
©2022 Hewlett Packard Enterprise, Inc.

UAIs Come of Age: Hosting Multiple Custom
Interactive Login Experiences Without Dedicated

Hardware

Eric Lund
Hewlett Packard Enterprise

Bloomington, MN
eric.lund@hpe.com

Abstract— On HPE Cray EX systems, User Access Instances
(UAIs) provide convenient lightweight temporary single-user
interactive login environments. Access to a set of End-User UAIs
is mediated by a Broker UAI which presents an SSH login to users.
On successful login, the Broker UAI locates or creates an End-
User UAI as needed for the user, then redirects the user to the End-
User UAI. On reaching the End-User UAI the user sees a login
environment that supports interactive work and launching of
batch workloads.

Using UAI Classes, Custom UAI container images, and
Kubernetes Volumes registered with the User Access Service
(UAS), a site can configure a rich variety of End-User UAIs
tailored to specific workflows and define multiple Broker UAIs,
each providing access to a distinct set of specifically tailored End-
User UAIs. Access to each set of End-User UAIs can be
individually controlled by configuring the associated Broker UAI.

UAIs are a powerful tool for isolating multiple missions and
workflows without the need for dedicated hardware investment.
This paper describes the Broker UAI / End-User UAI structure
and relationship, examines common configurations, and explores
common uses for UAIs.

Keywords—User Access, User Access Instance, User
Environment, User access Node, Custom User Access, UAI, UAN,
HPE Cray EX

I. INTRODUCTION
Both User Access Nodes (UANs) and User Access Instances

(UAIs) provide interactive login access to HPE Cray EX
systems. UANs are dedicated hardware nodes configured for
general purpose multi-user access, while UAIs are disposable
containerized single-user login platforms that can be configured
for specific uses.

UANs are well suited for stable long-running tasks or for
handling periodic background activities that require a stable
always-on platform to host them. UANs also typically have
access to disk, memory and swap resources that make them well
suited to resource intensive tasks. UANs can be customized
based on Compute Node installations, including access to
physical resources like GPUs, to permit building software in a
programming environment and hardware environment that

matches the runtime environment in which the software will
execute.

UAIs on the other hand appear on-demand and can run
shorter- or longer-term tasks without requiring a permanent
presence on the system. UAIs connect to external storage by
mounting the storage within their containers but contain no
persistent state of their own. As a result, UAIs are disposable,
and easily come and go without loss of user data. Like UANs,
UAIs can be customized based on compute nodes from a
software perspective. This allows the use of a programming
environment that matches compute nodes. Unlike UANs,
however, UAIs currently lack the ability to access native host
features like GPUs and swap. For builds that require GPU access
or that cannot run in available physical memory, UAIs are not
well suited. Despite this limitation, UAIs are easily customized
to a wide range of uses and can be assigned targeted resource
requirements and limits to tailor their resource consumption to
their intended purpose. This, combined with Kubernetes
scheduling based on resource availability, allows UAIs to
present a highly elastic interactive user login experience.

UANs are best suited to long-running swap or other native
resource intensive tasks while UAIs are more suited to more
flexible, cloud-like interactions. Between the extremes of this
spectrum, lies a great deal of overlap between what can
reasonably be done with UAIs and what can be done with
UANs. The elastic on demand nature of UAIs gives sites
flexibility in supporting a wide range of tailor-made
environments without dedicating hardware to any given
environment.

UAN usage and management is more traditional, and,
therefore, more familiar than UAIs. This paper focuses nearly
entirely on UAIs, their implementation, administration and uses.

II. UAI IMPLEMENTATION
The HPE Cray EX system provides the User Access Service

(UAS) which manages UAIs. HPE Cray EX systems use two
broad categories of UAIs to implement the on-demand UAI
functionality:

• Broker UAIs

• End-User UAIs.

This section examines the relationships between the UAS and
UAIs and the structure and implementation of Broker and End-
User UAIs.

