
LA-UR-22-23444
Approved for public release; distribution is unlimited.

Title: Deploying Cray EX Systems with CSM at LANL

Author(s): Stradling, Alden Reid
Johnson, Steven Lee
Van Heule, Graham Knox

Intended for: Cray User Group, 2022-05-02/2022-05-06 (Monterey, California, United
States)

Issued: 2022-04-15 (Draft)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

Deploying Cray EX Systems with CSM at LANL
Alden Stradling

Los Alamos National Laboratory
Los Alamos, NM
stradling@lanl.gov

Steven L. Johnson
Los Alamos National Laboratory

Los Alamos, NM
slj@lanl.gov

Graham Van Heule
Los Alamos National Laboratory

Los Alamos, NM
grahamvh@lanl.gov

Abstract—Los Alamos National Laboratory has deployed (over
the last year and a half) a pair of Cray Shasta machines – a
development testbed named Guaje and and production machine
named Chicoma, which will soon comprise the bulk of LANL’s
open science research computing portfolio.

In the process, we’ve encountered a number of problems and
challenges in several realms – authentication and authorization,
cluster health management, image management, and configura-
tion management. Both independently and in collaboration with
Cray/HPE, we’ve found solutions and brought the system into
stable production.

The presentation will discuss the solutions and how they came
about, and issues we are working to resolve in the near future.

Index Terms—Shasta, Kubernetes, container, HPC, LDAP,
Keycloak, Slurm, authN, authZ, Chicoma, Guaje, Los Alamos,
CSM, management, cluster

I. INTRODUCTION

It has been clear for at least a decade that High-Performance
Computing systems management software has been diverg-
ing from the broader stream of high-throughput management
methods, both commercial and governmental. It has also been
stated that such divergence represents a stagnation,

“relying on incremental changes to tried-and-true designs to
move between generations of systems.” [1]

And those tried-and-true designs have been, in large part,
successful. Machines have been built, have run, and have been
refined. At the same time, systems in the wider world have
been built much larger, at much higher uptime requirements,
for different but truly challenging workloads, and with a desire
to be run much more efficiently.

Granted, those systems and workloads are not the tightly-
coupled HPC workloads upon which we focus. Google’s
approach can easily handle a lost node or ten. An HPC
management plane is much smaller. . . but it can and should
benefit from similar resiliency improvements. Administrators
from several national labs have argued [1] that adopting these
modern technologies can improve manageability, resiliency,
scalability, and security. In this paper, we’ll address the first
two, which go hand in hand. Scalability can’t be tested well
with the clusters we’ve deployed so far and security is worth
its own paper.

Consistent with these suggestions, Cray (later HPE) has
produced the Shasta Cray System Management system (CSM).
Starting in 2019 and continuing through the present, LANL
staff have been evaluating the combined software and hard-
ware of CSM, River (air-cooled management hardware), and

Mountain (water-cooled compute hardware) systems through
several iterations. In this paper, we will discuss how CSM has
addressed and improved manageability, resiliency, serviceabil-
ity, scalability, and security (if at all), what we’ve done to adapt
it and adapt to it, and what we envision for the near future.
The Chicoma system comprises:

• 2 River racks (3 master nodes, 4 worker nodes, 3 storage
nodes, 2 UANs, 8 LNET gateways)

• 4 Mountain racks (560 AMD Rome EPYC 71H2/512GB
nodes, 118 AMD EPYC 7713 + 4 AMD A100 Tensor
GPU nodes)

The cluster has been in active use for COVID-19 research
since April 2021.

