
OpenFAM: Programming Disaggregated Memory
Sharad Singhal
Member, IEEE

Hewlett Packard Labs
Hewlett Packard Enterprise

Milpitas, CA, USA
sharad.singhal@hpe.com

Clarete Riana Crasta
HPC Business Group

Hewlett Packard Enterprise
New York, NY, USA
clarete.riana@hpe.com

Mashood Abdulla K
HPC Business Group

Hewlett Packard Enterprise
Bangalore, India

mashood.abdulla@hpe.com

Faizan Barmawer
HPC Business Group

Hewlett Packard Enterprise
Bangalore, India
sfaizan@hpe.com

Gautham Bhat
HPC Business Group

Hewlett Packard Enterprise
Bangalore, India

gautham.bhat-k@hpe.com

Ramya Ahobala Rao
HPC Business Group

Hewlett Packard Enterprise
Bangalore, India

ramya.ahobala@hpe.com

Soumya P N
HPC Business Group

Hewlett Packard Enterprise
Bangalore, India

soumya.p.n@hpe.com

Rishi Kesh K Rajak
HPC Business Group

Hewlett Packard Enterprise
Bangalore, India

rishikesh.rajak@hpe.com

Abstract—HPC clusters are increasingly handling workloads
where working data sets cannot be easily partitioned or are too
large to fit into local node memory. In order to enable HPC work-
loads to access memory external to the node, HPE has defined a
programming API (OpenFAM) for developing applications that
use large-scale disaggregated memory. In this paper we describe
an open-source reference implementation of OpenFAM that can
be used on scale-up machines, traditional HPC clusters, as well as
emerging disaggregated memory architectures. We demonstrate
the efficiency of the implementation using micro-benchmarks.

Index Terms—fabric attached memory, disaggregated memory,
high performance computing, programming API, interleaved
RDMA, multi-threading, contexts

I. INTRODUCTION

High performance computing (HPC) clusters are usually op-
timized for workloads where the application can be partitioned
and parallelized. Increasingly, these clusters are being used for
applications in high performance interactive data analytics or
machine learning [1] where data cannot be partitioned easily.
In addition, frequently workloads require very large working
sets, causing an imbalance in the compute-to-memory ratios
within the clusters [2].

Emerging disaggregated memory architectures provide a
new approach to handling large data sets by supporting fabric-
attached memory (FAM) accessible to all compute nodes
over a high-speed low-latency network. The architectures are
motivated by the emergence of storage class memory (SCM)
[3], which offers both persistence and higher memory density
than DRAM, at latencies that are closer to DRAM speed
than SSD. Currently, SCM can be provisioned directly as
dense memory within compute nodes [4]. Industry efforts
are underway using Compute Express Link (CXL) [5] to
also enable SCM to be provisioned across nodes at a small
scale. When coupled with cluster-wide interconnects such as
Slingshot [6] or InfiniBand [7], FAM architectures enable
data to be held in external memory accessible to all compute
nodes, thus providing a new approach to handling large data
sets. Because SCM can significantly reduce the latency to

Fig. 1. Architecture of a cluster with FAM

persistence when provisioned over a fabric, it enables higher
performance for applications that require large working sets
or multi-application workflows. In addition, because FAM
represents a separate failure domain than compute nodes in a
large cluster, FAM-based architectures can allow applications
to continue running in spite of compute node failures [8], thus
reducing down-time.

Figure 1 shows a high level architecture for a cluster con-
taining FAM. A high speed low diameter network connects the
compute and FAM nodes. FAM nodes may be constructed out
of standard servers with DRAM or SCM, may be provisioned
as CXL-connected nodes, or may be light-weight nodes where
the network interface cards (NICs) are linked directly to
the memory using specialized memory controllers without an
intervening general purpose CPU.