A. UAI / UAS Components and Relationships
Fig. 1 shows the UAS / UAI components in relation to each

other. The UAS, Broker UAIs, End-User UAIs and SSH Key
Management all run within a Kubernetes cluster on top of Non-
Compute Nodes (NCNs), specifically Kubernetes worker nodes.
Users reach Broker UAIs through SSH on an external IP ingress
address allocated for the Broker UAI by the HPE Cray EX
system. A Broker UAI authenticates a user’s session using the
authentication / authorization rules configured for the broker by
an administrator.

Fig. 1. UAS/UAI Components and Relationships

Upon successful authentication, the SSH session executes
the switchboard command to locate or create an End-User UAI
belonging to the user. If there is no available End-User UAI, first
switchboard creates an SSH key pair known only to the Broker
UAI and places the keys in SSH Key Management. After that,
switchboard invokes the UAS to create a new End-User UAI,
passing the newly created public SSH key to the End-User UAI
as the authorized key for the user. Finally, switchboard
establishes a private internal SSH connection to the End-User
UAI and forwards all SSH traffic over that connection. The End-
User UAI uses the authorized public key described above to
authenticate the connection and starts a login session for the
user.

At the end of the login session, the user’s private SSH
connection drops causing switchboard to exit and drop the user’s
SSH connection to the Broker UAI. Unlike historical
switchboard use on UANs, switchboard on the Broker UAI runs
non-interactively to completion. At no time does the user have
uncontrolled interactive access to anything on the Broker UAI.

B. Structure of UAIs
Fig. 2 illustrates the structure of Broker and End-User UAIs.

All UAIs consist of three main Kubernetes resources:

• A Kubernetes service

• A Kubernetes job

• One or more Kubernetes (replica) pods

 The Kubernetes service provides the UAI with its network
ingress (IP address) and, in the case of UAIs that have external
IP addresses, an External DNS host name composed by the HPE
Cray EX system. The Kubernetes service also forwards load-
balanced network connections to the Kubernetes pod(s) in the
UAI.

Fig. 2. Structure of UAIs

The Kubernetes job orchestrates the lifecycle of the pods,
restarting them as needed until one or more pods reach a
successful completion. When one or more pods reach successful
completion, the job completes signaling end-of-life for the UAI.
When a UAI reaches its end-of-life, the UAS detects the
completion of the UAI job and removes all components of that
UAI.

Kubernetes schedules the pods in the UAI. The pods in turn
execute the containerized UAI environment. What takes place
in the UAI is dictated by the UAI container image (UAI image)
and the container entry point specified in the pod. Composition
of the UAI image is the first layer of UAI specialization. The
pod also specifies a set of Kubernetes volume mounts for the
container that provide a second, run-time, layer of
specialization.

On a Broker UAI, the entry point does two things:

• Starts the SSSD/LDAP client for user credentials

• Starts SSHD to begin accepting user logins

Once running, the Broker UAI entry point loops (sleeping)
indefinitely without ever completing. Broker UAIs run until they
are administratively deleted through the UAS.

Prior to starting a Broker UAI, administrators customize the
SSSD/LDAP and SSHD configuration of the Broker UAI to use
the appropriate directory server and to authorize users based on
appropriate rules for the kind of End-User UAI the Broker UAI
provides. All this customization happens using Kubernetes
volume mounts, allowing use of a common Broker UAI image
for most purposes.

The entry point for an End-User UAI also starts SSHD but
does not start SSSD/LDAP. The only user the End-User UAI
knows is the user for whom it was created, and that user is pre-
authorized to log into the End-User UAI at creation. When the
correct user initiates a private SSH connection, therefore, the
End-User UAI authenticates and authorizes the user and creates
a new login session. The entry point for the End-User UAI also
loops (sleeping), but during that loop it keeps track of timeout
conditions. When an appropriate set of timeout conditions is
met, the End-User UAI entry point exits with success
(completes), causing the job to complete which triggers UAI
cleanup in the UAS.