II. MANAGEABILITY

HPC system management breaks down into two core cate-
gories: compute node lifecycle and cluster services. There is
some overlap, but we’ll break it down as follows:

Compute node lifecycle:

• Boot image creation, node boot (TFTP, DHCP, NFS),
postboot configuration (Ansible) end user authN/authZ
providers (password files and LDAP interactions), node
health management, monitoring, and shutdown

• Orchestration of the lifecycle becomes more important as
node counts increase

Cluster services:

• Initial implementation (installation, networking, hardware
discovery, tuning)

• Basic services (NTP, logging, authN/authZ for cluster
administration, mail connections, shared filesystems or
the equivalent)

• Fabric implementation and management (IB, Slingshot)
• Job schedulers (Slurm, Moab, SGE, Flux), with potential

fabric integration
• Service node provisioning (Ansible, version control, im-

age creation, backups)
• Upgrades (management node replacement, software up-

dates, security patches, compute resource addition)
• Monitoring (performance, services, network)
• Management plane resiliency (cabinet loss, service node

loss, switch loss)

There are hundreds of implementations in the field that
address these concerns to one degree or another. A “more
manageable” system minimizes or zeros downtime for most
routine interventions, reduces operational complexity for the
admins, eliminates potential data loss scenarios (configuration
or user job), tests new image changes rapidly, and allows
those changes to scale rapidly and reversibly. It is resilient
against hardware loss (whether intentional or otherwise) and
orchestrates the necessary services for maximum uptime with
minimum intervention.

The Shasta Cray System Management (CSM) stack is
architected to these guidelines. It is based around Kubernetes
(https://kubernetes.io/docs/reference/), a “portable, extensible,
open source platform for managing containerized workloads
and services, that facilitates both declarative configuration
and automation.” Basic services and other components of the
management plane are moved into containers. The necessary
permissions, networking, storage, logging, and monitoring
are then provided by Kubernetes (k8s). The containers are
run in “pods”, which mediate all of these configurations via
declarative configuration. When pods need to be moved or
restarted, or hardware fails beneath them, they are restarted
on a new resource with minimal interruption. If new hardware
is added, k8s adds workloads automatically. Services that lose
connectivity or fail can be detected by pod liveness tests and
restarted even if they hang/degrade.

The initial LANL experience with Shasta (at version 0.8.0)
did not reach those goals. Early implementations were difficult
to install, unstable, sensitive to change, could not reboot, and
accumulated errors and full disk volumes over time. Despite
this difficult start, the k8s plane and its installability and
maintainability has improved over the last two years to the
point that our production system, Chicoma, has accrued a
reputation for stable operation since its soft launch in April
2021.

This reputation has come with some constraints, however.
Major and minor upgrades to CSM have been unpredictable.
Some were uneventful took a matter of hours (point releases
in the CSM 1.4 family, for example), but others have taken
days (Shasta 1.3/CSM 0.8) or more than a month (Shasta
1.4/CSM 0.9). This has led us to adopt a conservative attitude
towards updates on the present system – at the moment, we are
running CSM 0.9.6 and have allowed it to sit stably (except
for a couple of security fixes) and provide user cycles. We
have also assiduously avoided reboots and power cycles of the
whole management plane at once. We are concerned (based
on experiments with our test cluster) that full reboots in CSM
0.9 can come back badly and require significant repair.

Does Shasta provide better admin manageability for the
service nodes? Breaking down the positives:

• Services like Slurm, NTP, DNS, TFTP are never down.
Similarly, the databases that drive a number of the ser-
vices we need are very stable (multiple instances, so even
a single DB failure is unnoticeable).

• Lifecycle services (boot orchestration, image creation,
etc) are more likely to fail, but are not in the critical

path for system stability.
• Backing storage (an internal Ceph cluster) is very, very

stable and recoverable – and k8s handles degraded states
gracefully. In one instance, two of the three Ceph nodes
were frozen, and the management plane was frozen. Jobs
continued to run on the compute plane. . . and once the
two frozen nodes were rebooted, Ceph came back without
complaint and k8s picked right back up and continued
without further intervention.