Note that the architecture permits current HPC applications
to be run in the environment by using the compute nodes
for processing, while treating the memory nodes as fast
distributed storage by overlaying file-system abstractions on
the memory nodes [9]. However, these abstractions reduce the
potential benefits achievable by these architectures, because
of the software overhead in the data paths within the file
system. In contrast, the OpenFAM API [10] treats data in FAM
as memory-resident, and provides memory management and
lightweight data operations APIs patterned after OpenSHMEM
[11]. OpenFAM provides the following benefits to the HPC



programmer over other programming models:
• The API is natural to the HPC programmers used to

writing one-sided operations.
• It enables FAM allocation from distributed programs,

as well as persisting allocations across programs, thus
providing efficient HPC workflows to be built.

• It associates access permissions with individual alloca-
tions to restrict sharing as necessary, thus allowing user-
level control of the visibility of FAM-resident data.

• The reference implementation is generic and supports
both scale-up machines and scale-out clusters.

In this paper, we briefly review the OpenFAM API specifi-
cation, and summarize extensions we are making to the API
to add functionality and improve performance. We describe
the architecture of a reference implementation [12] for Open-
FAM, and provide a summary of its performance, which was
described in more detail in [13]. Next, we focus on the API
extensions we are making. These include support for thread
safety, I/O contexts, data item interleaving, support for archival
storage, and memory side operations. As part of our current
work, we are porting the reference implementation to support
HPE’s Slingshot interconnect. We provide preliminary results
from our implementation on Slingshot; we will report on a
more comprehensive analysis in the future. We conclude the
paper with some related work.

II. THE OPENFAM API SPECIFICATION

We first provide a brief review of the OpenFAM API. A
more detailed description of the API is present in [10], [14].
The API is targeted for use in a clustered environment (Figure
1) where each compute node runs a separate OS instance, but
also has access to fabric-attached memory that is addressable
using a global address space. The API assumes a two-level
hierarchy for fabric-attached memory: Regions represent large
data containers that have nonfunctional characteristics such as
resilience or persistence associated with them. Each region
is treated as a separate heap by memory managers, which
can allocate data items within the region that are directly
accessible by applications. Data items inherit the nonfunctional
characteristics of the region within which they are allocated.
Both regions and data items have access permissions asso-
ciated with them to allow finer-grained access control, and
can be named to enable different parts of the application (or
different applications) to access a given region or data item
as necessary. Rather than exposing the global address space
directly to the applications, the OpenFAM API uses descriptors
(opaque handles) to address FAM.

The methods in the API are grouped based on the following
categories:

• Initialization and finalization: These operations include
initialization, finalization, and aborting a running appli-
cation.

• Memory management: These operations include region
creation, destruction, and resizing, as well as data item
allocation and deallocation.

• Query and access control operations: These operations
include the ability to look up allocations by name, and
change access permissions for data items or regions.

• Data path operations: Data path operations include
blocking and non-blocking versions of get (copy data
from FAM to local node memory), put (copy data from
local node memory to FAM), and both strided and in-
dexed gather and scatter operations. An additional API
allows a copy to be made from one part of FAM into
another part of FAM.

• Atomics: This group of operations include both fetching
(e.g., fetch_add() or compare_swap()) and non-
fetching (e.g., set()) operations on FAM, with memory
side controllers ensuring atomicity in case the operation is
performed concurrently by multiple processing elements
(PEs).

• Memory ordering and collectives: This group includes
fence() and quiet() with semantics similar to those
defined in OpenSHMEM. Unlike OpenSHMEM, Open-
FAM only defines a barrier operation; other collectives
are not defined in the API. We are currently exploring
additional collective operations (see Memory Side Oper-
ations later).

• Memory mapping operations: On scale-up systems or if
supported by the underlying fabric [5], this set of APIs
allow FAM to be mapped directly into the process address
space and accessed by the CPU. Cache coherence is
maintained among processors within a node (scale-up),
but is not provided across nodes (scale-out) accessing
FAM.

