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Abstract—ARCHER2 is a HPE Cray EX supercomputer based
at the University of Edinburgh. It is the UK national super-
computing service for scientific research in the UK, containing
a total of 5,860 nodes (750,080 cores). The Cray EX consists
of dual AMD 7742 EPYC ™ processors and has 128 cores
per node. Commonly, scientific applications are run using MPI,
where one process is spawned on each computer core. For this
machine this results in a large number of processes being used,
particularly when running on many nodes. Using this many
processes has been shown to have a negative impact on the
performance of MPI communications for some use cases. As an
alternative, MPI+OpenMP may be used. This approach naturally
results in fewer processes and this can reduce the overhead of
communications, and have other positive affects, such as lowering
the memory requirements.

This paper will present a study of the performance
of MPI+OpenMP in a variety of scientific applications on
ARCHER2. In doing this different configurations of threads
and processes will be explored. This will aim to develop an
understanding of which applications can see a performance
benefit from using MPI+OpenMP, and why this is the case for the
Cray EX in particular. This will also aim to act as guidance for
users, who in some circumstances are able to benefit considerably
from using MPI+OpenMP in their calculations.

Index Terms—Hybrid MPI+OpenMP, Cray EX, Performance,
CASTEP, CP2K, GROMACS, LAMMPS, Quantum ESPRESSO

I. INTRODUCTION

Most modern HPC machines are comprised of multiple
interconnected computer clusters, each with many cores. This
is the case for the ARCHER2 HPE Cray EX supercomputer
which has 128 cores per node, provided by dual AMD 7742
EPYC ™ 64-core processors. This is a 5,860 node (750,080
core) machine based at the University of Edinburgh, and is
the UK national supercomputing service.

Having many cores per node may change the way in which
applications should be run to ensure that they make best use
of the available resources, and also perform and scale well.
Efficient use of these machines may warrant moving away
from the traditional “pure MPI” approach of allocating a single
core per MPI process, as this results in many MPI processes
on a node which all share the same network links, and so
sending many messages causes congestion on the network.
Furthermore the memory per process is limited when the total
memory on a node is shared amongst a large number of MPI

processes. Instead it may be advantageous to consider the use
of the node as a whole rather than the individual cores. The
use of MPI+OpenMP, where OpenMP is used between cores
on a node and MPI is used between nodes, may be a good fit
for taking advantage of the resources on ARCHER2 nodes.

MPI+OpenMP is available in many of the core ARCHER2
applications, including VASP, CASTEP, CP2K, GROMACS,
LAMMPS, and Quantum ESPRESSO. For a user, using
MPI+OpenMP may be more complex than using MPI alone,
as the balance of threads and processes affects the perfor-
mance, and this adds a further parameter than must be tuned
for a particular use case. The performance achieved using
MPI+OpenMP depends on a variety of factors including the
node-level architecture (NUMA regions), the application, the
number of nodes it is run on, and the particular use case
itself. Choosing a sensible configuration for running with
MPI+OpenMP is therefore extra work for the user which adds
a barrier to its usage. It is therefore desirable to be able to
provide clear guidance for users to achieve good performance
when using MPI+OpenMP.

This paper will look at the MPI+OpenMP performance for a
variety of applications on ARCHER2. For these applications
the optimum configuration of threads and processes will be
determined for a variety of test cases. These test cases will
be selected to cover different scales of problem size. These
results will aim give users a greater understanding of how
MPI+OpenMP can be used to improve the performance of
these key applications on ARCHER2. This paper will focus
on a selection of the most used codes on ARCHER2 including
CP2K, CASTEP, LAMMPS and GROMACS. The main aim
of this paper is to find for which applications MPI+OpenMP
may be advantageous and understand what factors influence
this. A secondary objective is to be able to provide sensible
suggestions to users on how to efficiently use MPI+OpenMP
on ARCHER2 to hopefully increase its use across the system.

The paper is organised as follows: It will begin with an
overview of the Cray EX architecture and highlight how this
will relate to the use of MPI+OpenMP. It will then cover
the applications discussed in this paper, giving information
about them and their support for MPI+OpenMP. This will also
include descriptions the test cases that will be used to bench-
mark the MPI+OpenMP performance for each application. The



results of MPI+OpenMP usage in these applications will then
be presented. Finally this paper will conclude with a real user
example case where a user was able to improve the perfor-
mance of their simulation considerably using MPI+OpenMP
on CP2K.

