
Prashanth Pai (Rice University), Andrej Jakovljević (University of Belgrade), Dr. Zoran Budimlić
(Rice University), Dr. Costin Iancu (Lawrence Berkeley National Laboratory)

1

Improving a High Productivity
Data Analytics Chapel
Framework

Introduction

2

Arkouda
•Cutting edge Python data science library
•Interactive Python client
•Powerful Chapel-backed server

Many message exchanges
•Client and server’s form of communication
•Inefficient and costly in some cases

Optimized client architecture
•Supports lazy evaluation
•Caches/reuses arrays and function results
•Eliminates common subexpressions
•Reduces unnecessary message exchanges

Section 1 Arkouda Overview

3

What is Arkouda?

Software package whose
purpose is to optimize data

science operations on
large distributed data sets

using parallel computations
and a NumPy-like syntax

Ties exploratory data
analysis with high-

performance computing
models to complement

existing frameworks such as
Pandas

Supports multi-locale
processing of linear

algebra data sets and
graphs

More information:
https://github.com/Bears-

R-Us/arkouda

4

Arkouda
Architecture

• Exposes simple API to parallel
operations

• Communicates with server using
single command protocol

Python Client

• Implements set of data operations
• Receives and replies to messages
• Performs computations in parallel
• Stores data

Chapel-backed server

5

Client-Server Interaction

6

Client Server

I need a 10-
element array of
random integers

from 0 to 10

Creating/storing
array

The array has
been created
and its id is 1

Creating
proxy/storing id

Pdarray
Specifics

7

Class which overloads
common functions such as
addition and multiplication

Relies on the Python compiler
for garbage collection
(invoking deletion)

Everything gets turned into a
message

Arkouda Example

� A = ak.randint(0,10,10)

� B = (A * A) + (A * A)

� C = ak.randint(0,10,10)

� print(C)

� Sends 8 messages and creates 5 arrays
� 2 -> randint

� 3 -> binopvv

� 2 -> delete

� 1 -> str

Client Server

8

Arkouda Example

� A = ak.randint(0,10,10)

� B = (A * A) + (A * A)

� C = ak.randint(0,10,10)

� print(C)

� Sends 8 messages and creates 5 arrays
� 2 -> randint

� 3 -> binopvv

� 2 -> delete

� 1 -> str

A
Client Server

9

Arkouda Example

� A = ak.randint(0,10,10)

� B = (A * A) + (A * A)

� C = ak.randint(0,10,10)

� print(C)

� Sends 8 messages and creates 5 arrays
� 2 -> randint

� 3 -> binopvv

� 2 -> delete

� 1 -> str

A

B

Client Server

10

Arkouda Example

� A = ak.randint(0,10,10)

� B = (A * A) + (A * A)

� C = ak.randint(0,10,10)

� print(C)

� Sends 8 messages and creates 5 arrays
� 2 -> randint

� 3 -> binopvv

� 2 -> delete

� 1 -> str

A

B

Client Server

11

Arkouda Example

� A = ak.randint(0,10,10)

� B = (A * A) + (A * A)

� C = ak.randint(0,10,10)

� print(C)

� Sends 8 messages and creates 5 arrays
� 2 -> randint

� 3 -> binopvv

� 2 -> delete

� 1 -> str

A

C

B

Client Server

12

Section 2 Optimized Framework

13

Client-Side
Optimization

Reduce ZeroMQ messages between server
and client using batching and code analysisReduce

Reuse unused temporary arrays and improve
server-side memory management

Optimize Optimize programs using lazy evaluation and
common subexpression elimination

Reuse

14

Room for Improvement

A

C

B

Client Server

15

� A = ak.randint(0,10,10)

� B = (A * A) + (A * A)

� C = ak.randint(0,10,10)

� print(C)

� Sends 2 messages and creates 1 array
� 1 -> randint

� 1 -> str

Room for Improvement

A

C

B

Client Server

16

Eliminated a common
subexpression

� A = ak.randint(0,10,10)