Beyond functional differences between Broker and End-
User UAIs, there are structural differences. While an End-User
UAI always has a single Kubernetes pod in its set of pods, a
Broker UAI may have any number of replica pods. The service
component of a Broker UAI load-balances incoming
connections across the replica pods in the Broker UAI. This
provides both resilience to pod failure or pod migration and
better distribution of network traffic and SSH session processing
load within the Broker UAI, allowing the Broker UAI to handle
many simultaneous SSH connections efficiently and reliably.

Fig. 3. Broker UAI Connection Load Balancing

Fig. 3 presents a Broker UAI with 3 replica pods and four
incoming connections. Notice that two of the incoming

connections come from the same user: Purple. Two things to
notice about this are

• Two different pods in the Broker UAI handle Purple’s
two SSH sessions

• Both Broker UAI pods connect Purple to the same End-
User UAI.

 Whenever a user logs into a Broker UAI the Broker UAI
tries to find and re-use an existing End-User UAI before creating
a new one. This means there will only ever be a single End-User
UAI for each user under the control of a given Broker UAI.

Fig. 4. Multiple Different Broker UAIs

Fig. 4 depicts an HPE Cray EX system running two different
Broker UAIs. Each broker UAI has its own set of End-User
UAIs and may have its own authentication/authorization rules
or domain, and other different properties. Notice that user Purple
is logged into both the top Broker UAI and the bottom Broker
UAI. Each Broker UAI has a distinct End-User UAI for Purple
to use. An HPE Cray EX system can run as many different
Broker UAIs as are needed to support different workflows or
audiences hosted by the system. Each Broker UAI has its own
configuration and creates its own class of End-User UAI. All of
this is managed through the configuration of UAIs in the UAS.

III. UAI ADMINISTRATION
UAI administration consists of configuring the UAS to

create different kinds of UAIs and managing the life cycle of
Broker UAIs.

A. Configuration
Configuration focuses on four configuration object types in

the UAS:

• UAI image registrations

• UAI volumes

• UAI resource specifications

• UAI classes

1) UAI Image Registrations
UAIs run in containers, and containers execute container

images. The UAS keeps a configured list of registered container
images that can be used to create UAIs (UAI image
registrations). The UAS assigns an image ID in the form of a
UUID to each UAI image registration as it is created. This image
ID is specified when using that image to configure a UAI Class.

2) UAI Volumes
UAI volumes offer the most flexible way to customize a UAI

and the only way to connect a UAI to external persistent storage.
A UAI volume describes a named source of data and a mount-
point within the UAI container’s filesystem where that source of
data should be mounted as a file or directory. A UAI volume can
describe anything that can be used as a Kubernetes volume. For
more information on Kubernetes volumes, see “Kubernetes
Volumes” under the “Resources” section below.

Uses of UAI volumes include customization of
SSSD/LDAP, SSHD and so forth in Broker UAIs, connecting
End-User UAIs with the HPE programming environment and
analytics software packages, and connecting End-User UAIs
with Kubernetes secrets and configmaps used to interact with
workload managers like Slurm or PBS. Finally, UAI volumes
can connect End-User UAIs to home directories or Lustre
filesystems for shared user storage.

Fig. 5. Example UAI Volume

Fig. 5 shows a UAI Volume to mount the file /etc/localtime
from the host node at /etc/localtime on the UAI using the volume
name timezone inside the pod specification for the UAI. The
Volume ID gives UAI classes a way to refer to the UAI volume
so that UAI Volumes can be used to construct UAI classes.

3) UAI Resource Specifications
Kubernetes places and schedules pods based on resource

availability. The UAS keeps a list of configured UAI resource
specifications that can be used to request specific resources for
a given class of UAIs. While a UAI resource specification can
contain any resource limit or request recognized by Kubernetes,
the most common resources are CPU and memory. For more
information on Kubernetes resource limits and requests see
“Kubernetes Resource Limits and Requests” under the
“Resources” section below.

Fig. 6. Example UAI Resource Specification

 Fig. 6 shows an example UAI resource specification. Notice
that this example contains a request part and a limit part. A UAI
resource specification can have either or both. The example
shows a request for 300 millicpus (0.3 CPUs) and 250 Mibibytes
of memory. It shows a limit of the same amounts of each. The
example also shows the resource ID that identifies this UAI
resource specification for use in constructing UAI classes.

