
Performance of Parallel IO on the
5860-node HPE Cray EX System ARCHER2

David Henty
EPCC

The University of Edinburgh
Edinburgh, UK

d.henty@epcc.ed.ac.uk

Abstract—EPCC has recently started supporting the new
UK National Supercomputer service ARCHER2, a 5860-node,
750,080-core HPE Cray EX system. In this paper we in-
vestigate the parallel IO performance that can be achieved
on ARCHER2 and compare to experiences on the previous
system ARCHER, a Cray XC30. The parallel IO libraries
MPI-IO, HDF5 and NetCDF are benchmarked for collective
writing to a single shared file, as well as the file-per-process
approach for comparison. Results are obtained using a simple IO
benchmark - https://github.com/davidhenty/benchio
- which writes a large, regular, three-dimensional distributed
dataset to file. We measure performance on two Lustre filesys-
tems, one with spinning disks and the other using solid state
NVMe storage. We find that although we can saturate the IO
bandwidth writing multiple files, parallel performance for a single
shared file is well below the expected rate. Although this appears
to be because the libraries are not optimally configured for a
system where a single process cannot saturate the bandwidth of
one storage unit, attempts to optimise this only lead to marginal
improvements.

Index Terms—parallel, computing, HPC, IO, Lustre,
ARCHER2

I. INTRODUCTION

File input and output often become a severe bottleneck
when parallel applications run on large numbers of processors.
Simple methods such as writing a separate file-per-process or
performing all IO via a single controller process are no longer
feasible at scale. In order to take advantage of the full potential
of modern parallel file systems such as Lustre, IO also needs
to be done in parallel.

EPCC started to operate ARCHER2 [2], the UK national
academic supercomputer service funded by UKRI (UK Re-
search and Innovation), in November 2021. It is a large CPU-
based HPE Cray EX system with a dedicated parallel Lustre
filesystem for application IO from the compute nodes.

Our main experiences of parallel IO performance were
obtained on the previous ARCHER service which was de-
commissioned in January 2021. ARCHER was a Cray XC30
system with a similar number of nodes to ARCHER2; how-
ever, its Lustre filesystem had very different performance
characteristics comprising a much larger number of smaller,
slower disks. ARCHER2 also has a substantial amount of

This work was financially supported by the ARCHER2 CSE grant and by
the PRACE-6IP project [1] funded in part by the EU’s Horizon 2020 Research
and Innovation programme (2014 - 2020) under grant agreement 823767.

storage not built on spinning disks but using solid state NVMe
storage, which is new to the UK HPC community.

This paper is based on initial work done as part of the work
of the ARCHER2 Computational Science and Engineering
(CSE) support team, aiming to give users advice on the
best parallel IO settings for their own applications. As the
Lustre filesystems on the ARCHER2 HPE Cray EX have very
different performance characteristics to that of the preceding
XC30, previous experience may not be useful in achieving
good IO rates.

II. HARDWARE

The hardware specifications of the two HPC systems are
summarised in Table I. On both systems the physical disks
- called Object Storage Targets (OSTs) in Lustre - are split
across three separate filesystems. This is to provide a balance
between total IO bandwidth – which is related to the number
of OSTs in each filesystem – and contention for the single
Meta Data Server (MDS) which controls each filesystem. The
number of Lustre clients is very similar between the two
systems as the number of compute nodes is practically the
same (each node is a separate Lustre client), although the
number of MPI processes accessing each client will be very
different as ARCHER2 has more than five times more CPU-
cores per node. The number of OSTs per filesystem is also
very different with ARCHER2 having around four times fewer
than ARCHER. The ARCHER2 OSTs are much larger in
capacity, around 350 GiB each vs 25 GiB on ARCHER.

ARCHER2 also has a fourth Lustre filesystem using solid
state NVMe storage. Although this is not yet open for user
service, we have access to it for benchmarking purposes.
The HPE data sheets indicate that the maximum achievable
write bandwidth per OST is 11 GiB/s for disk and 55 GiB/s
for NVMe; across each entire filesystem this gives aggregate
bandwidths of 132 GiB/s and 1,100 GiB/s respectively.

