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HPE Slingshot NIC (Slingshot 11) is a new HPE pro-
prietary NIC that is planned to power the three announced
US exascale systems. OpenSHMEM is a Partitioned Global
Address Space (PGAS) library interface specification. Cray
OpenSHMEMX is a HPE proprietary software implemen-
tation of the OpenSHMEM standards specification. In this
work, we provide an overview of the features supported by
Slingshot 11 NIC and our early experience in supporting
Cray OpenSHMEMX on Slingshot 11 NIC. We provide high-
level implementation details and detailed performance analysis
in supporting different standard OpenSHMEM features using
microbenchmarks and application kernels. As part of this
work, we propose non-standard new implementation specific
features to extract best performance from Slingshot 11 NIC.
Index Terms—PGAS, OpenSHMEM, RMA, AMO, One-sided
Communication, HPE Slingshot, Slingshot 11

I. INTRODUCTION

Evolutionary changes over multiple generations of High-
performance Computing (HPC) and data-center networking
architectures converged towards remote direct memory access
(RDMA). It is a process to enable direct read and write
operations on a remote process’s memory without the oper-
ating system involvement. RDMA provides high-throughput
and low-latency networking that are essential for programming
large-scale parallel systems.

Partitioned Global Address Space (PGAS) [10] is a style of
parallel programming model that employs light-weight one-
sided communication primitives based on RDMA mechanisms.
Languages and libraries based on PGAS style of programming
are broadly split into two categories: (1) language-based
models, where the PGAS features are added as an integral part
of the base language, and (2) library-based models with PGAS
features provided as an application programming interface
(API). Parallel Fortran using Coarray (CAF) [21] and Unified
Parallel C (UPC) [12] are examples for language-based PGAS
models, while OpenSHMEM [13] and Global Arrays [20] are
the examples for library-based PGAS models.

To achieve scalable performance on applications with highly
irregular communication patterns [11] (like sparse solvers,
FFT, and Integer Sort) and scale data parallel deep convo-
lutional neural networks [24, 23, 22], PGAS is explored as an
effective alternative to the message passing based program-
ming model.

OpenSHMEM [13] is an example of PGAS library interface
specification. It is a culmination of a standardization effort
among many implementers and users of the SHMEM pro-
gramming model [8]. Cray OpenSHMEMX [19] is a HPE
proprietary software implementation of the OpenSHMEM
standards specification. It is released as part of HPE Cray
Programming Environment software package[3]. It is the HPE
vendor supported OpenSHMEM implementation on various
HPE system architectures. Specifically, it is supported on all
HPE Cray EX supercomputer systems with HPE Slingshot
interconnect [5, 9, 14].

HPE Slingshot interconnect consists of network switches
and network interface cards (NICs) to deliver a performant
and scalable network to address the most challenging HPC and
Scale-Out Ethernet applications. At present, HPE Slingshot in-
terconnect supports two types of NICs – (1) Industry Standard
NIC (Slingshot 10), and (2) HPE Slingshot NIC (Slingshot 11).
HPE Slingshot NIC (Slingshot 11) is a new HPE proprietary
NIC that is planned to power the three announced US exascale
systems is an example for network interface cards that supports
RDMA efficiently.

The major contribution of this work is to introduce the
new Slingshot 11 NIC specific features that impacts the
performance of OpenSHMEM operations and our early ex-
periences in evaluating these operations. To the best of our
knowledge, this is the first work to evaluate the performance
of OpenSHMEM programming model over Slingshot 11. The
following Slingshot 11 NIC specific features are discussed
with respect to OpenSHMEM programming requirements:

1) Event completion semantics;
2) Communication protocol usage;
3) Impact of memory registration;
4) Deferred work execution;
5) Bundling events; and
6) AMO reliability.

By introducing these new features available in Slingshot 11
NIC, we expose SHMEM users to different options provided
by the Cray OpenSHMEMX library to effectively tune their
applications on HPE Slingshot network with Slingshot 11 NIC.

Based on understanding the general OpenSHMEM use-
cases and the above mentioned Slingshot 11 features, we pro-
pose different Cray OpenSHMEMX implementation specific
extensions to extract best performance from Slingshot 11 NIC.



Fig. 1. Overview of features available in OpenSHMEM specification version 1.5. Operations are grouped based on Communication Contexts [15] usage.

The following are the new extensions that are specifically
introduced in Cray OpenSHMEMX:

1) Cray OpenSHMEMX sessions;
2) Cray OpenSHMEMX effective signaling; and
3) Cray OpenSHMEMX fine-grain memory ordering.
These proposed new features are exposed to the users using

SHMEMX prefixed API extensions. The proposed extensions
can also benefit users and implementers of other programming
models like MPI [16] to explore options for exploiting similar
Slingshot 11 NIC features.