Most methods defined in the API follow a consistent pattern
for providing byte-level access to FAM-resident data, where
local memory is addressed using local pointers while FAM is
addressed using a descriptor, a byte offset from the start of a
data item, and a length field specifying the number of bytes
at that offset. For example, the get_blocking() call is
specified as

void fam_get_blocking(void *local,

Fam_Descriptor *descriptor,

uint64_t offset, uint64_t nbytes);

Here local represents the address of the destination buffer
in the calling process, descriptor is the associated ref-
erence to the source FAM data item, and the operation is
specifying that nbytes be copied starting at offset from
the start of the data item in FAM to the local destination buffer.
Other methods follow the same pattern. As extensions to the
API, we have added the following capabilities:

• Contexts and multi-threaded operations: Data path oper-
ations can be partitioned into multiple contexts, and non-
blocking data path and atomic operations can be indepen-
dently tracked by context. Additionally, a progress()
operation enables the application to check how many
operations are pending within a context, thus enabling



Fig. 2. Architecture of the reference implementation

more efficient use of processor threads when managing a
large number of contexts.

• Backup and restore: These operations provide application
controlled mechanisms to move data between FAM and
an archival store.

• Volatile and non-volatile regions: Since memory
nodes may contain both volatile (DRAM) and non-
volatile (SCM) memory, we have extended the
create_region API to allow the programmer
to specify the type of memory hosting a given region.

• Data interleaving: The API has been extended to allow
creation of regions where data items can be interleaved
across memory servers.

• Query region attributes. The fam_stat() operation
has been extended to allow the programmer to query
additional attributes (e.g., number of memory servers for
a region, or whether the region is interleaved or not).

III. IMPLEMENTATION ARCHITECTURE

The overall architecture of the OpenFAM reference imple-
mentation [15] is shown in Figure 2. Examples demonstrating
the use of the API as well as example applications (SpMV and
PageRank) are available at [16]. The implementation assumes
the architecture shown in Figure 1, where FAM is provided
to compute nodes over a high speed RDMA network, and is
implemented using memory servers, which serve allocations
to applications running on the compute nodes. Applications
are compiled with the OpenFAM library, and are deployed
across the compute nodes as processing elements (PEs) using
a workload manager such as SLURM [17]. The PEs treat
the memory within the compute nodes as “private”, while
considering memory served by memory servers as “global.”
Once allocated by a PE, all other PEs within the application
(or within other applications) can access data items from the
memory servers using RDMA.

The OpenFAM implementation includes a client library
that is linked to the PEs, a memory management service that
runs on the memory nodes and serves memory to the PEs
over RDMA, and two additional services (the client interface
service and the metadata management service) that manage
cluster configuration information and metadata associated with
allocations respectively.

The OpenFAM client library. The client library exposes the
OpenFAM API to the application, and is used by the PEs to
access FAM using libfabric [18]. In addition, the client library

includes a PMIx client [19] to communicate with the workload
manager, and a gRPC client [20] to communicate with the
OpenFAM metadata services.

The memory management service. The allocated memory
is served to the PEs from memory servers. Space within a
given region can span multiple memory servers and FAM can
be horizontally scaled further in the cluster by incrementally
adding memory nodes. Memory nodes host NVMM [21]
and libfabric to support RDMA in a fabric-agnostic manner.
NVMM is responsible for creation of heaps, as well as the allo-
cation and deallocation of data items within those heaps. Each
memory server uses memory-mapped files (using tmpfs or a
different in-memory file system) for creating large memory
regions and allows the application to allocate data items within
those regions. Regions can span multiple memory nodes. The
PEs interact directly with memory servers via libfabric using
RDMA for data path operations such as get, put, or atomics
using the topology details available from the client interface
service. The implementation currently supports several fabric
interconnects including Ethernet, InfiniBand, and Omnipath.
For data path operations, upon validation of permissions, FAM
is mapped from the memory server, registered onto libfabric
and the key shared with PEs. The PEs then access FAM in
the memory servers directly using libfabric. In addition to
serving FAM to the clients, the memory management service
also supports RDMA operations among memory servers for
operations such as fam_copy().

The client interface service. The client interface service
(CIS) provides a layer of abstraction between PEs and meta-
data and memory services. All PEs interact with the CIS for
region and data item allocation, lookup and other metadata
and memory operations. The CIS stores cluster information
such as addresses for nodes hosting other services, as well as
memory node information. This service minimizes the burden
on the OpenFAM client to track and maintain cluster-wide
configuration information.