III. SOFTWARE

A. Benchmark

All results come from the simple benchio benchmark
– https://github.com/davidhenty/benchio –
which writes a large, regular, three-dimensional distributed
dataset to a single shared file. It has been used for a number

ARCHER Cray XC30 ARCHER2 HPE Cray EX
Compute
CPU 2× 12-core Intel Ivy-Bridge 2× 64-core AMD EPYC
#nodes 4,920 5,860
#cores 118,080 750,080
network Cray Aries HPE Cray Slingshot
Disk
technology ClusterStor ClusterStor L300
#FS 3× Lustre 3× Lustre
#OST / FS 50 12
capacity 4 PiB 13 PiB
NVMe
technology ClusterStor E1000F
#FS 1× Lustre
#OST / FS 20
capacity 1 PiB

TABLE I
ARCHER VS ARCHER2 HARDWARE

of previous IO benchmarking studies [3], [4], [5]. The MPI-
IO part was originally developed to improve the IO perfor-
mance of a cellular automaton code parallelised using Fortran
Coarrays [6], hence the choice of Fortran as the language.
The cellular automaton was based on large 3D integer arrays
decomposed in parallel across a 3D grid of processes (or
“images” in coarray terminology). IO was originally done in
serial by sending all data through a single controller image
which became a performance bottleneck when scaling to
large system sizes. It was straightforward to call a parallel
IO implementation written using MPI-IO (the coarray / MPI
interface is very straightforward as local coarray data can
simply be treated as a normal Fortran array), and this IO
subroutine became the basis of benchio.

Parallel applications have a huge range of different IO
patterns so it is impossible to cover all performance char-
acteristics with a single benchmark. Despite its simplicity,
the IO pattern of benchio is representative of any application
that uses regular domain decomposition and is actually quite
challenging for a parallel IO library to implement. When
writing to a single shared file the domain decomposition means
that the data from a single process is split into a large number
of small contiguous sections of the file. As disk systems are
optimised for large contiguous writes this places a heavy load
on the IO library in terms of reorganising the data internally
between processes prior to writing to disk; the fact that Lustre
can store a single file across multiple OSTs makes this even
more challenging. As an example, a 20483 array decomposed
across 512 processes in an 83 grid has some 8 billion elements
in total (16 million per process in a 2563 sub-array). However,
when writing to a single file, this is split into 16 million
individual sections each comprising only 256 elements. Note
that in benchio we always use double-precision arrays, i.e. 8
bytes per element.

Once it became clear that it would make a useful stand-
alone benchmark, HDF5 [12] and NetCDF [13] formats were
added using code previously developed for the EU-funded
EUFORIA project [7]. The EUFORIA benchmark had used
a one-dimensional parallel decomposition where each process

owns a large contiguous section of the file, so the IO pattern
was not as complicated and fast IO rates were more straightfor-
ward to achieve. The simple file-per-process approach, where
each process opens its own file and no data reorganisation
is required, was also added to benchio as this is useful in
selectively saturating different levels of the IO hierarchy. For
file-per-process, benchio does not use the MPI-IO library: it
simply uses Fortran binary stream IO with open, write
and close. We plan to add ADIOS2 [14] as an additional
format but this work is still in progress (we have preliminary
IO figures for ADIOS2 from other CSE work on ARCHER2).

In benchio, timing starts before the first file open and ends
after the final file close. Although it would be straightforward
to add parallel input benchmarks to benchio, we concentrate
on output as most HPC applications write more data than they
read [8]. Caching can also make the performance of parallel
read more challenging to interpret.

B. Libraries and System Software

Unless otherwise stated, all performance results were pro-
duced using the programming environment PrgEnv-cray/8.0.0
which provides implementations of MPI-IO (included in the
default Cray MPI), HDF5 via the module cray-hdf5-parallel
(which uses MPI-IO) and NetCDF via the module cray-netcdf-
hdf5parallel (which uses HDF5).

The benchmark was compiled using the Cray Fortran com-
piler, although this should have minimal impact on perfor-
mance as all the time is spent in the IO libraries. Lustre is
provided by HPE, optimised for the Shasta architecture.