While it is legal to set up a request that is smaller than the
limit for a UAI resource specification, doing so may cause any
UAI to which the specification is applied to grow into its limits
and oversubscribe the host node where the UAI is deployed.
When that happens, Kubernetes may seek to place that UAI or
other UAIs on a less loaded node. This results in temporary
termination and re-scheduling of a UAI which appears as
instability to the user of the UAI. To avoid such instability, keep
the requested resources the same as the resource limits in UAI
resource specifications.

4) UAI Classes
UAI classes define the construction details for making a

UAI. UAI classes combine a UAI image, an optional UAI
resource specification, and a list of UAI volumes with other
configuration details to describe the desired behavior of a class
of UAIs. In addition to the items mentioned already, some of the
items that can be configured are:

• An End-User UAI creation class ID for Broker UAIs

• A replica count

• Timeouts for End-User UAIs

• An internal or public ingress IP indication

• Kubernetes host node tolerations

A UAI class contains several other configuration items not
described here. For more information on UAI class content see
the link under “UAS / UAI Documentation” in the “Resources”
section below.

The End-User UAI creation class ID in a Broker UAI class
tells the Broker UAI what kind of End-User UAI to create when
creating an End-User UAI for a newly logged in user. It refers
to the UAI class that describes the configuration of the End-User
UAIs reached through that broker. This is how different Broker
UAIs can each serve different End-User UAI functionality.

The replica count for a Broker UAI controls the number of
replicas the Broker UAI will request from Kubernetes on

{
 "mount_path": "/etc/localtime",
 "volume_description": {
 "host_path": {
 "path": "/etc/localtime",
 "type": "FileOrCreate"
 }
 },
 "volume_id": "7f115bb6-2150-4829-
80d7-1d7bd81f748a",
 "volumename": "timezone"
}

limit = {
 "cpu": "300m",
 "memory": "250Mi"
}
request = {
 "cpu": "300m",
 "memory": "250Mi"
}
resource_id = "a47847a8-50f9-4c3d-8513-
94e18ef78d49"

creation. It should reflect the desired amount of load balancing
or redundancy for the given class of Broker UAIs. Kubernetes
places each replica on a host node separate from all other
replicas in the Kubernetes cluster. If a node fails or loses
network connectivity with the cluster, the UAI connections
through that Broker UAI replica drop, but users can reconnect
immediately using a different replica and continue operation.
Another advantage of replicas is that they spread the work and
network traffic associated with hosting UAI connections across
a larger set of pods to increase overall capacity and throughput.

Using replica pods with End-User UAIs does nothing to
improve the End-User UAI stability or capacity, and it wastes
resources. HPE recommends keeping the replica count for End-
User UAIs set to the default value of 1.

UAI Classes for End-User UAIs can use two kinds of
timeouts:

• Hard timeouts

• Soft timeouts

A hard timeout, if present, specifies the overall length of time
the End-User UAI is allowed to run before terminating and
being cleaned up. When an End-User UAI reaches its hard
timeout, the entry point to the End-User UAI Pod exits
immediately with success causing the UAI job to complete and
the UAS to clean up the UAI. An administrator can also
configure a warning interval which will cause a message to be
sent to all logged in sessions some number of seconds before a
hard timeout indicating impending termination.

A soft timeout, if present, specifies the length of time an
End-User UAI can run before terminating because it either is
idle or becomes idle. When an End-User UAI reaches its soft
timeout, the entry point starts looking periodically for
opportunities to exit with success causing the UAI Job to
complete and the UAS to clean up the UAI. If the entry point
finds a non-zero number of login sessions in the End-User UAI,
there is no opportunity to exit. If the number of logged in
sessions is or becomes zero after the soft timeout expiration, an
opportunity to exit occurs and the UAI will complete.