II. CRAY EX ARCHITECTURE

ARCHER2 nodes are formed of two sockets each with a
64 core AMD EPYC 7742 processor which has a clock speed
of 2.25 GHz [1]. There is 256 GB of memory per standard
node (2GB per core) and 512 GB of memory per high memory
node (4 GB per core). Nodes are connected together with the
HPE Cray Slingshot interconnect. The node-level architecture
is shown in Fig. 1.

Fig. 1. The architecture of an ARCHER2 node. This has two sockets each
with a 64 core AMD EPYC 7742 processor. Taken from [1].

The node is split into 8 non-uniform memory access
(NUMA) regions of 16 cores (4 NUMA regions per processor).
Groups of 4 compute cores form Compute Complexes (CCX)
which share 16 GB of L3 cache. Two CCXs form a Compute
complex Die (CDD) of 8 cores which are connected with die-
to-die infinity fabric. Each core has its own 32kB L1 cache
and 512 kB L2 cache.

For use of MPI+OpenMP this memory structure means that
thread values of 1, 2, 4, 8, 16 are sensible options, so that

the threads are confined to a single NUMA region and so do
not share memory across different memory regions on a node.
Additionally the fact that L3 cache is shared between 4 cores
means that for up to 4 threads the threads will share the cache.

Compared to ARCHER2’s predecessor, ARCHER, the com-
pute nodes have many more cores (128 vs 24) and have a more
complex memory layout. ARCHER was an Cray XC machine
with nodes containing two 2.7 GHz, 12-core E5-2697 v2 (Ivy
Bridge) series processors [2]. Standard nodes on ARCHER
had 64 GB of memory, which equates to roughly 2.6 GB per
core. Therefore the switch from ARCHER to ARCHER2 has
meant in a reduction in the amount of memory per core. For
users running memory intensive applications this has meant a
greater likelihood that out of memory errors will occur when
running with one process assigned to each core.

One solution to this is to underpopulate the nodes with
processes, so that each process has more memory available to
it. However, this can be undesirable as the processing power
of the cores is not fully utilised. As an alternative, using
MPI+OpenMP shifts the balance so that there is more memory
available per process, whilst still ensuring each node is fully
populated.

III. APPLICATIONS

The ARCHER2 team support a number of core scientific
applications. User demand for these varies. Fig. 2 shows the
most used applications by node hours used for January 2022
as reported in [3].

Fig. 2. The usage of applications on ARCHER2 for January 2022. The results
are reported as the percentage use of node hours used [3].

By far the most used application in terms of node hours is
VASP, followed by CP2K and CASTEP. These were also in the
top 5 most used codes on ARCHER2’s predecessor ARCHER
along with GROMACS [4].

This study will investigate the performance of
MPI+OpenMP in CP2K, GROMACS, CASTEP, LAMMPS,
and Quantum ESPRESSO. These applications are well used



on ARCHER2 and are supported by the ARCHER2 team.
The usage MPI+OpenMP in them is also well documented.

Results for VASP will not be presented due to reasons
mentioned below, however using MPI+OpenMP in VASP on
ARCHER2 was investigated.

A. CP2K

CP2K is a quantum chemistry and solid state physics
package [5], [6]. At the core of CP2K is the Quickstep method
for density functional theory (DFT). This uses the mixed
Gaussian and plane waves approaches (GPW and GPAW).
CP2K can perform a variety of different simulations such as
molecular dynamics, metadynamics, Monte Carlo and energy
minimisation. It can also simulate solid state, liquid, molecular,
periodic, material, crystal, and biological systems. CP2K is the
among the top 5 most used codes on ARCHER2 [3], and is
freely available under the GPL licence.

CP2K is parallelised primarily though the use of MPI, how-
ever it has OpenMP parallel regions throughout its code base
which allows it to exploit MPI+OpenMP parallelism. OpenMP
is used in fast-Fourier transforms (FFTs), the realspace to
planewave transfer, and the collocate and integrate routines
[7]. CP2K is memory intensive and makes large use of MPI
collectives.