IV. METHODOLOGY

Performance benchmarking any HPC application is always
challenging in terms of reproducibility as components such as
the interconnect are shared between multiple jobs. IO bench-
marking is even more challenging as the same IO hardware
is shared by all jobs using the same filesystem. As a result, it
is common to obtain outlying results where IO rates are poor
as other users were performing substantial amounts of IO at
the same time. For this study we are aiming to understand
the fundamental characteristics, performance limitations and
bottlenecks of parallel IO on ARCHER2. We are therefore
interested in the maximum IO bandwidth we can obtain, so we
repeat measurements 10 times and take the fastest result. We
take care not to run more than one IO benchmarking job at a
time so we are at least never clashing with our own application.
IO rates to disk typically have a standard deviation of around
10%; for NVMe the variation is less as the filesystem is not
yet open for general usage.

Lustre achieves performance by having multiple OSTs in
each filesystem, and allowing for a single file to be stored
across multiple OSTs by partitioning it into multiple stripes.
Lustre can try and ensure load-balance by using different
OSTs for different files. For example, if an application uses
unstriped files (each stored on a single OST) then these will
automatically be distributed roughly evenly between all the
available OSTs.

To investigate the effect of striping, most runs of the
benchmark write to three separate directories in turn, each
set to have different stripe counts using the Lustre command
lfs setstripe -c <stripe count>:

1) unstriped with a stripe count of 1;
2) striped with a stripe count of 4;
3) fullstriped with a stripe count of -1.
Full striping equates to 12 stripes on the disk filesystems

and 20 stripes on the NVMe filesystem.

V. FILE-PER-PROCESS

A. IO to all OSTs

Writing a separate file from each MPI process, typically
identified by its rank, is a standard approach when users first
develop a parallel application. Although it is a poor approach
in terms of usability when scaling to large process counts –
marshalling so many separate files is awkward and reconstruct-
ing the global dataset typically requires post-processing – it
does make maximum use of the full parallel bandwidth of
Lustre provided there are many more processes than OSTs.
The downside in terms of performance is in terms of latency:
the single MDS may become overloaded with so many file
open and close requests.

 0

 100

 200

 300

 400

 500

 600

 1 2 4 8 16 32 64

G
iB

/s

Nodes

20 stripes (NVMe)
4 stripes (NVMe)

Unstriped (NVMe)
12 stripes (disk)

4 stripes (disk)
Unstriped (disk)

Fig. 1. File-per-process bandwidth with 128 MiB files.

The results are shown in Figure 1 where every file represents
a 2563 cube and is of size 128 MiB. Since we have 128
processes per node, each node is writing 16 GiB of data.

The aim of this test is to try and saturate all the OSTs
to infer the maximum achievable bandwidth per-OST. As we
are writing so many files, all the OSTs are used regardless
of striping so we would expect the bandwidth be largely
independent of stripe count; in fact, striping might be expected
to reduce bandwidth in this case as there is more book-keeping
required to work out which stripe goes to which OST.

The NVMe results largely follow this pattern with the
unstriped bandwidth the highest. It appears that 64 nodes is
insufficient to totally saturate the OSTs as the curve is still
rising (the peak is expected to be over 1 TiB/s), but we might
infer that the per-OST NVMe bandwidth is at least around 30
GiB/s (as there are 20 OSTs).

The disk results are confusing as the unstriped rates are so
low despite the fact that all 12 OSTs should be available. The
striped results are surprisingly high – at face value indicating
a per-OST disk bandwidth of over 40 GiB/s which exceeds
the quoted peak rate of 11 GiB/s. A possible explanation is
that data is cached at some point in the IO software stack and
we are not measuring the true IO speed to disk.

B. IO to a single OST

A more direct way of measuring the maximum OST band-
width is to do all IO to a single OST. This can be done
in Lustre by specifying a stripe count of one and selecting
a specific OST with the --stripe-index option to lfs
setstripe.

We observed extremely poor performance when writing
from every CPU-core (128 MPI processes per node), implying
that some part of the IO stack was being overloaded. We
therefore benchmarked one 5123 array per node and eight 2563

arrays per node.
The results are shown in Figure 2 where all files were

unstriped. For 8 files per node, the disk results indicate a
maximum per-OST bandwidth of 12 GiB/s whereas for NVMe
it is 55 GiB/s. Both these figures are remarkably close to the
stated peak rates of 11 GiB/s and 55 GiB/s.