Hard timeouts are intended to ensure that UAIs left with
logged in sessions for extended periods of time are removed to
free resources for other users. Soft timeouts are intended to
ensure that idle End-User UAIs get cleaned up in a timely
fashion, whatever that may mean for the tasks the UAIs were
created to support.

UAIs can present an SSH ingress either publicly, through the
HPE Cray EX system Customer Access Network (CAN) or the
HPE Cray EX Customer High Speed Network (CHN) [1], or
internally across the Kubernetes cluster’s internal network.
Broker UAIs usually present SSH ingress publicly to let the
Broker UAI act as a gateway to End-User UAIs. End-User UAIs
usually present SSH ingress privately to prevent unmediated
external access by users. When a UAI presents SSH publicly the
HPE Cray EX system assigns it an IP address on the CAN or
CHN and composes an External DNS hostname to allow the
UAI to integrate into site DNS. The internal or public IP
indication in the UAI Class controls whether a UAI presents a
public or private SSH ingress.

Kubernetes places pods on host nodes based on pod affinity
and anti-affinity and, also, based on host node taints and pod
tolerations. A pod may be assigned explicit affinity for a given
set of nodes based on flags or annotations maintained in those
nodes by Kubernetes. Kubernetes schedules a pod with such an
affinity on those nodes. A pod may also have an anti-affinity for
certain nodes based on the same criteria. Kubernetes does not
schedule pods with such an anti-affinity on those nodes. All
UAIs have an anti-affinity for any node with the label:

 uas=False

Assigning this label to HPE Cray EX Kubernetes worker nodes
that run HPE Cray EX CSM management services prevents any
UAI from being scheduled on those worker nodes.

In addition to explicit affinity or anti-affinity, Kubernetes
also permits a node to be tainted. A tainted node carries a taint
which prevents any Pod that does not carry a corresponding
toleration from being scheduled on that node. By default, all
UAIs have the toleration

 uai_only

This means that nodes tainted with uai_only only host UAIs and
certain Kubernetes internal pods that are not affected by taints.
Most importantly, nodes with this taint, will not host CSM
management services. By applying the uas=False label to
Management Kubernetes worker nodes and the uai_only taint to
UAI Host Kubernetes worker nodes, a site can isolate all UAIs
to worker nodes that do not carry CSM loads.

Beyond these defaults, though, UAI Classes may contain
optional site specified tolerations to allow fine grained control
of UAI pod placement. By tainting nodes and assigning
tolerations to UAI classes a site may separate UAIs based on
their intended use, their intended audience, or any other criteria
a site chooses.

For more information on Kubernetes affinity/taints see
“Kubernetes Node-Affinity” in the “Resources” section below.

B. Managing Broker UAIs
Broker UAI management uses the Cray CLI (cray

command), which may be run from any node or host that has
access to the CSM management API. The examples in this
section do not specify a context for running the cray command,
but simply provide example command lines. The focus here is
on command line content, not execution context.

1) Creating a Broker UAI
Administrators create Broker UAIs using a command of the

form shown in Fig. 7:

Fig. 7. Example Broker UAI Creation Command

The only required parameter is the Broker UAI class ID used
to create the Broker UAI, specified here as

cray uas admin uais create \
 --class-id \
 a9d61724-976a-4a07-85f8-00e422bff3ce \
 --uai-name workload-monitoring-uai \
 --owner workload-monitoring-broker

 –class-id a9d61724-976a-4a07-85f8-00e422bff3ce

The command shown also assigns a UAI name:

--uai-name workload-monitoring-uai

used to construct a custom External DNS name for the Broker
UAI so that the Broker UAI has a name as soon as it is created
and there is no need for the site to track the automatically
assigned external IP address for the Broker UAI.

Finally, this command assigns an owner:

--owner workload-monitoring-broker

On systems with many active UAIs, listing or deleting UAIs can
be overwhelming. Assigning a descriptive owner to Broker
UAIs allows administrators to filter by owner and list or delete
only the desired Broker UAI.