1) Test Cases: This paper considers 3 different test case
systems for CP2K. These are as follows:

• H2O-64 - This is a Born-Oppenheimer molecular dy-
namics (MD) simulation of 64 water molecules [8]. The
QuickStep DFT method is used and for the basis sets
a TZV2P basis is used. For the Exchange-Correlation
energy the Local Density Approximation (LDA) is used
and the planewave cutoff is set to 280 Ry. 10 MD steps
are performed. This test case represents a very small
system designed to scale to just a few ARCHER2 nodes
(a few hundred cores).

• H2O-512 - This is a molecular dynamics simulation of
512 water molecules. The setup and parameters are the
same as the 64 molecule case. This test case represents
a system that should scale to around a few thousand
ARCHER2 cores.

• LiH-HFX - This calculation uses the hybrid Hartree-
Fock exchange (HFX) to calculate the single-point en-
ergy of a 216 atom Lithium-Hydride crystal. The plane
wave energy cutoff is 300 Ry. This calculation is many
more times computationally intensive than a local den-
sity calculation. The Hartree-Fock exchange calculation
is also memory intensive. The MAX MEMORY input
parameter can be tuned at run time to set the amount
of available memory for the Hartree-Fock module. This
value depends on the available memory per MPI process,
the MAX MEMORY should be less than this to prevent
out of memory errors. Using MPI+OpenMP is therefore
a good option for this test case as it will increase the
memory per MPI process. This test case scales to a few
hundred ARCHER2 nodes (10,000 cores). Note that a

minimum number of nodes are required in order to satisfy
the memory requirements.

2) Installation and Usage: Here version 8.2 of CP2K will
be used, which is built with GCC version 11.2. For the the
scientific linear algebra routines the Intel MKL libraries [9]
are used. Version 8.1.9 of Cray-mpich is used for the MPI
library. The MPI-OFI communications protocol is used for
most calculations, however the Mellanox UCX MPI protocol
is used at larger node counts for the LiH-HFX system as
this was better performing at large scales, when run on more
than 32 nodes. The Cray-fftw library (v3.3.8.11) is used
for the FFTW routines [10]. CP2K is built with the Libint,
Libxc and ELPA libraries enabled [11]–[13], although only the
use of ELPA relates to the performance, whereas the others
add more scientific features such as additional exchange-
correlation functionals (Libxc) and the Hartree-Fock exchange
(Libint).

The hybrid MPI+OpenMP cp2k.psmp executable is used
for all runs. The run time is recorded as the reported time from
the CP2K timing report printed at the end of a calculation.

B. CASTEP

CASTEP is a density functional theory software package
for calculating the electronic structure properties of solids, sur-
faces, molecules and liquids [14]. It uses plane-wave basis sets
and supports geometry optimisations and molecular dynamics
simulations among others. CASTEP is among the top 5 most
used codes on ARCHER2. It requires a licence in order to
use.

CASTEP makes use of MPI and OpenMP parallelism. Cal-
culations of larger systems in CASTEP can often be memory
intensive and use of MPI+OpenMP has been shown to be one
strategy of reducing the memory requirements [15].

1) Test Cases: This paper considers 2 different test case
systems for CASTEP. These are as follows:

• Al3x3 - This calculates the single point energy of a
aluminium oxide 3x3 sapphire surface. For the exchange-
correlation energy the LDA approximation is used and
the plane wave cutoff energy is set to 400 eV. 2 k-points
are used. This is a small test case which should scale to
around 10 ARCHER2 nodes (1,000 cores).

• DNA - This calculates the energy of a poly-A strand
DNA. The generalised gradient approximation (GGA) is
used for the exchange-correlation energy, and the plane-
wave cutoff energy is 1000 eV. Only the Gamma point is
used to sample the Brillion zone. This is a large system
with significant memory requirements. It should scale to
a few hundred ARCHER2 nodes (10,000 cores).

2) Installation and Usage: Version 20.11 of CASTEP is
used in these experiments. It is compiled with GCC version
10.2 and uses Intel MKL version 19 [9] for its linear algebra
algorithms. The Cray-fftw library is used for the FFTW
routines [10] and the MPI-OFI communications protocol is
used with Cray-mpich version 8.1.4.

The num_proc_in_smp option in CASTEP allows con-
trol of the number of processes shared memory segments. This



allows these processes to communicate by shared memory
rather than by the interconnect in order to speed up 3D FFTs.
For these experiments num_proc_in_smp is set to 16 for
the DNA system as this is the size of a NUMA region on
ARCHER2. For the Al3x3 system this option is unset.

