
More Science. Less programming.

OPENACC BOF at SC21

https://www.openacc.org/events/openacc-birds-feather-bof-sc21

Tuesday, November 16, 2021 | 5:15 to 6:45 PM CST | Online

https://www.openacc.org/events/openacc-birds-feather-bof-sc21

OpenACC BOF @ SC21

▪ Welcome and OpenACC Organizational Update – Jack Wells, NVIDIA (5 Minutes)
▪ OpenACC Specification Update – Jeff Larkin, NVIDIA (7 Minutes)
▪ Compiler Implementations

▪ HPE Updates: Barbara Chapman, HPE (6 minutes)
▪ GCC Updates: Catherine Moore, Siemens (6 minutes)

▪ Porting Scientific Applications with OpenACC: Real-world Use Cases (7 minutes)
o On the Road to Code Portability – Stéphane Ethier, PPPL
o Can Fortran’s ‘do concurrent’ Replace Directives for Accelerated Computing? Ron

Caplan (Predictive Science)
▪ Training and Education, Julia Levites, NVIDIA (7 minutes)
▪ Questions, General Discussion from the BOF. (45 minutes)

Tuesday, Nov 16, 2021

https://www.openacc.org/events/openacc-birds-feather-bof-sc21

https://www.openacc.org/events/openacc-birds-feather-bof-sc21

OPENACC ORGANIZATION MISSION

The OpenACC Organization is dedicated to helping the research and developer
community advance science by expanding their accelerated and parallel computing
skills. We have 3 areas of focus: participating in computing ecosystem development,
providing training and education on programming models, resources and tools, and

developing the OpenACC specification.

OpenACC SpecificationTraining/EducationEcosystem
Development

PILLARS OF OPENACC ORGANIZATION

TRAINING & EDUCATION OPENACC SPECIFICATIONECOSYSTEM DEVELOPMENT

Hackathons/Bootcamps
• Focus on accelerated

computing
Training Materials:
• Courses
• Containers
• Workshops

Programs for educators,
students, mentors

Develop OpenACC
Specification by
introducing new features
and functionality

Work with Language
Standards committees
• Apply collective lessons

learned
• Bridge gaps in base languages
• Develop roadmap for

interoperability

Strive for performant
interoperability

OPENACC – CELEBRATING 10 YEARS
Accelerating Science. Building Community.

Thank you, OpenACC members, for all the hard work and support!

OPENACC DIRECTIVES
a directive-based parallel programming model designed for

usability, performance and portability

PLATFORMS SUPPORTEDAPPLICATIONS

NVIDIA GPU
X86 CPU

POWER CPU
Sunway

ARM CPU
AMD GPU

COMMUNITY

250+
3 out of Top 5

~2900
Slack Members

21 25 47
97 112 131

0

50

100

150

2015 2016 2017 2018 2019 2020

TRAINING AND EDUCATION
GPU Hackathons and Bootcamps

• 1 or 2-day event
• Labs and a mini-app challenge
• 50 people with 2-3 mentors
• Prepare for future hackathons

and start collaborations

Accelerating full applications
by working on kernels, mini-
apps or complete applications

• 4-day event
• Users bring their own codes or data
• Up to 10 teams with 3+ people per

team
• 2 mentors per team

Le
ar
n

GPU Bootcamps Hackathons

O
pt
im

iz
e

A
cc

el
er

at
e

Codes Accelerated

www.gpuhackathons.org

23
Bootcamps

in 2019

1 3 4 5 9
15

18

0

5

10

15

20

25

2014 2015 2016 2017 2018 2019 2020

Number of Hackathons

27
Bootcamps

in 2020

230+ mentors contributed 430+ codes

http://www.gpuhackathons.org/

8

APPLY TO GPU HACKATHONS

▪ Over 20 events globally.

▪ 4 full days over 2 weeks.

▪ Online or in-person.

▪ 10 teams. 2 mentors per team.

▪ Free to participate.

▪ GPU resource is provided.