 0

 10

 20

 30

 40

 50

 60

 1 2 4 8 16 32 64

G
iB

/s

Nodes

8 files per node (NVMe)
1 file per node (NVMe)
8 files per node (disk)
1 file per node (disk)

Fig. 2. File-per-process bandwidth to 1 OST with 1 GiB of data per node.

C. Bandwidth per node

One obvious feature of Figure 2 is that, for 4 nodes or fewer,
the results are almost identical between disk and NVMe. This
would imply that the raw file writing speed is not the limiting
factor here as this speed is very different between the two
filesystems. It appears that there is some other limiting factor
in the bandwidth which, for small numbers of nodes, is less
than the OST bandwidth.

To further investigate this we re-ran the file-per-process
study of Section V-A but on a single node with a range of
process counts, rather than on multiple fully-populated nodes.
To compare with the previous study we used strong scaling
within a node so that the total amount of data was 16 GiB per
node as before. The results are shown in Figure 3.

 0

 5

 10

 15

 20

 25

 1 2 4 8 16 32 64 128

G
iB

/s

Processes

Unstriped (NVMe)
4 stripes (NVMe)

20 stripes (NVMe)
Unstriped (disk)
4 stripes (disk)

12 stripes (disk)

Fig. 3. File-per-process bandwidth from a single node with 16 GiB of data.

The data for up to 4 processes indicates that there is a per-
process IO limit of just over 1 GiB/s. After that the data is
more complicated and is not consistent with a simple per-node
bandwidth limit as the disk and NVME data are different.
However, it would appear that a node can sustain between 15
GiB/s and 20 GiB/s which is more than the the peak of a
single disk OST but less than for NVMe.

D. Summary

On ARCHER, studies of file-per-process IO gave quite a
simple picture [9]. Bandwidth was largely independent of
striping, and aggregate bandwidths of around 15 GiB/s were
achievable on all 50 OSTs, i.e. 0.3 GiB/s per OST. A single
process could write at 0.5 GiB/s which is slightly more than
the per-OST limit.

All the peak Lustre bandwidths on ARCHER2 are much
higher as the technology is much newer. However, the bal-
ance is very different with a smaller number (12 or 20) of
much faster OSTs. The picture is also not so straightforward
and determining the per-OST limit is more difficult than on
ARCHER, requiring us to write to a single OST rather than
the whole filesystem. However, for both the disk and NVMe
filesystems, it is clear that the OSTs can sustain rates in the
tens of GiB/s. This is much higher than the per-process limit
of around 1 GiB/s.

The major difference between the two systems is that on
ARCHER2, to get anywhere near saturating the OSTs, we
will need to have multiple processes writing per node; on
ARCHER a single process per node was sufficient. This
will become important when considering the performance of
parallel libraries when writing to a single shared file, which
is the main operation that is measured by benchio.

VI. MPI-IO

Having used the simple file-per-process approach to in-
vestigate the peak performance of the Lustre filesystems, we
now look at parallel IO to a single shared file which is more
relevant to most parallel applications. There are a number of
parameters that can be varied when investigating parallel IO,

such as the MPI implementation and the Lustre stripe count
and size. Rather than do an exhaustive investigation for all
three libraries (MPI-IO, HDF5 and NetCDF) we choose to
look for the best parameters for MPI-IO then use these for the
other libraries. We believe this is a sensible approach as both
HDF5 and NetCDF ultimately call MPI-IO.

For all studies we do strong scaling with a global data size
of 1024× 1024× 2048 which gives a file size of 16 GiB. On
a single node this gives the same amount of data per process
– 128 MiB – as the strong scaling file-per-process runs (with
fully populated nodes).

A. MPI library

We first look at MPI-IO with the default MPI settings. The
results are summarised in Table II.

nodes stripes GiB/s
1 1 1.07
1 2 1.58
1 12 1.22
2 1 0.01
2 2 0.26
2 12 N/A

TABLE II
MPI-IO TO A SINGLE SHARED FILE ON DISK WITH DEFAULT SETTINGS

These results are very poor (for two nodes and 12 stripes
the job did not complete in the time limit). We consulted
HPE and they suspected that it was due to poor collective
performance in the MPI library and recommended setting
an environment variable that had previously been seen to
improve MPI collectives for large buffer sizes: export
FI_OFI_RXM_SAR_LIMIT=64K. this setting was used for
all further studies with the default MPI.