• Fabric upgrades are simple and reversible.
• Monitoring and system test scripts have revealed issues

before they became critical
• We have successfully explored the potential for manage-

ment node addition on the fly in the Shasta 1.1/1.2 time-
frame with libvirt-mediated “new nodes” success-
fully added to the Kubernetes cluster (not in production,
naturally!)

And the negatives:

• Upgrades come in as multi-gigabyte archives, even for
small changes. They are unwieldy and take a long time
to download and unpack.

• Fabric upgrades have presented problems on our systems
routinely, and we’ve exercised their reversibility a few
times.

• Initial installation is very sensitive to configuration files.
Errors in those files can remain undiscovered problems
for weeks or months.

• Service node provisioning, configuration, and updates are
part of an extremely complex process with a number of
opportunities for error introduction.

• Failure of the compute plane (a Cooling Distribution Unit
brownout leading to EPO) can have unforeseen effects on
the management plane

Cluster health monitoring is included in the Shasta product
(and is being integrated into our existing Splunk infrastruc-
ture), but we have also integrated some of the solutions we
use on legacy clusters as well. A more detailed discussion is
included below.

III. CLUSTER HEALTH MANAGEMENT

lbnl-nhc is the tool we’ve used internally to monitor
the health of our clusters. Its framework provides an easily
extendable and configurable setup. The NHC configuration file
allows one to set up as many checks as one could desire on
a given node. There are a large number of built-in checks
for common node issues such as user processes remaining on
a node, and checks to ensure mounts are correct. It also is
very easy to write checks in bash to cover almost anything
you would want to check. Its built-in support for marking
nodes down in Slurm also allows for easy tracking of node
state across the system. With NHC we’ve been able to build
out checks for our compute nodes, non-compute nodes and
clusters as a whole.

IV. COMPUTE HEALTH MONITORING

For node health we make use of lbnl-nhc on compute
nodes. The compute nodes run two separate configurations of
lbnl-nhc. One does heavier checks on idle nodes. The other
is a lighter group of checks that runs on a busy compute node.
This combination allows us to validate that a node is clean and
ready for its next job, without interfering unduly with running
jobs. We also implement checks on our Node Management
Network nodes using lbnl-nhc.

V. NON COMPUTE NODE (NCN) HEALTH MONITORING

Though often overlooked, the validation of non-compute
nodes (NCNs) is also important to monitor the health of
a cluster. NCNs include UANs (User Access Nodes), Lnet
routers, Kubernetes worker and management nodes, and Ceph
storage nodes. The biggest issue one runs into when trying to
run NHC to validate the non compute nodes on a cluster is
that there is no built-in centralized mechanism to track state on
those nodes and the reasons for their problems. One can put a
slurmd on them, with the risk of a misconfiguration causing
user jobs to run on that infrastructure. Rather than take that
risk, we elected to use a shared NFS mount backed by Ceph
to write the state of each node. Each node thus mounts the
shared node state directory and writes an empty file if their
state is OK or writes the problems a node is facing as a string
in that file. A stat can then quickly detect nodes with issues.

VI. CLUSTER HEALTH MONITORING

Moving from the idea of validating nodes, we also need to
look at the state of the cluster as a whole. Since a “Node Health
Check” doesn’t apply to a cluster as a whole, we decided to
use a separate NHC “context” named “CHC” (Cluster Health
Check) for this purpose. How does one validate a cluster? CHC
validates a sufficient healthy ncn node count (as reported by
NHC running on those nodes, checking for specific kubernetes
problems, and doing critical service validations such as run-
ning sinfo to ensure slurm is responding). The big difference
when dealing with nodes and the cluster as a whole is that we
need more than a binary “OK or not OK”. CHC was therefore
split out into three different levels of problems: warnings,
daytime notification, and 24x7 notification. Warnings cover
minor issues that might point to something larger. Daytime
notifications and critical errors require action, but differ in
urgency.