2) Examining Broker UAIs
Administrators examine the status of UAIs using a command

of the form shown in Fig. 8:

Fig. 8. Example Command to List UAIs Filtered by Owner

Without the --owner option, the above command would list all
UAIs on the system. By specifying the --owner option along
with the owner’s name used to create the Broker UAI, the
administrator can see only the Broker UAI(s) owned by that
owner.

3) Deleting a Broker UAI
Administrators delete a Broker UAI using a command of the

form shown in Fig. 9:

Fig. 9. Example Command to Delete UAIs Filtered by Owner

Here, if the --owner option were not specified, the command
would require an explicit list of UAIs to delete or some other
criterion by which to delete UAIs. By specifying the --owner
option along with the owner’s name used to create the Broker
UAI, the administrator can delete all Broker UAIs created with
that owner without affecting other UAIs or needing to search for
UAIs to delete.

IV. EXAMPLE UAI USE CASES
There are two major considerations when customizing

Broker and End-User UAIs. The first consideration primarily
drives the customization of Broker UAIs: intended audience.
The second consideration drives the customization of End-User
UAIs: intended function. Administrators manage intended
audience by customizing authentication rules in Broker UAIs. If
a user cannot log into a given Broker UAI, that user cannot
access an End-User UAI for a given audience. Carefully
selecting End-User UAI Volumes to limit access to shared
storage and tailoring taints and tolerations to control node

placement can further separate End-User UAIs according to
intended audience, so there can be End-User UAI considerations
regarding audience as well. Administrators tailor End-User
UAIs to their intended function by customizing UAI image
content and UAI volumes along with UAI Resource
Specifications and Timeouts.

The following are several hypothetical UAI use cases and
the customizations likely to support those use cases. These
examples are here to spark creativity not to prescribe any
configuration.

A. Workload Development and Testing UAI
• Intended Audience: developers
• Intended Function: software development

Software development often requires long term
uninterrupted login sessions with access to development tools
like a programming environment, debuggers, IDEs or editors,
version control software and so forth, and access to some set of
compute nodes through a workload manager. Software
development also usually requires access to sample data and
shared storage to facilitate collaboration between developers.
Compiling software can be both memory and CPU intensive.

While software development sessions may tend to run long,
once they are over, the slight overhead of restarting a new End-
User UAI is easily amortized over the length of the session.

Long running large memory and CPU End-User UAIs can
be resource hogs, so access to them should be limited to users
who truly need those characteristics. Furthermore, such UAIs
may need to be isolated away from production host nodes.

Likely customizations for this use case are:

• Broker UAI: authorize only developers
• End-User UAI

o Resource Limits
§ Memory: large or very large
§ CPU: large

o Use Taints and Tolerations
§ Direct scheduling to higher capacity

host nodes
§ Keep development activity away

from production host nodes
o Timeouts

§ Hard: long or none
§ Soft: short

• Programming environment tools in either the image or
mounted volumes

• Development storage access through volumes
• Workload Manager access for launching and monitoring

test runs

B. Production Workload Launch UAI
• Intended Audience: production workload managers
• Intended Function: production launch

Workload launch requires access to production data,
production software and workload management commands able
to launch on production compute nodes. Launching a workload

cray uas admin uais list \
 --owner workload-monitoring-broker

cray uas admin uais delete \
 --owner workload-monitoring-broker

does not take a lot of time and probably does not happen
frequently. Workload management commands do not require
much CPU or memory. Production activities should not be
forced to contend for resources with non-production activities.

Likely customizations for this use case are:

• Broker UAI: authorize only production workload
managers

• End-User UAI
o Resource Limts

§ Memory: small
§ CPU: small

o Taints and Tolerations direct scheduling to
production host nodes

o Timeouts
§ Hard: modest
§ Soft: short

• Production software either in the image or accessed
through mounted volumes

• Production storage accessed through mounted volumes
• Workload Manager access for launching

C. Production Workload Monitoring UAI
• Intended Audience: production workload managers
• Intended Function: production monitoring

Workload monitoring requires access to production
workload management commands able to gather job status.
Monitoring does not require access to production software or
data. Individual monitoring operations do not take a lot of time,
but they are likely to be scripted meaning that they will likely
run frequently, making End-User UAI start latency an issue, and
work best if End-User UAIs do not terminate unexpectedly.
Workload management commands do not require much CPU or
memory. Production activities should not contend for resources
with non-production activities.

