Create a metrics.txt file with content (choose metrics):

pmc: GPUBusy Wavefronts VALUInsts SALUInsts SFetchinsts MemUnitStalled VALUULtilization
VALUBuUsy SALUBuUsy WriteUnitStalled

range: 0:100

gpu: O

kernel: add_kernel copy kernel triad_kernel dot_kernel mul_kernel

rocprof -i metrics.txt ./hip-stream

KemelMame GPUBuUsY Wawvefronts WVALUINStS SALUINStS SFetchinsts MemUnitStaI"‘-.fALUUtilizati'*‘-.f.ﬁ.LUE!iusy SALUBuUsY WriteUnitStalled

copy _kernel<* 100 224288 9 2 2 36 100 B 1 14
mul_kernel<c* 100 224288 10 4 2 34 100 7 2 14
add kernel<c* 100 224288 13 2 3 24 100 5 0 0
triad kernel<k 100 224288 13 4 3 18 99 5 1 0
dot_kernel<d* 100 4096 1727 289 o 0 99 7 1 0

40

csc

Tuning

Multiple wavefronts per compute unit (CU) is important to hide latency and
instruction throughput

Tune number of threads per block, number of teams for OpenMP offloading etc.

Memory coalescing increases bandwidth

Unrolling loops allow compiler to prefetch data

Small kernels can cause latency overhead, adjust the workload

Use of Local Data Share (LDS) memory

csc

Conclusion/Future work

A code written in C/C++ and MP1+OpenMP is a bit easier to be ported to OpenMP offload compared to other
approaches.

* The hipSYCL could be a good option considering that the code is in C++. Good support from hipSYCL.
 There can be challenges, depending on the code and what GPU functionalities are integrated to an application
* It will be required to tune the code for high occupancy

* Profiling should be used to identify bottlenecks

 Track historical performance among new compilers

« GCC for OpenACC and OpenMP Offloading for AMD GPUs

 Tracking how profiling tools work on AMD GPUs

» We have trained more than 80 people on HIP porting: http://github.com/csc-training/hip

http://github.com/csc-training/hip

Acknowledgements

My colleagues from CSC

Nicholas Malaya from AMD for the many conversations and emails that we have
exchanged

Michael Klemm from AMD for the OpenMP discussions

Many people from AMD discussing about issues and future

HPE for the conversations and presentations

CSC

1 ?
Questions: facebook.com/CSCfi

Georgios.Markomanolis@csc.fi , ,
twitter.com/CSCfi
youtube.com/CSCfi

linkedin.com/company/csc-—it-center-for-science

github.com/CSCfi

QEO0XD

Kuvat CSC:n arkisto, Adobe Stock ja Thinkstock