A. Contributions of this Work

The following are the major contributions of this work.
1) Use Cray OpenSHMEMX as an exemplar for evaluating

the new one-sided RDMA features in Slingshot 11 NIC;
2) Introduce and report on different Slingshot 11 features

impacting the performance of an OpenSHMEM appli-
cation;

3) Propose different non-standard implementation specific
extensions to exploit best performance from Slingshot
11 NIC; and

4) Show the performance benefits in using Slingshot 11
for communication patterns involving different irregular
parallel applications.

II. BACKGROUND

In this section, we provide a brief overview of different
features supported in the OpenSHMEM specification [8].

A. OpenSHMEM Overview

OpenSHMEM is a library interface specification that offers
support for many features enabling PGAS style of program-
ming. The general objective of OpenSHMEM is to expose
explicit control of the one-sided data transfer semantics using
light-wight asynchronous RMA operations. Fig. 1 shows the

rich feature set of the OpenSHMEM programming model,
which includes support for blocking and non-blocking re-
mote read and write operations, atomic memory operations,
symmetric data object management, fine-grain point-to-point
process synchronization, memory ordering, multithreading,
and collectives. Communication contexts [15] enables creation
of multiple isolated streams of operations within an applica-
tion, allowing each such stream to be mapped to a separate
POSIX [18] or user-threads.

1) Symmetric Data Object: OpenSHMEM programming
model follows Single Program Multiple Data (SPMD) style of
PGAS programming. It consists of multiple processes (PEs)
sharing data among themselves. Its memory model consists
of two types of data objects: (1) private, and (2) remotely
accessible shared data objects. Private data objects are stored
in the local memory of each PE and can only be accessed by
the PE itself; these data objects cannot be accessed by other
PEs using OpenSHMEM data movement routines. Remotely
accessible objects, also referred as Symmetric Data Objects
(SDO), is accessible by remote PEs using OpenSHMEM rou-
tines. Different PEs can asynchronously read or write into the
SDOs without the source PEs involvement and the SDOs are
managed (allocate and released) using special OpenSHMEM
memory management routines like shmem_malloc and
shmem_free.

2) Remote Memory Access Operations: Asyn-
chronous light-weight RMA data transfers (shmem_put and
shmem_get) are the essential core features of PGAS models.
Put and get operations are respectively those where the initiator
PE writes to and reads from the target PE’s remote memory
without its involvement. When the RMA data transfer happens
on a contiguous block of memory, either a contiguous local
data object is written into or a contiguous remote data object
is read from a target process.



A strided variant of the remote read and write operations
are also supported by the OpenSHMEM specification using
shmem_iput and shmem_iget operations.

The shmem_put_signal routines specific RMA opera-
tions that provide a method for copying data from a contiguous
local data object to a data object on a specified PE and
subsequently updating a remote flag to signal completion.

3) Atomic Memory Operations: AMOs are one-sided
communication operations which combines memory read,
modify, write, or update (RMW) operations with atomicity
guarantees as a single operation. The supported blocking and
non-blocking atomic memory operations are shown in Fig. 1.

4) Memory Ordering Operations: OpenSHMEM mem-
ory ordering routines provide mechanisms to ensure ordering
and/or delivery of completion on memory store, blocking, and
non-blocking OpenSHMEM routines. While shmem_fence
operation ensures ordering of delivery of operations on sym-
metric data objects, shmem_quiet waits for completion of
all outstanding operations on SDOs issued by a PE.

5) P2P Synchronization Operations: OpenSHMEM
point-to-point synchronization (P2P Sync) operations provides
a mechanism for synchronization between two PEs based on
the value of a symmetric data object. The P2P synchronization
routines can be used to portably ensure that memory access
operations observe remote updates in the order enforced by the
initiator PE using the put-with-signal, fence and quiet routines.
shmem_wait_until and shmem_test operation wait and
tests for a variable on the local PE to change respectively.

B. Cray OpenSHMEMX Overview

Cray OpenSHMEMX [19] is proprietary modular implemen-
tation of the OpenSHMEM programming model. It supports
all OpenSHMEM standard specific features along with ex-
tensions specifically tuned for HPE supported architectures.
Fig. 2 shows the different features supported by the Cray
OpenSHMEMX implementation.

Cray OpenSHMEMX supports OpenSHMEM programming
model on different HPE systems like HPE Cray XC and HPE
Cray EX system architectures using its different transport
modules. For example, Libfabric [17] and DMAPP [25, 6]
transport module allows supporting the library on HPE Cray
EX and HPE Cray XC systems with HPE-developed Aries
and Slingshot 11 NICs respectively. The library also allows
the usage of XPMEM [7] as an independent transport module
for intra-node jobs. The SMP transport module as shown in
Fig. 2 allows selection of a combination of different trans-
port modules for inter-node and intra-node data movements
separately.