VII. COMPUTE LIFECYCLE MANAGEABILITY

Sysadmins are judged by their system’s uptime and their
responsiveness. Often there’s a lot of tension between these
two virtues. A “more manageable” system would allow the
sysadmin to make changes easily in a configuration manage-
ment tool, have those changes rapidly create a new compute
node image, deploy that image for testing on a representative
subset of nodes, roll the changes out more broadly as the
tests go well, and roll back rapidly if issues show up at
scale. The basic Shasta architecture is well-designed to allow
such mechanisms, but its promise has not been realized.

The effort needed to build and deploy images is complex,
error-prone, tedious, and poorly instrumented at the moment.
New tooling (extensions to SAT in Shasta 1.6 with the sat
bootprep command) is expected, but in the meantime LANL
has an interim tool written by Graham Van Heule, that will
be discussed in the next section.

VIII. IMAGE MANAGEMENT

On a high level, Cray provides three tools for image man-
agement: Image Management Service (IMS), Configuration
Framework Service (CFS), and Boot Orchestration Service
(BOS). IMS handles building an image from a recipe that
is largely a starting point. CFS configures said image with
ansible, and BOS is what determines which image a node
boots from. An image build looks like this:

1) Tell IMS to start a job to build an image from a recipe
(we’ll call this a bare image)

2) Wait for IMS to finish building the image
3) Launch a CFS job to configure the bare image from the

prior step
4) Wait for CFS to finish configuring the image
5) Set the BOS config to use the newly configured image

to boot said nodes.

The built-in cray tools tend to be impractical for three reasons:
one needs to be an expert at jq to get the information out
of it, it requires considerably more commands than necessary
to perform an action, and provides no defaults to know
what ‘normal’ expectations are. Due to this complexity it
makes these tools difficult to learn, error prone, and just
plain painful to use. These problems spawned the need for
a wrapper to handle all of this. The first step of this was
to simplify the output of commands. So for example getting
the list of images displays the creation date/time, the image
ID and the image name instead of all information about all
images. If that information isn’t enough there’s the option to
show all information on a given image, thus making things
more manageable and understandable. Next was to reduce
commands down to simpler actions. One example of this was
reducing how to get logs on a given action. On the Shasta
system getting logs on an action generally involves:

1) Digging into the details about the action
2) From the action get the the Kubernetes job with which

it’s associated
3) From the job find the Kubernetes pod with which it’s

associated
4) Looking at the different logs of the pod until you find

what you want.

This is all reduced down to a log command that we can easily
run against the given action. That image build process shown
earlier is now broken down into a single command or three
separate ones depending on your needs. The last step was to
create defaults. In order to know where our current system is in
terms of configuration, it’s best everyone is on the same page
in terms of each of the pieces. So we have a default recipe

to build each type of image, a default BOS config to boot
each node type, and a default image name for each type of
image. With this in place, we can do things like spawn off an
image build that will handle all of the layers and set that image
to be booted for the nodes to which it applies. We can also
reboot nodes without thinking about which BOS template to
use. With this tooling, the compute node manageability aspect
of Shasta has become far less painful – and more flexible than
any other tooling we employ at LANL. With improvements
to the process and the advent of officially-supported tooling
with similar characteristics, we expect that Shasta systems will
indeed allow HPC sysadmins to resolve some of the tension
between system stability and agility.

IX. CONFIG MANAGEMENT

Correct long-term image management is only as good as
the configuration management that underpins it. When setting
up our ansible for these clusters our main goals were:

1) Have as much of the configuration in common as is
reasonable (to reduce configuration drift)

2) Attempt to keep lanl configurations separate from
Cray’s configuration to allow for easy identification of
what Cray has changed in updates and new releases and
what we have changed.

3) Configuration should be stored off-cluster to simplify
recovery from catastrophic failures.