Unlike previous Cray HPC systems, MPI can use more
than one low-level transport layer. The default is OpenFabrics
(OFI), but the alternative UCX library from Mellanox can also
be used by swapping a couple of modules. Using UCX had
previously been seen to improve collective performance for
large buffer sizes.

The results are shown in Figure 4. The environment variable
has significantly improved the IO, but UCX is better still. Note
that the MPI-IO library hangs for 32 nodes using UCX which
is why the graph stops at 16 nodes; we are currently investigat-
ing this issue. Because UCX is so much better we did not pur-
sue attempting to optimise the FI_OFI_RXM_SAR_LIMIT
setting.

To understand the performance, it helps to have a basic
understanding of how the MPI-IO library is implemented [10].
For collective IO, a subset of MPI processes are designated
as aggregators. These aggregators collect data from the other
processes and write it to disk. By default, Cray MPI assigns
one aggregator per stripe and selects aggregators on different
nodes (if possible). The way the aggregators are assigned
was verified by setting an environment variable – export
MPICH_MPIIO_STATS=1 – which causes the MPI-IO li-
brary to print a variety of useful statistics.

 0

 2

 4

 6

 8

 10

 12

 1 2 4 8 16 32

G
iB

/s

Nodes

12 stripes (UCX)
4 stripes (UCX)

Unstriped (UCX)
12 stripes (OFI)

4 stripes (OFI)
Unstriped (OFI)

Fig. 4. Comparison of UCX and OFI for MPI-IO to disk

Using UCX, where the data aggregation is done efficiently
and performance is limited by IO to disk rather than data
transfer over the network, we therefore see performance in-
crease roughly linearly with node count up until the maximum
number of stripes. This also explains why the unstriped curve
is flat as the IO is performed by a single aggregator and is
capped at just over 1 GiB/s (the same figure we see for single-
process Fortran write in Figure 2). For 4 stripes, IO increases
up to 4 nodes and then flattens off; we assume that, for 12
stripes, the 32 node rate would be the same as 16 nodes but
we are unable to obtain this data point at present.

Having only a single process performing IO to each OST is
far from optimal on ARCHER2 as we have seen that the OST
bandwidth is much larger than the single process limit. The
reason that performance increases with stripe count at 1 and
2 nodes is because there are more aggregators than nodes and
hence more than one process is writing to each OST. However,
the performance does not increase linearly with the number
of aggregators (e.g. only 50% faster for 4 stripes compared to
1 on a single node) indicating that there is some contention
between aggregators when accessing the same OST. Scaling
with node count is also not perfectly linear but it is good: for
12 stripes we would predict 8 GiB/s on 8 nodes and 12 GiB/s
on 16 nodes when the actual figures are 6.8 GiB/s and 9.7
GiB/s (around 80% parallel efficiency).

We saw from Figure 2 that the NVMe OSTs were around
5 times faster, and we have 20 of them compared to 12 OSTs
for the disk filesystems. However, MPI-IO performance is
no better - see Figure 5 where we compare NVMe to the
previous UCX results for disk. For the same number of stripes,
performance is practically identical between NVMe and disk,
although it is somewhat surprising that the NVMe filesystem
is slower than disk at 16 nodes because we will have 20
aggregators writing rather than 12.

This is a very different situation to ARCHER where a single
process was able to saturate an OST, so one aggregator per
stripe was optimal. The default performance of MPI-IO on
ARCHER2 is worse than on ARCHER despite the much faster
OSTs.

 0

 2

 4

 6

 8

 10

 12

 1 2 4 8 16 32

G
iB

/s

Nodes

12 stripes (disk)
4 stripes (disk)

Unstriped (disk)
20 stripes (NVMe)

4 stripes (NVMe)
Unstriped (NVMe)

Fig. 5. MPI-IO to a single shared file using UCX

B. Collective IO

In benchio, the collective MPI-IO routine
MPI_File_write_all is used to write the data. As
a collective operation, the library knows that all processes
in the communicator will be calling the routine and can
therefore employ a variety of optimisations to improve IO
performance. Most importantly, data from different processes
can be merged before being written to disk resulting in a
small number of large IO transactions. For non-collective IO
the data from each process has to be written individually,
which for benchio results in a large number of small IO
transactions. Individual processes will also have to lock the
file to ensure data consistency.