The metadata management service. Region, data item, and
memory server metadata information is hosted in the metadata
management server. Data item names and permissions are
tracked using the metadata service using a key-value store
(KVS). In the current implementation, the radixtree module
[22] provides the KVS service. This service also serves as a
resource manager. It provides a list of memory servers used
for hosting regions. It also identifies memory servers where
data items are allocated. The service coordinates allocations
across memory servers to enable regions and data items to span
memory nodes. Our initial design uses hash-based addresses
for selecting memory servers when regions or data items are
created. In the future, we can also enable other user-defined
selection (e.g. data locality or affinity) policies. Depending
on configuration parameters, the client interface service and
the metadata management service can be co-located with the
memory management service or run as separate executables.



Fig. 3. Throughput achieved for data path operations with an evenly
distributed workload

IV. IMPLEMENTATION PERFORMANCE

We have evaluated the implementation on both scale-up and
scale-out architectures. In the scale-up mode, the implementa-
tion bypasses all RDMA operations, and relies on memory-to-
memory copies to manage the movement of data between the
memory server and the PEs. It also supports direct mapping of
FAM into the process address space. In this paper, however,
we concentrate on the scale-out architecture, since that is more
representative of large HPC clusters.

Detailed measurements of API-level performance of Open-
FAM were provided in [13]. In this paper, we briefly review
those results, and present additional results obtained as a result
of optimizations and additional functionality introduced into
the implementation since then. The reader is referred to [13]
for more a more complete evaluation of the API including
scatter-gather, FAM atomics, and metadata operations. As
mentioned in [13], the implementation can be compiled to
enable profiling. When turned on, each API logs the time
taken within itself. The logs are then used to compute averages
across multiple invocations of the call, which are presented in
this section.

A. Data path measurements

All data path measurements used 48 nodes from a 96-
node InfiniBand cluster interconnected using 12.5 GB/s link
bandwidth configured in a fat-tree. Each node had 40 Xeon
Gold 6248 cores (80 hyper threaded cores) with 128 GB
memory running RHEL 8.3. For data path (e.g., get, put,
gather, and scatter) operations, tests were run using 34 nodes.
Metadata services were hosted on two nodes, and 16 nodes
hosted PEs (one per node). The remaining 16 nodes were used
as memory servers, and the number of memory servers (1, 2,
4, 8, and 16) was varied within the tests. A single region was
configured to span all memory servers, so data items could be
distributed across the memory servers.

Figure 3 shows throughput obtained when the workload
is evenly distributed across memory servers. It also shows
the aggregate bandwidth available (12.5 GB/s x number of
memory servers) as a reference. It is clear that the total
throughput scales linearly with memory servers and is close
to the aggregate bandwidth. For 16 servers, throughput ranges

Fig. 4. Throughput achieved for data path operations with an unevenly
distributed workload

Fig. 5. Observed latency for blocking get calls using short messages

from 179.6 GB/s for fam_get_blocking to 193.1 GB/s
for fam_put_nonblocking.

Figure 4 shows the throughput when the workload is ran-
domly placed across memory servers. Unlike the even con-
figuration, we see a significant drop in aggregate throughput
as memory servers are added, with a maximum throughput of
134.5 GB/s for fam_put_nonblocking with 16 memory
servers. The primary reason for the drop in throughput is the
imbalance in workload, resulting in in-cast at the network
interfaces on memory servers.

The round trip latency obtained with small (256 byte) data
items with 16 concurrent PEs is shown in Figure 5. The Figure
includes an estimate of round-trip fabric latency (obtained
using the Linux ibv_rc_pingpong utility [23] with 256
byte messages between two servers). Comparisons show that
the OpenFAM software stack incurs an additional end-to-end
round trip overhead (primarily within libfabric) of slightly less
than 1 µs when a single PE is accessing a single memory
server.

The reader is referred to [13] for additional details on per-
formance of other data path operations such as gather/scatter
and atomics operations, as well as metadata operations such
as region creation and destruction, data item allocation and
deallocation, and fam_lookup(). In this paper, we now
provide details about additional evaluations we have performed
since the results in [13] were obtained, as well as new features
we are implementing in OpenFAM.