With that in mind, we set up our environment to have an
external Gitlab server, separate LANL repositories, and are
working with Cray to get submodules to work with CFS.
Over the last couple of years, we have set up an external
Gitlab server to manage the Git repositories for our clusters
and migrated most cluster configurations to it. This was done
to ensure a centralized place to manage our configuration. As
our Gitlab instance couldn’t serve thousands of clients, we
also created a caching deployment on each of the clusters in
Kubernetes to serve the Git areas to the rest of the cluster. As
an independent entity from our clusters, the Gitlab server also
allows access to configurations even if the cluster is down.
The biggest drawback to this setup, however, is that we need
to push Cray changes from the internal Shasta Gitea instance
to our Gitlab instance with every upgrade. In order to keep
our changes separate from Cray’s updates, we separated out
all of our local changes into two separate Git repositories:
diskless and diskful. The diskless repository is for image
building and configuring nodes without persistent storage. The
diskful repo serves nodes that boot off of local persistent
storage. As it turns out, diskless and diskful node configs
had very little in common. Diskful nodes manage and provide
services to the cluster, and diskless nodes run user code. We’re
currently working with Cray to get submodule support added
to CFS’ git pulls. A git submodule is a function in git that
allows one repo to include another repository as an internal
directory. This will allow us to have individual git repositories
for each cluster containing variables and inventory, and a
central roles repository that’s pulled in as a git submodule.

An alternative to submodules is scripting in the cluster-
specific inventory changes each config management is called.
The Shasta-provided AdditionalInventory option does
something along these lines, and has the virtue of existing CFS
integration and direct support. We are looking carefully at it,
balancing commonality with our existing systems and ease of
implementation. For the moment, we just maintain a repository
set for each of our two present systems. That number will go
to seven by early next year, however, so a timely solution is
important.

X. DEVELOPING BETTER IMAGE BUILD PIPELINES

Even this level of automation can be improved. We have
work in progress to use Gitlab runners as build pipelines
for automated image creation. Either manual intervention or
checking in changes to affected repos can trigger launch of
runner that uses one of a variety of tools (Buildah, direct
Ansible configuration in a Docker container, etc) to recreate
whatever layers of the image are affected by the change,
upload the results to S3, and register the image with the IMS
registry, ready to be used in BOS runs whenever desired.

XI. SLURM

Both Slurm and PBSPro are the supplied options for work-
load management. Slurm is in use at LANL in the existing
clusters and we did not deviate from that selection. As is
done at most sites, we brought up our own custom Slurm
to meet our particular needs. From the factory Slurm in the
Cray EX Software environment is implemented as three pods:
slurmctld, slurmdbd and mariadb, in their own Kuber-
netes namespace. Slurm is not easily scalable in a horizontal
manner, but Kubernetes can allocate and limit resources used
by the single instances of these components.

When we transitioned from the vendor supplied Slurm to
our locally built RPMs, we had to build our own containers.
Cray had used a base SLES15 image for their slurmctld
and slurmdbd images, so we would follow their lead. We
have two options for this: duplicate the Cray Slurm containers
and upgrade the rpms therein, or download a fresh SLES15
image and start there. We’ve done both and settled on the
latter.

The Slurm RPMs are locally built, signed, and dropped into
a local repository on the cluster. Building the slurmctld and
slurmdbd images is a matter of constructing a Dockerfile to
define the packages needed to run the service along with a few
extra packages for convenience. We use the existing mariadb
instance from Cray. After the images are built, we edit the
Kubernetes Deployment specifications for the slurmctld
and slurmdbd to point to the new images. When the pods
are restarted, we’re running our locally-built Slurm.

As part of a long-term project, the slurmdbd has been
pulled out of the cluster and is supported as a standalone entity
within the LANL HPC Division. This offered a more robust
database backend to the central slurmdbd and removed
the slurmdbd load from our clusters. The change was
accomplished by a single-line change in the slurm.conf

file, along with some upstream firewall modifications. The
slurmctld, from Cray had a macvlan interface defined for
the internal cluster networks, but in this new configuration an
additional macvlan interface was needed to facilitate direct
communication to the remote slurmdbd. These interfaces
effectively give the slurmctld a static, well-known IP
address.