C. GROMACS

GROMACS is a molecular dynamics package that is used
for simulating biological systems such as proteins, lipids and
nucleic acids [16]. GROMACS is among the most used codes
on ARCHER2 and is freely available to use under the GNU
Lesser General Public license.

GROMACS is MPI and OpenMP parallelised. From version
4.6 multithreading was added to the particle mesh Ewald
(PME) calculations [17], [18].

1) Test Cases: This paper will consider 2 different test
case systems for GROMACS. These are MD simulations taken
from the HecBioSim benchmark suite [19]. The performance
of MD simulations in GROMACS are mainly dependent on
the size of the system. These are as follows:

• 1.4M atom system - A MD simulation of a pair of human
epidermal growth factor receptor (hEGFR) dimers. There
are 1,403,182 atoms total. This simulation performs
10,000 MD steps.

• 3M atom system - A MD simulation of a pair of hEGFR
tetramers. There are 2,997,924 atoms total. This simula-
tion performs 10,000 MD steps.

2) Installation and Usage: In this paper version 2021.3 of
GRAOMCS is considered. This is built with GCC 11.2. Cray-
mpich version 8.1.9 is used with the OFI communications
protocol.

Performance is reported as the GROMACS performance for
the run in nanoseconds per day (ns/day).

D. LAMMPS

LAMMPS is a molecular dynamics code which is mostly
used for materials modelling [20], [21].

LAMMPS is MPI parallelised for general use. However
it can also be built with its OpenMP package [22] which
provides multi-threaded versions for many pair interaction
styles.

1) Test case: The LAMMPS test case is the same 3M atom
system used for the GROMACS test case which was taken
from the HecBioSim benchmark suite [19]. This does This
does 10,000 MD steps and writes a restart file every 1,000
steps.

2) Installation and Usage: The stable version of LAMMPS
as of January 2022 is tested. This is built with GCC version
10.2. The Cray-fftw library is used for the FFTW routines
[10] and the MPI-OFI communications protocol is used with
Cray-mpich version 8.1.4.

Performance is reported as the predicted nanoseconds per
day reported at the end of the LAMMPS simulation.

E. Quantum ESPRESSO

Quantum ESPRESSO (QE) is collection of codes for
electronic-structure calculations [23]. It is based on density-
functional theory, plane waves, and pseudopotentials. It can
perform variety of calculations of different features such as
ground-state calculations (with a variety of functionals and
VdW corrections), as well as structural optimisations, molec-
ular dynamics, nudged elastic band calculations and more. It
is fully open-source.

QE is MPI parallelised throughout its main algorithms.
OpenMP loops have been added to its space integrals and
point function evaluations, furthermore OpenMP is used in the
3D FFT and linear algebra libraries (SCALPACK and BLAS)
[24].

1) Test cases: For Quantum ESPRESSO the following test
cases will be used. These are taken from the QE benchmark
suite [25]:

• GRIR443 - This is self-consistent (scf) calculation of
graphene layer on a iridium surface. There are 443 atoms
and 4 k-points are used.

• CNT - This is a scf calculation of a carbon nanotube
functionalised with porphyrins. There are 1532 atoms
total. A single k-point (the Gamma point) is used. This
is a computationally and memory intensive calculation,
which should scale to around 10 ARCHER2 nodes, which
is equivalent to over 1000 cores.

2) Installation and Usage: In these tests version 6.8 of
Quantum ESPRESSO is examined. This is built with GCC
11.2. The Cray-libsci library (v21.08.1.2) is used for the linear
algebra libraries [26]. The MPI parallel version of the cray-
hdf5 library is used for HDF5 support. For the MPI cray-mpich
version 8.1.4 is used along with the MPI-OFI communications
protocol.

The run time of a calculation is reported as the PWSCF Wall
time. For the FFT a 2D slab decomposition is used when there
are enough planes for each process, however in some cases a
pencil decomposition is used when there are more processes
than slabs.

For the GRIR system the -npool option (which controls
how the k-points are shared amongst processes) is set to be
equal to the number of k-points (-npool 4).