B. FAM contexts and threading
The original OpenFAM API [10] assumes a basic threading

and context framework for invoking the data path APIs.
All data path APIs use a single communication context,
thereby restricting the grouping of I/O operations to a single
context group. Hence a quiet() operation invoked by the
application enforces completion of all non-blocking operations
invoked from the PE. This context model does not allow the
application to optimally utilize available CPU and network
resources when PEs are multi-threaded.

In many applications, fabric operations can be grouped into
smaller parts, where the application can make independent
progress within each subgroup as data becomes available, thus
allowing finer-grained overlap of compute and communication
within the application [24], [25]. The application can now
create multiple contexts, and track non-blocking calls from
each context separately; a quiet() invoked from a given
context only enforces completion of operations invoked within
that context. To support contexts, we have added the following
APIs to OpenFAM:

// create a new context

fam_context* fam->fam_context_open();

// close the context

void fam->fam_context_close(fam_context*);

Once a context has been created, it can be used to invoke
data path operations as in the original API. A quiet() opera-
tion invoked from the context only waits for completion of I/O
operations invoked from that context. Since the application can
create many more contexts than the number of cores available
to the PE, the PE can check if a quiet() call is expected
to block or not by checking the number of pending I/O calls
from that context using:

uint64_t fam_progress();

In addition, while large (e.g., 4 MiB) data transfers can
achieve close to fabric bandwidth (Figure 3), for smaller sized
transfers, a single thread is unable to drive enough traffic to
the network, resulting in underutilized network bandwidth.
Figure 6 shows the throughput achieved when a PE issues
blocking calls using a 64 KiB message size using different
number of threads. In this experiment, the processor contains
40 cores (80 hyperthreads). It is clear that to maximize network
throughput, about 8 threads are necessary. Performance drops
again once we exceed 32 threads because of context-switching
between hyperthreads or because of interference from other
processes (e.g., OS and daemon processes) running on the
same node.

Ensuring that I/O operations invoked concurrently from
multiple threads do not interfere with one another was left
to the application in the earlier implementation of OpenFAM.
However, this makes the application more prone to errors and
data races. Therefore we have also added an option to handle
concurrent accesses to OpenFAM from the application in a
thread-safe manner.

Fig. 6. Throughput achieved for data path operations with an unevenly
distributed workload

C. Data item interleaving

If the data placement and distribution across memory servers
is skewed due to large data sets stored on a few memory
servers, it can easily create performance bottlenecks. For
example, in case of a sparse matrix vector multiplication
(SpMV) application using the compressed sparse row (CSR)
form, the input vector is common for all PEs running on
the client nodes. Since every PE needs to read the input
vector, the network interface at the memory server becomes
the performance bottleneck if the entire vector is located on it.
Our earlier results (Figure 4) clearly showed this behavior. We
hypothesized in [13] that performance in the random work-
load placement could be improved by enabling interleaving
across memory servers at the data item level. We have since
implemented data item interleaving in OpenFAM, where the
application programmer can select at a region level whether
the region is interleaved or not.

Most storage solutions that interleave data use a centralized
controller that coordinates the read/writes across the distribu-
tion. Within OpenFAM, the application can choose if a region
should be interleaved or not when it is created. For interleaved
regions, the implementation sends an allocate request from a
client node to each memory server hosting that region, which
in turn allocates a chunk of memory (stripe) corresponding to
the portion of the data item resident in that memory server.
Each allocated stripe is then registered with libfabric, and the
memory server returns metadata consisting of the registration
key and virtual address of the stripe hosted at the server. The
metadata from all memory servers is placed in the data item
descriptor.

The information in the descriptor enables the OpenFAM
client to directly manage RDMA operations for interleaved
data items without additional calls to the metadata manage-
ment service. The client can directly locate memory servers
that hold the data, partition the request into multiple chunks,
and dispatch them in parallel. Thus, interleaving can be
handled from the client without additional intervention or
coordination required from a central controller.