Much of the Slurm configuration was done by post-
boot Ansible activity. When we changed to running our
locally built Slurm, we also changed to “configless” Slurm.
This involved an edit to the local DNS in the clus-
ter of the form _slurmctld._tcp 3600 IN SRV 0 0
6817 slurmctld-service, which allows the compute
nodes to find and download their slurm.conf from the
host, slurmctld-service. This simplifies the post-boot
configuration considerably and ensures that we have a single
source of truth for the slurm.conf. A git repository is
used for maintaining the slurm.conf and related files, and
merges to the integration branch automatically update these
files on the cluster.

XII. AUTHN/AUTHZ

CSM ships with Keycloak for authentication in the Kuber-
netes management plane of the cluster. HPE extended this
to extract users from Keycloak into passwd, group, and
shadow files with some additional effort. Initial user accounts
are created from the Keycloak LDAP integration in a one-time
process, running in the keycloak-users-localize-X
Kubernetes Job, which deposits passwd and group files into
the WLM bucket in S3. Since we wanted regular updates, we
created a Kubernetes CronJob to do this process on a regular
basis, and tooling to have each of the compute nodes pull those
files from S3. This was functional and very scalable, but we
don’t like the idea of having end user accounts sourced from
inside the Kubernetes plane. We’ve evaluated a couple of end-
user AuthN/Z alternatives for the cluster.

For clusters to be good neighbors, one thing they should
not do is spam their upstream authentication provider. During
our early testing phase we had a small number of users, so
our user data was relatively static. To centralize the directory
information we employed a LDAP server inside the cluster
for AuthZ. While we were quickly gaining knowledge of
Kubernetes and how Cray assembled the various parts of it
to support a cluster, the decision was made to create a new
lanl namespace within the existing Kubernetes cluster for
housing projects that we may develop.

The first of these was to bring up a 3-instance OpenLDAP
service using containers. A very small base operating system
image was used and its package management brought in the
necessary applications to bring up an LDAP service. Some
convenience applications such as bash and strace were
also added to the image. The image was constructed with the
standard docker/podman processes and pushed into a registry
within the cluster. The OpenLDAP application is deployed as a
Kubernetes StatefulSet with instance 0 as the primary server.
An InitContainer is defined in the pod for the initial setup

of the OpenLDAP directory. The other instances function as
secondaries using standard OpenLDAP replication techniques.
Each instance has its own Kubernetes PersistentVolume for
storage of the directory date. X.509 certificates are in place
for TLS encryption between the instances and the clients.

We were able to fully utilize Kubernetes features to roll-
out new images and migrate pods to other nodes during
Kurbernetes node reboots. The clustered OpenLDAP service
performed quite well, especially when combined with client-
side caching. It has also been easy to keep up to day.
OpenLDAP happened to be the directory choice at the time
when we deployed it. We could have chosen another open
source directory application and followed the same process to
containerize it and run it under Kubernetes. Containerizing the
cluster’s directory service was an extremely valuable learning
experience.

Another means of providing directory service is using
nssdb – that is, db files for passwd/shadow/group. For
SLES, these are stored in /var/lib/misc/ and will be
consulted with the /etc/nsswitch.conf file containing
entries of the form passwd: files db. This is attractive
because the flat files in /etc are never modified, reducing
the risk of locking ourselves out of systems via admin error.
We’ve found that this performs and scales quite well (for this
system size, at least), and that management of the db files
from upstream sources is relatively straightforward.

For administrative access patterns in Kubernetes, we con-
tinue to use the basic single-user administrative structure pro-
vided out of the box. The next few months, however, will bring
us a new LDAP source with good memberOf characteristics.
Translating admin group membership to Shasta/Kuberentes
privilege constellations will allow admins to log in as them-
selves rather than as root on the master nodes and operate
within more role-specific constraints. This should cut down
on the number of admins that need to operate in superuser
mode.