It is interesting to see what improvement this
makes in practice, so we did some trial runs where
MPI_File_write_all was replaced by the non-collective
routine MPI_File_write (the parameters to the call are
all identical). The results are shown in table III.

nodes stripes GiB/s
Disk
1 1 0.05
1 2 0.34
1 12 0.31
2 1 0.05
2 2 0.18
2 12 0.25
NVMe
1 1 0.21
1 2 0.32
1 20 0.28
2 1 0.32
2 2 0.39
2 20 0.38
4 1 0.30
4 2 0.35
4 20 0.34

TABLE III
NON-COLLECTIVE MPI-IO TO A SINGLE SHARED FILE

For the disk filesystem writing to a single OST is very slow,
presumably because all processes are having to issue locks to
the same OST; having multiple OSTs alleviates this to some

extent, although for 4 nodes the performance was so poor that
we were not able to obtain results. Although locking does
not seem to be so much of an issue for NVMe, Table III
clearly demonstrates that collective IO is essential to scalable
performance.

VII. HDF5 AND NETCDF

Before trying to improve the MPI-IO performance, we look
at how HDF5 and NetCDF perform compare to MPI-IO. To
ensure that all IO was measured under similar conditions we
benchmarked all three libraries in the same batch jobs, so the
MPI-IO data will not be identical to that previously presented.

First we revisit OFI (after setting the appropriate OFI
environment variable as before) – see Figures 6 and 7 which
use the disk and NVMe filesystems respectively. The really
surprising feature here is that HDF5 and NetCDF perform
and scale better than MPI-IO, despite ultimately using MPI-
IO to write to file. One possible explanation is that HDF5 and
NetCDF do their own data aggregation before calling MPI-
IO. Hence they are using different MPI collective routines
that may be be well optimised on ARCHER2, as opposed
to those collectives used internally by MPI-IO which appear
to be poorly optimised (even after setting the appropriate
environment variable).

 0

 2

 4

 6

 8

 10

 1 2 4 8 16 32

G
iB

/s

Nodes

MPI-IO 12 stripes
HDF5 12 stripes

NetCDF 12 stripes
MPI-IO 4 stripes
HDF5 4 stripes

NetCDF 4 stripes
MPI-IO unstriped
HDF5 unstriped

NetCDF unstriped

Fig. 6. Parallel IO to disk using OFI MPI

As before, the UCX results are faster and also much cleaner
- see Figures 8 and 9. Here we see the expected result that, for
a given stripe count, the general behaviour for all the libraries
is the same but NetCDF is slightly slower than HDF5, which in
turn is slightly slower than MPI-IO. This presumably reflects
the additional software overheads, since NetCDF calls HDF5
which then calls MPI-IO.

A. Summary

Using the UCX version of MPI leads to reasonable scalabil-
ity with increasing node count for all the libraries when writing
to a single shared file. However, the absolute performance is
poor, more than an order of magnitude less than the theoretical
peaks. This appears to be because each OST is only being
accessed by a single process on a single node, and we have

 0

 2

 4

 6

 8

 10

 1 2 4 8 16 32

G
iB

/s

Nodes

MPI-IO 20 stripes
HDF5 20 stripes

NetCDF 20 stripes
MPI-IO 4 stripes
HDF5 4 stripes

NetCDF 4 stripes
MPI-IO unstriped
HDF5 unstriped

NetCDF unstriped

Fig. 7. Parallel IO to NVMe using OFI MPI

 0

 2

 4

 6

 8

 10

 1 2 4 8 16 32

G
iB

/s

Nodes

MPI-IO 12 stripes
HDF5 12 stripes

NetCDF 12 stripes
MPI-IO 4 stripes
HDF5 4 stripes

NetCDF 4 stripes
MPI-IO unstriped
HDF5 unstriped

NetCDF unstriped

Fig. 8. Parallel IO to disk using UCX MPI

seen from the file-per-process benchmarks that that this limits
performance to around 1 GiB/s per OST.