F. VASP

MPI+OpenMP is present in VASP version 6. Versions 6.2.1
and 6.3.0 are both present on ARCHER2. Version 6.2.1 is is
built with GCC version 11.2 and uses Cray-libsci v21.04.1.1
[26]. Version 6.3.0 is also built with GCC version 11.2 and
but uses the AMD Optimizing CPU Libraries (AOCL) version
3.1 [27] for BLAS and SCALAPACK. Both versions use Cray-
fftw [10] and default OFI communications protocol.

The use MPI+OpenMP was tested in VASP for a TiO2 test
case found here [28]. However the total energies reported when
running MPI+OpenMP differed from the non-threaded run.
The cause of this will be investigated in the future, but because
of this performance results for VASP will not be reported here.



IV. METHODOLOGY

A. Thread options

Thread values are chosen to ensure that the 16 core
NUMA regions are evenly divided. This prevents threads
being spawned across different memory regions and accessing
memory from different memory regions. The thread values
which satisfy this condition are 1, 2, 4, 8 and 16. To ensure
that the nodes are fully occupied the number of MPI processes
is set so that threads×processespernode = 128. The number
of processes is set with the Slurm --tasks-per-node
option, and the --cpus-per-task option is set to equal
the number of threads used to ensure the correct placement of
processes.

B. Thread placement

The following options are added to the Slurm srun com-
mand in the job submission script at run time:

• --hint=nomultithread - Only use physical cores
(avoids use of SMT/hyperthreads)

• --distribution=block:block - Allocate pro-
cesses to cores in a sequential fashion.

Additionally the OMP_PLACES=cores environment vari-
able is set in order to to generate the correct thread pinning.

C. Switching MPI implementation

HPE Cray MPICH can use two different low-level protocols
to transfer data across the network. The default is the Open
Fabrics Interface (OFI), but it is possible to switch to the UCX
protocol from Mellanox at run time. This can be done by
adding the following into the job script:
module swap craype −network − o f i c raype −network −ucx
module swap cray −mpich cray −mpich −ucx

D. Results collection

The results from these experiments can be found at [29].
The time and performance results are usually averaged over 3
separate runs of the same calculation, with minimal deviation
between results observed. For long running calculations (over
1 hour) a single run is performed.

V. RESULTS

A. CP2K

Fig. 3 shows the run time for the CP2K H2O-64 test case on
ARCHER2. The time is reported for up to 4 nodes and with 1,
2, 4, 8 and 16 threads per MPI process. This test case is small
and is not meant to scale beyond a couple of nodes. However
it does benefit from MPI+OpenMP across all scales. As the
number of nodes increases the run time of the single threaded
version increases and its performance becomes increasingly
worse compared to the runs using multiple threads per process.
Hence without MPI+OpenMP this benchmark would show no
increase in performance when running on more than one node.
Using 2 threads gives the best performance on one node, and
on 2 and 3 nodes 4 threads is better, with this increasing to 8
threads on 4 nodes.
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Fig. 3. The run times of the CP2K H2O-64 test case with MPI+OpenMP on
ARCHER2.

From looking at the CP2K timing report the main con-
tributors to the run time in the single threaded version of
this benchmark are the calls to MPI_Alltoall, which
become increasingly dominant on multiple nodes. This is
shown in Table I. The main contributor for 1 threads is
mp_alltoall_l11v which does an all-to-all exchange
between all processes for long integers as is called once
per MD step. Using MPI+OpenMP reduces the run time of
these calls and offsets some of the communication cost. On
ARCHER this same benchmark did not benefit from multi-
threading [7] likely because the smaller nodes meant that MPI
communications were less dominant.

TABLE I
THE CUMULATIVE TIME FOR MPI ALLTOALL CALLS FOR 1 AND 4

THREADS PER PROCESS.

Nodes mp alltoall time (s)
1 thread 4 threads

1 2.12 1.22
2 10.844 1.599
3 18.918 2.138
4 23.612 3.273

Fig. 4 shows the run times for the CP2K H2O-512 test
case. This is a larger version of of the 64 H2O molecule test
case. The effect of MPI+OpenMP is similar for this benchmark
where the use of multiple threads per process allows for further
scaling beyond the single threaded version, which does not
scale beyond 4 nodes. Using 2 or 4 threads per process usually
gives the best performance. MPI calls also dominate the run
time of this benchmark on multiple nodes, which pushes up
the run time of the single threaded calculation. This effect is
reduced with MPI+OpenMP.