XIII. LOCAL SERVICES

In addition to the directory service, we found it necessary
to add two additional local services to help run the cluster: a
basic web server (Nginx), a proxy server (Squid), and a login
server (ssh). The configurations for each are stored in a git
repository outside of the cluster.

CSM is distributed with Sonatype Nexus to provide a pack-
age repository as well as an image registry. While Nexus is an
elegant solution and offers an API for advanced management,
we needed something simple for some of our repository needs.
Like a traditional web server deployment, Nginx serves up
files from a basic directory structure, and RPM repos are
easily spun up with the createrepo command. We use NFS
storage for this. The directory is mounted read-write on our
management node and read-only inside the Nginx container.
Instead of a StatefulSet, a Kubernetes Deployment is used to
define our instance of Nginx. A Kubernetes ConfigMap brings
in the Nginx configuration. Here, too, we have been able to use

the capabilities of Kubernetes to roll out new images, scale the
deployment up and down, and migrate pods between servers.

Along with the Nginx web server, we found that it was
useful to have a Squid server in front of Nexus to reduce
the load on the singular Nexus instance during the infrequent
occasions when RPM packages were being sent to running
nodes. Very similar to the Nginx and OpenLDAP services,
we used a base image and had docker/podman bring in the
packages essential to run Squid. Its configuration is brought
in via a Kubernetes ConfigMap.

In the early days of bringing up CSM and the rest of the
Shasta system, we lacked the hardware for a login node. We
had two compute nodes, the Kubernetes and Ceph nodes, and
nothing more. To provide login services, we used a SLES15
base container image and built up a working login environment
on top of it. This was obviously considerably larger than the
simple service containers above. Through the use of macvlan
networking, we were able to expose the login container on the
external network for direct SSH logins. The login containers
were capable of supporting multiple users and carried out the
standard compile/edit/debug process as though they were bare-
metal systems. We used Kubernetes limits to constrain the
CPU and memory usage of the containers. This worked quite
well, but the concept has been retired in favor of bare-metal
login servers.

These additional services filled gaps for us in CSM. They
have performed quite well, and provided yet another learning
experience for the staff.

XIV. INTERNAL FILE SERVICE

Our two clusters each have three Ceph storage servers. Cray
intended for these to be used as the primary storage for the
Kubernetes cluster.

However, we had a need for user and application storage
within the cluster during early development. Eventually, our
production systems would utilize centralized storage, but for
the pre-production period we needed something local and
simple. For this we created a new pool in Ceph along with
a replicated block device. The block device would be used
as the foundation for a zpool in ZFS, which would then be
exported via NFS to the rest of the cluster. Local and remote
ZFS snapshots provided adequate backup for the development
period of the clusters. For convenience, we’ll likely continue
to use this for local scratch filesystems which are not sensitive
to lower I/O rates.

XV. CONCLUSIONS

Several years’ experience in building and running Shasta
systems at LANL has taken our team through a wide range
of challenges and solutions. From an inauspicious start to the
present period of stable, almost boring operation (except for
power events and upgrades), we think there’s reason to believe
that the Shasta platform will come to realize the goals of
increased manageability and resiliency, and provides a starting
point for further developments that break the constraints of
existing operation models. It has also proven adaptable to
our sometimes unique site services and requirements. It has
certainly motivated (and been a testbed for) improvements
in LDAP, Slurm, Gitlab, monitoring, and other infrastructure.
We’re certainly glad to have these improvements and adaptions
in place with five more Shasta-based systems arriving at LANL
within the next calendar year.

REFERENCES

[1] B. S. Allen, M. A. Ezell, D. Jacobsen, C. Lueninghoener, P. Peltz,
E. Roman, and J. L. Wofford, “Modernizing the HPC System Software
Stack,” 2020. [Online]. Available: https://zenodo.org/record/4324415