VIII. OPTIMISING MPI-IO

We now look at whether the MPI-IO performance can be
improved by tuning various library settings

A. Stripe size

We first look at varying the stripe size, which has a default
of 1 MiB. When distributing a file across OSTs, Lustre divides
it into many small stripes and allocates these cyclically to the
OSTs. For example, for a 12 MiB file with 4 stripes (using the
default 1 MiB stripe size), the first OST will store the first,
fifth and ninth megabytes, the second OST the second, sixth
and tenth megabytes, etc. Given the multi-gigabyte files we
are working with, 1 MiB seems rather small.

We choose the largest node count possible for UCX – 16
nodes – and maximal striping, then vary the stripe size from
128 KiB to 64 MiB. The results are shown in Figure 10.
It is clear that 1 MiB is actually a sensible default and the
bandwidth cannot be improved significantly by varying it.

 0

 2

 4

 6

 8

 10

 1 2 4 8 16 32

G
iB

/s

Nodes

MPI-IO 20 stripes
HDF5 20 stripes

NetCDF 20 stripes
MPI-IO 4 stripes
HDF5 4 stripes

NetCDF 4 stripes
MPI-IO unstriped
HDF5 unstriped

NetCDF unstriped

Fig. 9. Parallel IO to NVMe using UCX MPI

 0

 2

 4

 6

 8

 10

 12

 14

 0.0625 0.25 1 4 16 64

G
iB

/s

Stripe size (MiB)

NVMe (20 stripes)
Disk (12 stripes)

Fig. 10. Varying the stripe size for MPI-IO on 16 nodes and maximal striping.

B. Aggregator settings

The obvious improvement would appear to be having
more than one aggregator per stripe. Fortunately, the num-
ber of aggregators can be controlled by the environment
variable MPICH_MPIIO_HINTS. For example, setting this
to *:cray_cb_nodes_multiplier=2 will allocate two
aggregators per stripe (double the default) for all files (spec-
ified by *). The fact that this has the desired effect can
be checked by examining the output triggered by setting
MPICH_MPIIO_STATS=1.

It is also possible to address the issue of contention be-
tween aggregators writing to the same OST by changing the
default locking policy. By default each MPI process locks
the file to prevent clashes with other processes. However, if
all IO is collective, the MPI-IO library ensures that there
are no clashes so this can be relaxed to a shared lock
amongst all processes. This can be done by setting the hints
*:cray_cb_write_lock_mode=1 (the default locking
mode is 0) and *:romio_no_indep_rw=true. We also
look at varying the stripe size and run with 4 MiB stripes
as well as the default of 1 MiB. Note that these non-default
locking options cannot be used for HDF5 or NetCDF as both
libraries perform non-collective as well as collective IO.

The results for disk output is shown in Figure 11. This is
rather disappointing as none of the settings give faster IO than
the default.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8 16

G
iB

/s

Aggregators per stripe

Lock mode 0, 1 MiB stripe
Lock mode 1, 1 MiB stripe
Lock mode 1, 4 MiB stripe

Fig. 11. Varying lock mode, aggregators and stripe size for MPI-IO to disk
(maximal striping).

For NVMe the results are slightly more encouraging – see
Figure 12. Although changing the number of aggregators has
little effect, the relaxed locking mode improves IO by about
20%; there is also some evidence that increasing the stripe
size is beneficial.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8 16

G
iB

/s

Aggregators per stripe

Lock mode 0, 1 MiB stripe
Lock mode 1, 1 MiB stripe
Lock mode 1, 4 MiB stripe

Fig. 12. Varying lock mode, aggregators and stripe size for MPI-IO to NVMe
(maximal striping).