Accelerate your code on GPUs with mentors by your side

www.gpuhackathons.org/events

http://www.gpuhackathons.org/events

9

JOIN GPU BOOTCAMPS

▪ Global Events
▪ Self-paced materials
▪ Instructor-led bootcamps
▪ AI and HPC content
▪ Team work and code challenges
▪ 8 hours per event

Build Confidence in GPU Programming
https://github.com/gpuhackathons-org/gpubootcamp

www.gpuhackathons.org/events

https://github.com/gpuhackathons-org/gpubootcamp
http://www.gpuhackathons.org/events

10

Technical Committee Update

▪ OpenACC 3.2 is out!!
▪ Error Handler
▪ Initialize/Shut Down individual devices from runtime API
▪ Acc Wait Any
▪ Asynchronous Structured Data Regions
▪ Many clarifications and reorganizations

▪ LLVM Upstreaming
▪ Community effort to upstream CLACC and FLACC Efforts
▪ Participation to-date by several vendors, labs, and universities
▪ Must more help is needed!

Activities since SC20

Error Handler
▪ Developer or Tool may register an Error Callback
▪ From the error callback:

▪ Inspect/Diagnose the issue
▪ Clean-up and/or checkpoint as-needed
▪ Gracefully shutdown

▪ No error recovery, only inspection
▪ Great Side Effect: Significantly improved definition of error conditions throughout

the specification!

Improved Device Initialization

// Initialize all devices of the

// default type

acc_init(acc_device_default);

// Initialize individual device via

// the pragma

#pragma acc init \

device_type(acc_device_default) \

device_num(0)

Before 3.2
// Initialize just device 0 of

// default type

acc_init_device(acc_device_default, 0);

// Initialize individual device via

// the pragma

#pragma acc init \

device_type(acc_device_default) \

device_num(0)

Version 3.2

Wait Any
#pragma acc data copyin(list[0:10])
{
int queues[10];
for (int i=0; i < 10; i++)
{
// Do some unbalanced operation on several queues
#pragma acc enter data copyin(list[i].member[0:list[i].size]) async(i)
// Put the queue number in the queues list, the index and queue number
// do not need to match, like they do here.
queues[i] = i;

}
int next;
// Look for queue that is ready to process
while ((next = acc_wait_any(10,queues)) >= 0)
{
// Remove this queue from consideration next time around
queues[next] = acc_async_sync;
// Process work dependent on above
#pragma acc parallel loop
{
for (int j=0; j < list[i].size; j++)
{
// do stuff

}
}

}
}

With acc_wait_any it’s
possible to poll asynchronous
work queues and find a queue
that’s ready now.

Useful for load-imbalances
and other unpredictable
timings.

Modeled after MPI_Waitany
and similar APIs.

Asynchronous Structure Data Regions
// Mark this entire data region as asynchronous on queue 0
#pragma acc data copy(A[0:N]) async(0)
{

// Execution MAY continue here before data allocation and
copies complete

// This region MUST wait on queue 0 to ensure data is ready or
enqueue itself
// in queue 0 as well.
#pragma acc parallel loop async(1) wait(0)
for (int i=0; i < N; i++) { ; }

// Since the data region MUST NOT copy or deallocate A until
the parallel
// region has finished, this wait is necessary.
#pragma acc wait(1) async(0)

}
// Execution MAY continue here before data copies and

deallocation occurs

// It's necessary to wait on queue 0 before operating on A to
ensure the device

// has finished any data operations.

#pragma acc wait(0)

Previously structured data
regions had to be
synchronous, in part due to
data allocation.

Now data operations at the
beginning and end of data
regions can be made
asynchronous.

Please be sure you
understand the ramifications.

LLVM Upstreaming

▪ The CLACC and FLACC efforts to create OpenACC compilers are being
upstreamed.

▪ Monthly telecom with collaborators.
▪ We need more help!

▪ Review patches
▪ Create patches
▪ Create test cases

Bringing OpenACC to Clang and Flang