Figure 7 compares performance with interleaving enabled
and disabled for a randomly distributed workload. In the
experiment, 12 PEs access data items concurrently when the
data item is interleaved across the number of memory servers



Fig. 7. Throughput for large data transfers with interleaving on or off

Fig. 8. Execution time for a sparse matrix vector multiplication kernel with
and without interleaving

shown on the x-axis. The transfer size is 1 GiB, and interleave
size is 128 KiB. It is clear that once data is interleaved,
performance in the random distribution becomes much closer
to the uniform workload distribution, since each PE can fetch
data in parallel from multiple memory servers.

As a second test, we also tested application level perfor-
mance using a sparse matrix vector multiplication kernel. In
this test the data is stored in compressed sparse row (CSR)
format in FAM. Each PE reads in the dense vector from
FAM, then reads the matrix in groups of rows, and writes
the resulting part of the result vector back to FAM. In the
experiment a 227 x 227 sparse matrix was generated with edge
factor 4, and saved in CSR format in FAM in a region spanning
8 memory servers. The interleave size is 128 KiB during the
experiment. Each PE first reads the dense vector from FAM,
then processes the matrix multiplication by fetching rows in
groups of 220 rows at a time, computing that fraction of the
result vector, and writing the corresponding part of the result
back to FAM. Figure 8 shows the total execution time as a
comparison based on interleaving.

We observe that as the number of PEs is increased from
1 to 16, the total time taken is (approximately) inversely
proportional to the number of PEs. This is expected because
the dominant part of the application run-time is the com-
putation time, which is reduced as the number of PEs is
increased. However interleaving improves performance be-
cause it reduces in-cast at the memory servers by allowing
data to be retrieved in parallel. Figure 9 shows time broken
down separately by compute and communication time. The
compute time is identical in both cases (left axis in the Figure).

Fig. 9. Breakdown of compute and communication time for SpMV

However we observe that without interleaving, the I/O time
drops until 4 PEs are used, but then starts increasing again.
With interleaving, this behavior (although still present) does
not appear until 16 PEs, indicating that the system is more
scalable.

Additional experiments suggest a complex relationship that
impacts the read/write performance of the application based
on the data item size, interleave size, and data access pat-
terns. Some regions may contain data items which are not
accessed in parallel or have data items whose size is less than
the interleave size. For such regions interleaving can be an
overhead. For larger data items where separate parts of the
data item are accessed in parallel, interleaving can provide
significant benefits. To allow interleaving to be tuned, the
implementation leaves parameters configurable at the region
level, and provides flexibility to choose interleaving sizes for
each region based on application needs.

D. Initial results on Slingshot

We are currently qualifying OpenFAM using a Slingshot
network. Unlike the InfiniBand cluster, the Slingshot cluster
offers a 25 GB/s link bandwidth. As a result, it is possible
that some of the bottlenecks that were not visible in our
code become visible with the larger link bandwidth available
with Slingshot. Initial results from tests performed using a
small Slingshot-based cluster are shown in Figure 10. Only
fam_get() and fam_put() results are currently measured
as we port our code. The experiment uses a single PE and a
single memory server connected using a single Rosetta switch.

Figure 10 shows the throughput obtained as a function of
transfer size ranging from 256 bytes to 64 MiB. In each case,
the value shown is the average value obtained from 10,000
transfers. We observe that for short messages (less than 1
MiB), a single thread is not sufficient to drive the NIC to
saturation, as also observed in Figure 6. Once the message
sizes exceed 1 MiB, the PE can achieve close to full band-
width (25 GB/s), with 64 MiB transfers reaching 23.9 GB/s
for get_blocking, and 24.1 GB/s for put_blocking
respectively. We need further experimentation with multi-
threaded PEs (or multiple PEs per node) to validate perfor-
mance improvement for smaller messages when more cores
are driving the traffic.

In addition, we measured round trip latency
using short messages (256 bytes), and obtained 3.2



Fig. 10. Throughput obtained between a PE and a memory server over
Slingshot

µs for fam_get_blocking() and 3.7 µs for
fam_put_blocking(). As a comparison, the round
trip latency for 256 byte messages using fi_pingpong
Linux utility was measured at 2.6 µs. Thus the overhead in
the software stack is about 1 µs, consistent with earlier results
[13] obtained on the InfiniBand cluster.