DSMML and PMI are external libraries that are used by
Cray OpenSHMEMX SW stack for its symmetric memory
management and process management respectively. Namashiv-
ayam et al. provides detailed implementation overview of the
Cray OpenSHMEMX SW stack.

Fig. 2. Overview of different features available in Cray OpenSHMEMX.

III. IMPLEMENTATION

In this section, we have identified and provided detailed
description of different Slingshot 11 NIC specific features
that impacts the performance of OpenSHMEM operations.
Slingshot 11 features discussed as part of this section are
exposed to the implementers through the Slingshot 11 provider
available in the Libfabric [17] library.

A. Completion semantics
In Slingshot 11, all events are expected to specify an expected
completion semantics. Any AMO or RMA operation is consid-
ered as an event in Slingshot 11. In brief, Slingshot 11 supports
two types of completions: (1) completion with respect to local
process, and (2) completion with respect to target process.

Completion with respect to local process guarantees that
the local source buffer associated with the event is ready for
reuse. But, it does no guarantee that the transmitted data with
respect to the event has reached the target process memory.
While completion with respect to target process guarantees
that the local source buffer is ready for reuse as well as the
transmitted data has reached the target process memory.

Fig. 3 and Fig. 4 denotes the above mentioned completion
semantics. Fig. 3 represents the completion with respect to
local process, the ack for the transmitted event is generated
as soon as the data from the event has reached a state on the
network where it is guaranteed that it will eventually reach the
target buffer, and no re-transmission from the source buffer is
required. This denotes that the local source buffer is ready for
reuse by the source PE.

Fig. 4 represents the completion semantics with respect to
the target process. Here the ack for the event transmitted by the
source PE, is shown to be generated only after the transmission
is reliably completed on the target PE and the transmitted data
is made available on the target buffer.



Fig. 3. Showing the completion semantics with respect to the local process.
Denoting the acknowledgement (ack) for an event as being returned once
the data on the local source buffer is transmitted and reliably guaranteed that
no re-transmission would be needed. But, the ack does not guarantee the
availability of the data on the target buffer.

Fig. 4. Showing the completion semantics with respect to the target process.
Denoting the ack for as event as being returned only after reliably guaranteeing
that the data from source buffer is transmitted and available on the target PEs
target buffer.

As shown in Fig. 3 and Fig. 4, it is necessary to map
the right completion semantics with respect to different
OpenSHMEM operations (like blocking vs. non-blocking),
and also providing fine-grain completion operations to help
users in exploiting the various completion semantics supported
by Slingshot 11 NIC.

B. RMA Transfer protocols

RMA transfer protocols determines how the payload is con-
sumed by the Slingshot 11 NIC. The inject protocol allows
packaging of both the payload along with the event header
information. This allows sending both the payload as well as
the event header information as part of the single message
packet. Since, the payload is packaged as part of the message
packet, it is applicable mostly for small message transfers.

The Direct Memory Access (DMA) protocol follows the
RDMA mechanism. Here, the payload is transmitted sepa-
rately as a single or multiple message packets and separated
from the packet header information. The payload is split into
single or multiple packets based on the size of the payload.

Selecting the right transfer protocols with respect to the data
transfer size is critical in determining the performance of the
OpenSHMEM RMA operations.

C. Bundled Communication

The general process involved in posting an RMA or AMO
event is to prepare the message packet information (or the
command queue entry(CMDQE)) and post it into the command
queue. The Slingshot 11 NIC consumes these CMDQEs and
execute them in FIFO order based on the packet information
provided.

Fig. 5. Showing the available options to bundle communication events in
Slingshot 11. Every event enqueued to the command queue can be triggered
for execution immediately or bundled together with a single trigger for a
group of events.

The Slingshot 11 NIC picks up the CMDQEs only when
it observes a trigger entry in the command queue. There are
two possible options to generate these triggers: (1) create a
trigger per CMDQE, or (2) create a trigger for a group of
CMDQEs. Fig. 5 shows two different command queues where
the CMDQEs are triggered per event and triggered as a group.

The trigger event has a non-negligible performance impact.
Hence, it is essential to group multiple events together and
expose this bundling option to the OpenSHMEM users.

D. Memory Mapping

Each DMA protocol based events, as mentioned in Sec-
tion III-B, requires three verification steps on the source
PE: (1) verify the source buffer used for the DMA event is
registered with Slingshot 11 NIC, (2) verify the source buffer
is ready for data transfer, and (3) verify the source buffer
involved in the DMA event is ready for reuse. Every DMA
event performs all these three verification steps.

As soon as the DMA request is generated by the source
PE, the DMA transfer engine checks whether the source buffer
involved in the data transfer is registered with the Slingshot 11
NIC. If the memory is not registered, the memory registration
is performed and registration details are cached for later use.