Fig. 5 shows the run times of the LiH-HFX test case with
MPI+OpenMP. This test case is uses a hybrid functional which
involves the calculation of the Hartree-Fock exchange and is
both computationally and memory intensive. The results show
that this test case also benefits from the use of MPI+OpenMP.
Using 4 or 8 threads per process give the best performance
across the node numbers tested. On 32 and 64 nodes the
increase in performance with multiple threads is less drastic
than in the previous test cases as this test case is dominated
more by the computation of the integrals for the Hartree-Fock
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Fig. 4. The run times of the CP2K H2O-512 test case with MPI+OpenMP
on ARCHER2.

exchange than the communication costs. On 256 nodes the run
time of the 8 thread calculation is nearly 3 times faster than
the single threaded calculation. Using multiple threads for this
test case has the advantage that the available memory is shared
between fewer processes. Therefore integrals can be stored in
memory rather than having to be recomputed.
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Fig. 5. The run times of the CP2K LiH-HFX test case with MPI+OpenMP
on ARCHER2.

The run time of CP2K on ARCHER2 is dominated by
MPI alltoall calls. As ARCHER2 has many cores per node,
these calls become costly as the number of nodes is increased.
The results of the experiments in this paper have shown that
MPI+OpenMP can improve the performance when running
across all node counts, but especially on more nodes when the
communications make up a greater fraction of the overall run
time. MPI+OpenMP allows for aggregation of MPI messages
which reduces the communication time. This can help extend
the scaling out to greater node counts than with just MPI alone.

B. CASTEP

Fig. 6 shows the run time of the CASTEP Al3x3 test
case on ARCHER2 with multi-threading. For this system
using MPI+OpenMP with 2 or 4 threads per process gives a
performance similar to the single threaded version. On 8 and
16 nodes the run time of the single threaded version increases,
however using MPI+OpenMP improves the performance at
this scale. The run time of CASTEP has been shown to
be dominated by all-to-all communications when running on
many nodes.

This test case has 2 k-points, so when run on more than
2 nodes the k-points are spread across multiple nodes, with
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Fig. 6. The run times of the CASTEP Al3x3 test case with MPI+OpenMP
on ARCHER2.

the plane waves spread across the cores within a node. On 4
nodes the 88,000 plane waves in this calculation are spread so
that there are around 344 plane waves per core, which is less
than the suggested amount for good parallelism [30].

Fig. 7 shows the performance of the DNA test case on 1, 2
and 4 threads per MPI process, note that a larger value here
represents better performance. On 32 and 64 nodes using a
single thread per process gives the better performance than
using multiple threads. However on 128 and 256 nodes using
2 and 4 threads respectively yields the best performance.
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Fig. 7. The performance of the CASTEP DNA test case with MPI+OpenMP
on ARCHER2.

C. GROMACS

Fig. 8 shows the GROMACS performance in nanoseconds
per day for the 1400k atom test case. This test case scales well
up to 16 nodes on ARCHER2 when using a single thread per
process. On 32 nodes the PME communications start to take
up a greater fraction of the run time. For example on 32 nodes
(with 1 thread per process) the PME Wait and Receive took
14 seconds, whereas on 16 nodes (with 1 thread per process)
this took just under 1 second. The GROMACS documentation
states that these communications can become a limiting factor
when the parallelism is high and when the nodes contain
many cores [17]. In this case MPI+OpenMP can benefit the
performance. This is shown for 2 threads per process on 32
nodes, however the performance is still less than the 16 node
single threaded case.

For the 3000k atom test case in Fig. 9 the performance is
clearly improved by MPI+OpenMP on 32 and 64 nodes. On 32
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Fig. 8. The performance in nanoseconds per day of the GROMACS 1400k
atom test case with MPI+OpenMP on ARCHER2.

node 2 threads per process gives a performance of 56.8 ns/day
compared with 44.2 ns/day for a single thread and on 64 nodes
the performance is 65 ns/day for 4 threads per process, which
is again greater than the 55.1 ns/day reported for a single
thread per process. This is due to the difference in time taken
for the PME Wait and Receive communications which is 5.3
seconds for the single threaded version and 1.2 seconds with
4 threads per process.
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Fig. 9. The performance in nanoseconds per day of the GROMACS 3000k
atom test case with MPI+OpenMP on ARCHER2.

