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Introduction

• ARCHER2 is the latest UK National Supercomputing Service
• replaces previous ARCHER service

• what parallel IO advice should we give ARCHER users for ARCHER2?
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ARCHER2 Service

• Comprehensive support for users from 
experts at EPCC and HPE

• Application support via ARCHER2 
Computational Science and Engineering 
(CSE) support team

• Extensive training programme that is free 
to researchers
• Wide range of courses from entry level to 

advanced

• Support to employ Research Software 
Engineers to improve codes
• These can be RSEs in the community or 

provided by EPCC

• Outreach and engagement with the public 
and wider research community
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Benchmarking

• Simple benchio benchmark: https://github.com/davidhenty/benchio
• written in Fortran for historical reasons

• Large 3D array distributed across 3D process grid
• writes to a single shared file (SSF): MPI-IO, HDF5 or NetCDF

• three separate output directories for different filesystem configurations

• can also write file-per-process (FPP), or single serial file, for comparison

• surprisingly complicated IO pattern, e.g. 4x4x4 array on 8 processes (2x2x2):
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Lustre

• One Lustre filesystem has many disks (strictly, Object Storage Targets)
• controlled by a single MetaData Server, each node a separate Lustre client

• ARCHER filesystems had around 50 OSTs

• ARCHER2 disk filesystems have 12 OSTs
• NVMe (solid state) filesystem has 20 OSTs

• Multi-disk parallelism in two ways
• single file stored on many OSTs

• Lustre calls this “striping”

• files can be stored on a single OST
• Lustre will use different OSTs for each file

• benefits serial IO if there are many files
written simultaneously from many nodes
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Where are the bottlenecks?

• From “Parallel IO on ARCHER” at www.archer.ac.uk/training/virtual/
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• 500 MiB/s from single process
• MPI-IO assigns 1 writer / stripe

• Consistent with
• per-node limit around 6 GiB/s

• see FPP on 1 node

• per-OST limit around 700 MiB/s
• linear scaling of SSF up to 8 nodes

• about 50% efficiency on all OSTs
• both SSF and FPP can achieve 15 

GiB/s when using all OSTs

• requires at least   4 nodes for FPP

• requires at least 64 nodes for SSF

http://www.archer.ac.uk/training/virtual/


Summary on ARCHER

• Peak rates
• single process can write at 500 MiB/s

• single node can write at 6 GiB/s

• single OST can sustain 700 MiB/s

• MPI-IO assigns single process to write per stripe (on different nodes)
• does not seem optimal as a node can sustain an order of magnitude more

• But
• single OST bandwidth very similar to single process bandwidth

• MPI-IO can saturate filesystem with more nodes than OSTs
• i.e. for 64 or more nodes (as there are 50 OSTs)

• Contention at scale gives parallel efficiency around 50%
• maximum aggregate bandwidths around 15 GiB/s for serial (FFP) and parallel (SSF) IO

• HDF5 and NetCDF largely track MPI-IO: NetCDF calls HDF5 which uses MPI-IO
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ARCHER2 investigation

• Range of stripe settings: lfs setstripe –c <stripecount> <directory>

• unstriped/ (-c 1) single OST

• striped/ (-c 4) four OSTs

• fullstriped/ (-c -1) all OSTs (12 on disk, 20 on NVMe)

• Run 10 times and use maximum IO rate
• around 10% standard deviation on disk, less on NVMe as no user service yet

• System software
• PrgEnv-cray/8.0.0

• Cray Fortran compiler

• Cray MPI, MPI-IO, HDF5 and NetCDF libraries
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ARCHER2 file-per-process (1 GiB/node)

• FPP results on ARCHER2 difficult to interpret (caching?)
• over 500 GiB/s for both filesystems (single process achieves around 1 GiB/s)

• Try writing to a single OST (Lustre configuration option)
• need to restrict the number of files due to contention

EPCC, The University of Edinburgh 11

• Consistent with:
• 12 GiB/s max per OST for disk

• 55 GiB/s max per OST for NVMe

• Hardware limits from HPE
• 11 GiB/s and 55 GiB/s !

• No clear per-node limit
• disk and NVME data differ for small 

node counts



MPI-IO

• Default performance was terrible
• no benefits from parallelism (multiple nodes or OSTs)

• Two approaches
• tune MPI collectives for large buffers: export FI_OFI_RXM_SAR_LIMIT=64K

• use non-default UCX transport layer (default is Open Fabrics Interface OFI)
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OFI vs UCX MPI – strong scaling with 16 GiB file

• UCX is better than OFI
• although benchmark hangs for UCX on 32 nodes or more ...

• Scaling of UCX MPI-IO on ARCHER2 the same as MPI-IO on ARCHER
• parallel bandwidth = serial bandwidth * min(#stripes, #nodes)
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MPI-IO summary

• Parallel IO results very disappointing
• changing default stripe size of 1 MiB had very little effect

• note that on both systems collective IO calls are essential

• MPI-IO uses one writer or “aggregator” per Lustre stripe (i.e. per OST)
• parallel bandwidth of 10 GiB/s limited by per-process IO limit of 1 GiB/s

• cf. disk and NVMe totals of 12*11 = 132 GiB/s and 20*55 = 1.1 TiB/s !

• On ARCHER
• could saturate Lustre because OST limit was similar to per-process limit

• high aggregate bandwidth from large number (50) of slow OSTs

• On ARCHER2
• have many fewer (12 and 20) OSTs but they are much faster

• MPI-IO not configured for this situation (HDF5 and NetCDF suffer similarly)
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Changing aggregator settings

• Clearly need to have more than one aggregator per node
• export MPICH_MPIIO_HINTS = *:cray_cb_nodes_multiplier=2

• note that useful stats printed using export MPICH_MPIIO_STATS=1

• multiple aggregators per OST leads to file locking (lock mode 0)

• can relax this for collective MPI-IO: *:cray_cb_write_lock_mode=1

• Results for disk and NVMe, maximal striping (also vary stripe size)
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Conclusions

• MPI-IO results disappointing
• SSF parallel MPI-IO around 10% and 1% of peak disk and NVMe bandwidths

• requires UCX MPI which may affect MPI comms performance in a real application

• HDF5 and NetCDF similar

• user can saturate Lustre filesystem using file-per-process
• but not a practical approach at scale

• MPI-IO was able to saturate Lustre on ARCHER
• large number of slow OSTs compared to ARCHER2’s small number of fast OSTs

• Single IO aggregator per stripe/OST far from optimal on ARCHER2
• increasing this did not help, nor did changing locking mode

• note that relaxed locking not an option for NetCDF or HDF5 as they perform 
some non-collective IO even in collective mode (for metadata?)
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Further work

• Work with HPE to try and address the poor performance
• resolve issues with UCX on 32 nodes

• Extend benchio to use ADIOS2 library
• ADIOS2 can use MPI-IO, HDF5 or its own file format
• we have seen good performance elsewhere using BP4

• Initial results (from other work)
• MPI-IO and HDF5 write the same file in parallel as in serial
• ADIOS2 BP4 appears adaptive, e.g. sometimes writes multiple files

• has the same concept of “aggregators” as MPI-IO – default seems to be one per node
• possibility of much improved bandwidth if aggregators write to different files and 

therefore avoid issues around file locking

EPCC, The University of Edinburgh 17