Likely customizations for this use case are:

• Broker UAI: authorize only production workload
managers

• End-User UAI
o Resource Limits

§ Memory: small
§ CPU: small

o Taints and Tolerations direct scheduling to
production host nodes

o Timeouts
§ Hard: none
§ Soft: long

• Workload Manager access for monitoring

D. Batch Mode Workflow UAI
Batch mode (crontab style) operations executed on End-User

UAIs could have many different customizations depending on
the activities required, but they likely have certain things in
common. The use case looks a lot like Production Workload
Monitoring, but, since batch mode operations most likely run
less frequently, End-User UAI creation overhead is less of a

problem. Memory and CPU sizing should be tailored to the
specifics of the batch mode tasks.

Likely customizations for this use case are:

• Broker UAI: authorize only users who run batch mode
tasks

• End-User UAI
o Resource Limits

§ Memory: appropriate to expected
background tasks

§ CPU: appropriate to expected
background tasks

o Taints and Tolerations as appropriate
o Timeouts

§ Hard: none
§ Soft: very short

• Workload Manager access as needed

V. RESOURCES
All UAS and UAI related code is open source and publicly

available as is the documentation for managing and using UAIs.
This section provides links to the relevant repositories and
documents.

A. UAS / UAI Documentation
Here is a link to the current UAS/UAI documentation:

https://github.com/Cray-HPE/docs-
csm/blob/main/operations/UAS_user_and_admin_topics/index.
md

B. UAS Manager
The UAS manager is the heart of configuration and

administration of UAIs. The source code for this can be found
here:

https://github.com/Cray-HPE/uas-mgr

C. HPE Provided UAI Images and Default Config Update
HPE provides a basic End-User UAI Image that can be used

for experimentation and basic sanity testing of the UAS/UAI
mechanisms, and a Broker UAI Image that sites can use to create
Broker UAIs. HPE also provides a tool that installs and updates
the UAS default configuration in new releases of the UAS/UAI
software. The code for these can be found here:

 https://github.com/Cray-HPE/uai-images

D. The Switchboard Tool
As described in “UAI Implementation” the switchboard tool

is the heart of the Broker UAI’s mechanism for delegating user
sessions to End-User UAIs. The source code for that can be
found here:

https://github.com/Cray-HPE/switchboard

E. The End-User UAI Entry Point and Other Utilities
As mentioned in “UAI Implementation” the End-User UAI

entry point script is responsible for starting SSHD and handling

timeouts. The code for that and other UAI related utilities can be
found here:

https://github.com/Cray-HPE/uai-util

F. Kubernetes Concepts
This paper refers to several Kubernetes concepts that underly

the implementation and use of UAIs. The following links
provide more detail on those concepts.

1) Kubernetes Pods
https://kubernetes.io/docs/concepts/workloads/pods/

2) Kubernetes Services
https://kubernetes.io/docs/concepts/services-

networking/service/

3) Kubernetes Jobs
https://kubernetes.io/docs/concepts/workloads/controllers/j

ob/

4) Kubernetes Volumes
https://kubernetes.io/docs/concepts/storage/volumes/

5) Kubernetes Resource Limits and Requests
https://kubernetes.io/docs/concepts/configuration/manage-

resources-containers/

6) Kubernetes Node-Affinity and Taints
• https://kubernetes.io/docs/concepts/scheduling-

eviction/assign-pod-node/

• https://kubernetes.io/docs/concepts/scheduling-

VI. REFERENCES
[1] Alex Lovell-Troy, Sean Lynn. 2021. User and Administrative Access for

CSM-Based Systems: Network Architecture Evolution and Access
Control Mechanics in Shasta v1.4 and Shasta v1.5. In Proceedings of the
2021 Cray User Group Meeting.