For GROMACS using MPI+OpenMP does not show much
of an improvement to the performance in general. The com-
munications in GROMACS are generally quite efficient and
only start to contribute significantly to the performance at
large scales. However, once the calculations start to reach
the limit of their scaling using MPI+OpenMP can allow for
slight improvements in the performance compared to using
MPI alone. This is because using multiple threads can reduce
the communication cost. In these cases using 2 or 4 threads per
process can improve the performance, but any greater than this
then the performance gets considerably worse. This is likely
because if there are more than 4 threads the threads are no
longer sharing L3 cache on the ARCHER2 nodes. GROMACS
is not memory intensive so having threads which span more
than one cache will negatively affect the performance.

D. LAMMPS

Fig. 10 shows the performance in ns/day for the LAMMPS
3000k atom test case on 1, 2, 4 and 8 threads. Up to 32
nodes there is no benefit from using multiple threads, and the

performance decreases with more threads. Only on 64 and 128
nodes does using MPI+OpenMP improve the performance.
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Fig. 10. The performance in nanoseconds per day of the LAMMPS 3000k
atom test case with MPI+OpenMP on ARCHER2.

The MPI task timing breakdown shows that the writing of
the output (the restart file) takes over 50% of the total run
time on 64 nodes with a single thread per process. This write
time is reduced when using multiple threads per process. The
performance for the MPI-IO in LAMMPS on ARCHER2 is
poor when using the OFI protocol with a large number of
processes, and using multiple threads reduces the total number
of processes. This is a known issue that can be overcome by
using UCX. This will be investigated in the future based on
MPI-IO investigations ongoing in the ARCHER2 CSE team.
Again, as with GROMACS, using more than 4 threads per
process results in poor performance due the arrangement of
L3 cache on ARCHER2.

E. Quantum ESPRESSO

The run times for the QE GRIR system on 1, 2, 4 and 8
threads per process and across 2, 4, 8 and 12 nodes is shown in
Fig. 11. On 1 node this calculation fails with an out of memory
(OOM) error across all thread values examined. On 2 nodes
with a single thread per process the calculation also fails with
OOM, but using MPI+OpenMP allows it to run successfully.
However using MPI+OpenMP does not appear to benefit the
performance of this calculation. Only on 12 nodes does using
2 threads slightly improve the run time, but at this point the
scaling is poor so it is not worthwhile running on as many
nodes.
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Fig. 11. The run time of the QE GRIR433 test case with MPI+OpenMP on
ARCHER2. OOM errors are reported when running on 1 node, and for 2
nodes with a single thread.



The QE CNT test case has even higher memory require-
ments and fails with a OOM error on 1 and 2 nodes regardless
of how many threads are used. On 4 nodes when only one
threads is used (1T) the calculation also fails with OOM,
however this is not the case for when MPI+OpenMP is used.
This is because there is more memory per process available
which is key for this test case.
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Fig. 12. The run time of the QE CNT test case with MPI+OpenMP on
ARCHER2. OOM errors are reported when running on 1 or 2 nodes, and for
4 nodes with a single thread.

Fig. 12 shows the run time for the CNT test case on 4, 8
and 16 nodes. On 4 nodes MPI+OpenMP does not appear
to improve the performance, however it does prevent the
calculation running out of memory as noted above. On 8 nodes
using 2 threads per process is around 1.5 times faster than
using single thread and on 16 nodes using 4 threads per process
is over 2 times faster than the single threaded case. This is due
to the increase in memory per process. As shown in Table II
below, even underpopulating with 64 processes per node gives
significant performance increase on 8 nodes. Using 2 threads
per process only improves this slightly.

TABLE II
THE RUN TIMES FOR THE CNT SYSTEM ON 8 NODES FOR DIFFERENT

CONFIGURATIONS OF THREADS AND PROCESSES PER NODE (PPN).

Threads × PPN Run time (s)
1 × 128 708
1 × 64 467
2 × 64 454

Of the QE systems that were investigated both had sizable
memory requirements which prevented them from running on
a single node. In both cases using MPI+OpenMP was able
to prevent them from failing with OOM by increasing the
available memory per process compared to the single threaded
case. This is particularly useful on ARCHER2 because the
memory per process is only roughly 2 GB if one process per
core is allowed. For the large CNT system the performance
was also significantly improved with MPI+OpenMP. This is
because this calculation is memory limited.