V. ADDITIONAL APIS

In addition to interleaving and contexts, we are introducing
the following capabilities in OpenFAM.

A. Support for data retention and archival

Regions in OpenFAM are persistent, i.e., data is retained
within an allocation until it is explicitly deallocated by an
application. Thus, if a data item is not deallocated, it can
be discovered and used by a different application either
concurrently with the application that creates it, or after the
original application terminates.

However, memory servers can contain both DRAM or SCM.
Data in DRAM is volatile and does not survive power failure,
while data in SCM is non-volatile, and may survive power
failures. During region creation, the programmer can specify
the region as being volatile or non-volatile. All data items
within a volatile region are allocated in DRAM, while data
items in non-volatile regions are allocated in SCM.

In addition, data can be copied from FAM to an archival
store under application control. All movement of data between
the archival store and FAM can be controlled by the applica-
tion using new backup and restore APIs within the OpenFAM
client.

void *fam_backup(Fam_Descriptor *src,

char *backupName,

Fam_Backup_Options backupOptions);

void *fam_restore(char *backupName,

Fam_Descriptor *dest);

Fam_Descriptor *fam_restore(char *backupName,

Fam_Region_Descriptor *destRegion,

char *dataitemName, mode_t accessPermissions);

The application can use the fam_backup() API to
backup a data item to a system-defined archival store (e.g.,
Lustre) using a backupName, and providing additional op-
tions (e.g., retention periods). If the application is aware of the
backup size, it can use the first variant of fam_restore()
to restore that backup to a predefined data item allocated by
the application. If the application does not have pre-defined
FAM space, the second variant of fam_restore() allows
the application to restore the data item in a different region,
with the OpenFAM library allocating the required data item.

B. Memory side operations

Given that in the near-term, it is anticipated that FAM
will be provided using commodity servers, which have CPUs
available in them, it becomes possible to use those CPUs for
providing server-side operations. We are currently investigat-
ing whether applications would benefit if certain reduction
operations are passed on to the memory server. For example, in
many instances, communications costs in sparse matrix mul-
tiplication [26] can be reduced by doing operations in blocks,
which require reduction operations on the output vector. If only
one-sided operations are available, consolidation requires an
element-by-element fam_add as a reduction. Currently, the
only one-sided operation available in the API for this reduction
is a fam_add_atomic, which incurs a significant overhead.
If reduction operations were available at the memory server,
substantial improvement in fabric traffic may be possible.

Note that while memory-side operations may reduce the
network traffic, they increase the CPU usage in the memory
servers, and may cause interference among independent ap-
plications that happen to share data on the memory servers.
Additional impact arises from the use of RPC calls (as opposed
to one-sided RDMA calls) between the PEs and the memory
servers. Finally, with data item interleaving, the reduction
operations also have to be split among memory servers. It is
thus desirable to perform server-side operations only if there is
a minimum number of operations to each memory server, and
the performance overhead incurred in RPC can be concealed. It
may thus be beneficial to aggregate multiple operations at the
client push them to memory servers after a sufficient number
of these operations are available [27].

To evaluate server-side operations, we are experimenting
with the following APIs:

fam_queue_operation(FAM_QUEUE_OP op, void *local,

Fam_Descriptor *descriptor, uint64_t nElements,

uint64_t *elementIndex, uint64_t elementSize);

fam_aggregate_flush(Fam_Descriptor *desc);

Here, each fam_queue_operation() queues a set
of elements to be added to the data item represented by
descriptor. FAM_QUEUE_OP denotes operations such as
OP_ADD_INDEXED, OP_SCATTER or OP_GATHER. The
parameter local stores a pointer to an appropriately sized
area of local memory, nElements stores number of elements
to put, elementIndex is a local array containing element



indexes in FAM and elementSize is the size of each
element to operate on.

These APIs combine memory server-side reduction opera-
tions with client-side message aggregation. When the appli-
cation calls a fam_queue_operation(), the operation
is queued at the PE. Once the queue is full, a sufficient
number of operations are queued to PE, or an explicit
fam_aggregate_flush() call is made, the data is pushed
to memory servers for further processing. At the memory
servers, the buffer is temporarily stored in FAM, and back-
ground threads at the memory server process each request.
We will report on performance for this API in the future.