� B = (A * A) + (A * A)

� C = ak.randint(0,10,10)

� print(C)

� Sends 2 messages and creates 1 array
� 1 -> randint

� 1 -> str

Room for Improvement

A

C

B

Client Server

17Reused a server-side
array

� A = ak.randint(0,10,10)

� B = (A * A) + (A * A)

� C = ak.randint(0,10,10)

� print(C)

� Sends 2 messages and creates 1 array
� 1 -> randint

� 1 -> str

Room for Improvement

A

C

B

Client Server

18

Introduced lazy
evaluation� A = ak.randint(0,10,10)

� B = (A * A) + (A * A)

� C = ak.randint(0,10,10)

� print(C)

� Sends 2 messages and creates 1 array
� 1 -> randint

� 1 -> str

Architecture
Components

19

• Enables lazy evaluation and CSE
which reduces sent messages and
server-side arrays

Command Buffer

• Allows reuse of server-side arrays
which improves space efficiency

Cache

• Extends server API to overwrite arrays

Store Functions

Batch Command Buffer Data Structure

� FIFO queue of arkouda commands (BufItems)

� Hold a reference to a BufItem in each pdarray

� BufItem properties
� Write id string

� Comma separated read id string

� Command string

� Comma separated arg string

� Lazy evaluation on data access demand

BufItem(“1”, “”, “randint”, ”0, 10, 10”)

BufItem(“2”, “”, “randint”, ”0, 10, 10”)

BufItem(“3”, “1, 2”, “binopvv”, ”+”)

A = ak.randint(0,10,10)
B = ak.randint(0,10,10)
C = A+B 20

Caching: Optimize Server-Side Memory
Management

Minimize messages that
create/destroy server-
side arrays

Keep track of server-
side arrays and
manage them on the
client side

Map client array ids to
server array ids

Reduce work done by
server
(creation/destruction of
arrays)

for x in range(1000):
A = ak.randint(0,10,10)
B = ak.randint(0,10,10)
C = A + B
print(C)

Only use 3 arrays
instead of 3000

21

Server API Extension: Store Functions

Specify where to
store the result of

arkouda
operations

Allows us to use
cached unused

server arrays

22

Putting it all together

B = (A * A) + (A * A)
print(B)

23

B = (A * A) + (A * A)
print(B)

bC1

bC2

bC3

bC4

A

t2
t1

C1

C2

B

C3

C4

C2

C3

24

Putting it all together

Putting it all together

B = (A * A) + (A * A)
print(B)

bC1

bC2

bC3

bC4

A

t2
t1

S1C1

C2

B

C3

C4

C2

C3

25

bC1

Putting it all together

B = (A * A) + (A * A)
print(B)

bC1

bC2

bC3

bC4

A

t2
S2t1
S1C1

C2

B

C3

C4

C2

C3
bC
2

bC
3

26

bC1

Putting it all together

B = (A * A) + (A * A)
print(B)

bC1

bC2

bC3

bC4

A

t2
S2t1
S1C1

C2

B

C3

C4

C2

C3
bC
2

bC
3

27

bC1

bC4

Section 3 Benchmarks & Results*

28
*All experiments were run on single shared memory node with a Xeon E3-1220 [7] processor

Example: Triangle Count for Dense Matrices

29

maxi = 0
arr = np.zeros(len(A),np.int64)
for i in range(len(A)):

for j in range(len(A)):
k = ak.sum(A[i]*At[j])
arr[j] = k

pdarr = ak.array(arr)
maxi += ak.sum(pdarr*A[i])

return maxi

Simulates matrix –
matrix multiplication
and applies a mask
sum((L * L) .*L)

Opportunities to reuse
arrays

Ratio of Created Arrays between
Base/Optimized Arkouda (Dense)

30

• Fewer arrays used
in optimized version
across the board

• Scales based on
size of matrix

• Nearly 30,000 times
fewer created arrays
on largest example

Profiling of Base/Optimized Arkouda (Dense)