VI. USER EXAMPLE

In some circumstances using MPI+OpenMP can result in
big differences to the overall run time of a calculation. For
CP2K it has already been shown that using MPI+OpenMP can

offer performance benefits compared to using MPI alone when
running the CP2K performance benchmarks. This section
will look at the affect of using MPI+OpenMP for a real
user simulation. This is a long running molecular dynamics
simulation of around 100 water molecules which uses the
isothermal-isobaric ensemble. The QuickStep method and the
DZVP basis sets are used. For the exchange-correlation energy
the generalised gradient approximation (GGA) is used, and the
planewave cutoff is 1000 Ry. Switching using MPI+OpenMP
with 4 threads per process was found to greatly speed up the
users simulation.

Fig. 13 shows the time per MD step when using 1, 2, 4, 8
and 16 threads per process as calculated from averaging over
1,000 MD steps. The calculation was run on 4 ARCHER2
nodes.
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Fig. 13. The time per MD step for different values of threads per process.

For 4 threads per process the time taken per MD step is
around 70% of that of the pure MPI case. For a long running
MD simulation this will add up a big difference in the run
time. Not only this but the compute resources consumed will
be reduced by this same factor. This is very beneficial for
users.

The large reduction seen the run time when using
MPI+OpenMP is mainly due to the time taken for the MPI
calls. These are summarised in Table III.

TABLE III
THE CUMULATIVE TIME FOR CP2K AND DIFFERENT FOR MPI CALLS ON 1

AND 4 THREADS PER PROCESS. THE CALCULATION IS DONE FOR 1,000
MD STEPS.

Call Cumulative time (s) Fractional difference
1 thread 4 threads

CP2K total 3585 2596 72%
mp waitall 681 314 46%
mp sum d 652 64 10%
mp alltoall 258 120 47%
mp waitany 349 184 53%

The largest reduction in time when using 4 threads per
process is seen in the calls to mp sum d, which is reduced by
90%. However there are also large reductions in the time taken
for the other MPI calls, with these now taking around half of
the time. The cost of these communications, which have been
found to be dominant in CP2K on ARCHER2, can be greatly
reduced by using MPI+OpenMP.



VII. CONCLUSIONS

This paper explored the use of MPI+OpenMP on a Cray
EX system - ARCHER2. A range of scientific applications
were examined and for each of these applications different test
cases were investigated in order to cover different user usage
scenarios. Applications were chosen based on their usage on
the system. The results showed that use of MPI+OpenMP has
performance benefits over using single threaded “MPI only”
for almost all applications tested.

It was found that CP2K and CASTEP can benefit from
using MPI+OpenMP for all test cases examined and whether
run on a few or many nodes. These applications are often
dominated by MPI communications such as MPI_Alltoall
and using MPI+OpenMP reduces the communications costs
by allowing for message aggregation which results in fewer
messages overall. Using 2 or 4 threads per process is usually
a good choice for getting good performance across a range of
scales.

For Quantum ESPRESSO using MPI+OpenMP was able to
help with fulfilling the memory requirements. When using pure
MPI on ARCHER2 it is possible that the available memory
per process is not large enough and the calculation will crash
with out of memory errors. For the larger CNT system the
increase in memory with MPI+OpenMP was also able to help
improve the performance. Using MPI+OpenMP with 2 or 4
threads per process is therefore a good idea for these memory
intensive calculations.

For the classical molecular dynamics codes that were in-
vestigated, GROMACS and LAMMPS, using MPI+OpenMP
was found to have no performance benefit unless at the scaling
limit. Classical molecular dynamics codes usually have lower
memory requirements than quantum DFT based codes and
also have fewer collective communications. This means that
they can cannot benefit as much from using MPI+OpenMP.
The larger MD systems tested here typically scale to around
32 nodes when one thread per process is used. By using
MPI+OpenMP with 2 or 4 threads per process the scaling
can be extended out slightly.

Finally this paper looked at a real user use case where
MPI+OpenMP was able to improve the performance of a
CP2K simulation by nearly 40%. This clearly demonstrates
that using MPI+OpenMP can be of large benefit to users.
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