IX. CONCLUSIONS AND FURTHER WORK

Overall, the performance of parallel IO to a single shared
file on ARCHER2 is disappointing at present. Maximum rates
are not significantly in excess of 10 GiB/s regardless of the
choice of MPI-IO, HDF5 or NetCDF. Achieving even this
figure requires the use of a non-default MPI library based
on the UCX protocol (the default is OFI). This is roughly
the same as the performance of a single disk OST, when
there are 12 in each filesystem, and much less than the 55
GiB/s of a single one of the 20 NVMe OSTs. Although
these are peak rates, the file-per-process benchmarks show that
they are readily achievable from user code using standard IO

routines. It is clear that having a single aggregator per OST,
which is the default setting for MPI-IO, is far from optimal
on ARCHER2 (although it was optimal on its predecessor
ARCHER). However, increasing the number of aggregators
has little effect on performance even when we try to minimise
contention by using a shared lock. Even if the relaxed locking
approach had benefitted MPI-IO, it would not be a general
solution as it cannot be used for HDF5 or NetCDF.

From other work on ARCHER2 we have preliminary results
for parallel IO rates from the Xcompact3D CFD application
[11]. This uses a regular domain decomposition of a 3D grid
similar to benchio – although constrained to a 2D “pencil”
decomposition because of its reliance on FFTs – and can
use MPI-IO, HDF5 and ADIOS2 for output. The MPI-IO and
HDF5 results are similar to those presented here, but ADIOS2
appears to be able to achieve higher rates with its own BP4
format. Rather than always using the same file format as serial
IO, BP4 sometimes produces multiple files so may be able
to avoid the contention issues we see with MPI-IO. It has
the same concept of aggregators as MPI-IO, selecting one per
node by default, but we have not yet had time to investigate
changing this. We plan to add ADIOS2 as an option to benchio
so we can fully explore its potential on ARCHER2.

X. ACKNOWLEDGEMENTS

We would like to thank Harvey Richardson of HPE, and
Paul Bartholomew, Andy Turner, Adrian Jackson and Shrey
Bhardwaj of EPCC, for valuable discussions.

REFERENCES

[1] Partnership for Advanced Computing in Europe. https://prace-ri.eu/
[2] https://www.archer2.ac.uk/
[3] D. Henty et al., “Performance of Parallel IO on ARCHER”,

http://www.archer.ac.uk/documentation/white-papers/
[4] A. Turner et al., “Parallel I/O Performance Benchmark-

ing and Investigation on Multiple HPC Architectures”,
http://www.archer.ac.uk/documentation/white-papers/

[5] D. Henty, A. Jackson, C. Moulinec and V. Szeremi, “Per-
formance of Parallel IO on Lustre and GPFS”, presented at
EASC2015: Exascale Applications and Software Conference 2015,
http://www.easc2015.ed.ac.uk/program-archive/index.html

[6] Anton Shterenlikht, “Fortran coarray library for 3D cellular automata
microstructure simulation”, proceedings of 7th International Conference
on PGAS Programming Models, 3-4 October 2013.

[7] Adrian Jackson et al., “High Performance I/O”, Proceedings of the 2011
19th International Euromicro Conference on Parallel, Distributed and
Network-Based Processing. 9-11 February 2011.

[8] A. Turner et al., “Analysis of parallel I/O use on the UK national
supercomputing service, ARCHER using Cray’s LASSi and EPCC
SAFE”, http://www.archer.ac.uk/documentation/white-papers/

[9] A. Turner, webinar on “Parallel IO on ARCHER”, 18 January 2017,
slides available from https://www.archer.ac.uk/training/virtual/.

[10] R. Thakur, W. Gropp and E. Lusk, “Data sieving and collective I/O
in ROMIO”, Proceedings of Frontiers ’99. Seventh Symposium on the
Frontiers of Massively Parallel Computation, 26 Feb 1999.

[11] P. Bartholomew et al., “Xcompact3D: An open-source framework for
solving turbulence problems on a Cartesian mesh”, SoftwareX, Volume
12, July-December 2020, https://doi.org/10.1016/j.softx.2020.100550

[12] M. Folk at al., “An overview of the HDF5 technology suite and its
applications”, Proceedings of the 2011 EDBT/ICDT Workshop on Array
Databases, March 25 2011, http://dx.doi.org/10.1145/1966895.1966900

[13] R. Rew and G. Davis, ”NetCDF: an interface for scientific data access,”
in IEEE Computer Graphics and Applications, vol. 10, no. 4, pp. 76-82,
July 1990, doi: 10.1109/38.56302.

[14] https://adios2.readthedocs.io/