VI. RELATED WORK

The OpenFAM API borrows ideas from Partitioned Global
Address Space (PGAS) programming models that use one-
sided operations, such as OpenSHMEM. Unlike OpenSH-
MEM, which assumes that the global heap is served by the
compute nodes, OpenFAM relies on disaggregated memory.
It differs from the Storage Networking Industry Association
(SNIA) NVM Programming Model and Intel’s Persistent
Memory Development Kit (PMDK), which primarily address
locally attached memory or replicate memory over RDMA.
Unlike Intel’s DAOS [4], OpenFAM exposes FAM using
memory abstractions.

AsymNVM [28] provides another solution for fabric-
attached persistent memory. It shares NVM devices (i.e., back-
end nodes) among multiple servers (i.e., front-end nodes)
and provides recoverable persistent data structures. The focus
is on providing a framework where high-performance data
structures can be built using FAM, and the framework focuses
on data structure updates; crash consistency and replication;
and data management.

AIFM [29] considers APIs that enable application develop-
ers to directly allocate fabric attached memory, and provides a
runtime that handles swapping objects in and out, prefetching,
and memory evacuation. Unlike OpenFAM, which exposes
fabric-attached memory in scale-out environments, AIFM is
targeted at providing access to fabric-attached memory using
transparent caching and transfers at individual object-level
instead of using virtual memory abstraction of pages.

Striping or interleaving data across servers/disks in storage
context is a common technique used for achieving parallel
reads/writes. In most cases, these operations are mediated by
the storage controller or by a main server. When striping
data across disks [30], the operations are mediated by the
storage controller which controls a set of disks. In one of
the implementations of multiple memory server architecture
[31], the read/write request from the client to the main server
goes through a tcp/udp call. The main server then does
spliced RDMA to auxiliary servers and returns the data back
to the client through tcp packets. Our approach uses direct
RDMA from the client to the intended memory servers and
has advantages over this approach as there is no mediation
required and no additional tcp/udp calls necessary to achieve

data interleaving. The other approach is interleaving over tcp
[32], which eliminates the advantages of RDMA.

The Compute Express Link group [5] has defined the notion
of memory that can be pooled using the CXL 2.0 specification.
CXL 2.0 allows multiple hosts to partition a CXL-connected
memory pool into logical devices, but each logical device is
owned by a single host, and is accessible only by that host.
CXL therefore does not support multi-host access available
using OpenFAM. Although the group is working on CXL 3.0
to enable multi-host access, there are no public specifications
available at this time.

Other hardware solutions include Active Memory(AM) or
Processing-In-Memory(PIM) [33], which have used AM/PIM
as smart memory controllers [34] or as co-processors [35].
Some of these early hardware solutions had limited adoption
as integration of the logic into the hardware is costly [36].
Each is targeted to a specific use case and caters to the specific
requirement like matrix multiplication [37], MapReduce [38],
or graph processing [39], etc. Memory-side processing is
limited by the ability to integrate multiple levels of logic
into the hardware. Since we are building our solution in
software for a distributed system, we have flexibility with the
functionality we can provide with the memory-side operations
and we also have the ability to modify and optimize the
solutions in software for having compute closer to memory.
Once we understand which functions provide the most benefit
to use cases of interest, we can optimize the memory server
by pushing functions into hardware.

VII. CONCLUSION AND NEXT STEPS

In this paper, we describe our progress on OpenFAM,
an API for programming fabric-attached memory in HPC
environments and its reference implementation. We provide
early micro-benchmark results showing the scalability of the
implementation. Patterned after one-sided libraries such as
OpenSHMEM, OpenFAM can be used to develop directly ap-
plications that use FAM, or as a substrate for other middleware
that exposes FAM to the programmer.

We are currently qualifying the reference implementation
with the Slingshot provider, and are enabling access to Open-
FAM APIs from Chapel and C programming languages. We
are also exploring how OpenSHMEM programs can access
FAM. In the next phase of the project, we plan to implement
resiliency and fault tolerance in the reference implementation.
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