31

• Faster program
execution across
the board

• Significantly
reduced time
creating/deleting
arrays on Chapel

Example: Triangle Count for Sparse Matrices

32

for i in range(len(pointers)-1):
right = pointers[i+1]
if (pointers[i] < right):

for j in range(pointers[i],right) :
s += ak.sortIntersect1d(find_splice(i, pointers, pd_indexes),

find_splice(pd_indexes[j], pointers2, pd_indexes2)).size

• Uses CSR, CSE and Arkouda set
operations

• Also room for array reuse

Performance Improvements as a Percentage
(Sparse)

33

• Performance improvements
across the board, especially
for more sparse matrices
• Less time spent on set

operations
• Over 120% performance

improvement for
delaunay_n15

Example: Betweenness Centrality

34

� Measures the number of shortest paths that go through a node, divided by the number of
shortest paths in the graph

� Mirrored off of a GraphBLAS implementation

� Two loops that each generate a series of temporaries

� O(n^2) rather than O(n^3) so easier to use larger matrices

Profiling of Betweenness Centrality

35

• Consistent
performance
improvements
across the board

• Improvements not
dependent on matrix
size since Arkouda
array size was
consistent

Example: NYC Taxi Cab Example

36

� Real-world example based on database of NYC taxi trips in January 2020

� Series of unary operations applied to a single immutable Arkouda array

� Repetition of min() , max() , mean(), std()
� Internal repetition of sum()

� Results
� 35% performance increase (0.16s rather than 0.25s)

� Sent 30 messages rather than 36 messages

Section 4 Current Work & Next Steps

37

Current Work: Message Aggregation in Loops

� Example on left has 3 calls per loop iteration
� (3 * number of iterations) message exchanges

� Can we generalize these loops on the server-side?

� Key idea: send entire loops from the client to the server using
one message

38

for i in range(len(array)):
b = array[i]
b = b - m
b = b // e
b = b % r
b = math.floor(b)
c = buckets[b]
c = c + 1
buckets[b] = c

Preliminary Results

39

Iterations Base (s) Dependent (s) Base-Dependent
Ratio

Independent (s)
using (iterations/100)
tasks

Base-
Independent
Ratio

1k 3.7261 0.0769 48.4311 0.0760 49.0476

10k 40.3329 0.7139 56.4969 0.7046 57.2431
100k 379.6306 6.9259 54.8129 7.4018 51.2891
1M 3223.7308 67.1780 47.9879 82.4395 39.1042

3 Arkouda operations, 4 scalar operations

* Server/client run on MacBookPro, single node, 2.4 GHz Quad-Core Intel Core i5, shared memory

Preliminary Results

40

Iterations Base (s) Dependent (s) Base-Dependent
Ratio

Independent (s)
using (iterations/100)
tasks

Base-
Independent
Ratio

1k 15.6984 0.2271 69.1344 0.2401 65.3837

10k 164.7580 2.3256 70.8459 2.1745 75.7677

13 Arkouda operations, 4 scalar operations

* Server/client run on MacBookPro, single node, 2.4 GHz Quad-Core Intel Core i5, shared memory

Looking Ahead

� Support larger subset of Arkouda operations

� Support more complex benchmarks
� Nested loops and arrays as variables (dense triangle count), helper functions (sparse triangle

count)

� Create easier-to-use client-side API

� Run server on distributed system to fine-tune number of tasks

41

Key
Takeaways

42

Arkouda

- Powerful,
interactive
framework
- Room for
improvement
(memory footprint
and messages)

Our
architecture

- Implements lazy
evaluation, caching,
and CSE
- Performance
increases across the
board

Message
aggregation

- Another powerful
optimization tool
- Significantly reduce
message exchanges

Current Milestones and Next Steps

Current Milestones
Revised architecture opens opportunities

for CSE, lazy evaluation, and space
efficiency

Next steps
Polish message aggregation optimization

Combine all optimizations
Move code into Arkouda repo

43