It is the users responsibility to make sure that the source
buffer is updated with the required payload information before
initiating the trigger event for the data transfer operation, as
mentioned in Section III-C.

As mentioned in Section III-A the ack’s for every event
is consumed through some completion monitoring mechanism
(counter[1] or completion queue[2] updates) to determine its
re-usability after the data transfer operation is determined to
be complete.

The performance factor involved in the memory registration
is non-negligible. Hence, it is essential for the users to be
aware of these knobs before generating OpenSHMEM RMA
operations with unregistered source buffers from the local
stack or heap memory instead of the symmetric data objects
(SDOs).



Local completion Remote completion Event ordering
shmem_put (blocking PUT operations) return from operation use shmem_quiet use shmem_fence
shmem_put_nbi (non-blocking put operations) Not-available use shmem_quiet use shmem_fence

TABLE I: Table showing the options for local and remote completion semantics using blocking and non-blocking put operations.

E. Deferred Communication

Slingshot 11 NIC supports triggered communication opera-
tions with a deferred execution semantics. It allows enqueuing
communication events but deferring its execution until a
specific condition is met.

Each triggered operation is created with a trigger and
completion counter along with a trigger threshold value. The
enqueued triggered operations are deferred execution until the
trigger counter reaches the trigger threshold value mentioned
in the operation.

It is essential to exploit using the triggered operation
support available in Slingshot 11 in OpenSHMEM to opti-
mize OpenSHMEM operations like the non-blocking put-with-
signal.

F. AMO Reliability

Slingshot 11 supports reliable and single-transmit atomic
memory operation. While a reliable AMO allows retrying
atomic operations until it is successfully completed, a single-
transmit AMO as its name suggests would allow transmitting
the atomic operation once and expect it to successfully com-
plete without any re-transmit requirements.

In general, the performance of a single-transmit AMOs are
expected to be better than reliable AMOs. But, certain use-
cases can still get benefited in using the single-transmit AMOs.
While the default OpenSHMEM AMOs are expected to be
reliable, we should explore extending the standard AMOs with
single-transmit semantics.

IV. CRAY OPENSHMEMX EXTENSIONS

Most Slingshot 11 NIC specific features discussed in Sec-
tion III are exploited using standard OpenSHMEM RMA and
AMO operations. In this section, we are introducing new Cray
OpenSHMEMX specific extensions to allow exploiting some
of Slingshot 11 features.

A. Cray OpenSHMEMX Local Completion

The current OpenSHMEM memory ordering operations
(shmem_quiet and shmem_fence) ensure ordering and/or
delivery of completion on memory store, blocking, and non-
blocking OpenSHMEM routines. shmem_fence ensures or-
dering of delivery of operations on symmetric data objects,
shmem_quiet waits for completion of all outstanding oper-
ations on SDOs issued by a PE.

As specified in Section III-A, the completion semantics are
critical in achieving the best performance from Slingshot 11
NIC. TABLE I shows a table of options available to achieve
the local and remote completion semantics required by the
OpenSHMEM blocking and non-blocking variant of the put
operations.

As shown in TABLE I, to effectively get benefitted from
completion with respect to local process as mentioned in
Section III-A, the current OpenSHMEM specification has no
support for the local completion of non-blocking operations.
Users are either forced to perform blocking operations or use
the non-blocking operations with a heavy remote completion
semantics using shmem_quiet.

void shmemx_local_complete(void);
void shmemx_ctx_local_complete(shmem_ctx_t ctx);

Fig. 6. Function Prototypes for Local Completion operations.

Fig. 6 provides the function prototype for introducing lo-
cal complete operation in Cray OpenSHMEMX. The simple
semantics of shmemx_local_complete operation ensures
reusability of source buffers from all outstanding non-blocking
operations previously issued by a PE. It is light-weight on
performance when compared to shmem_quiet, that ensures
the delivery of operations (remote completion) on the target
PE.
shmemx_local_complete is specifically introduced to

provide users an option to exploit the local completion seman-
tics of Slingshot 11 NIC.

B. Cray OpenSHMEMX Sessions

A session in OpenSHMEM is considered an epoch in an
application where the users are allowed to provide certain
hints to the OpenSHMEM runtime on the application usage
model. These hints provided by the users would allow the
OpenSHMEM runtime, like Cray OpenSHMEMX, to manage
and provide a better NIC resource utilization.

OpenSHMEM sessions can be considered similar to the
#pragma directives in C language, that provides additional
information to the compiler beyond what is conveyed in the
language itself. Here the session options can be considered as
hints that provides additional information to the OpenSHMEM
runtime beyond what is conveyed by the OpenSHMEM rou-
tines used by the applications.

void shmemx_ctx_session_start(
IN shmem_ctx_t ctx,
IN int options);

void shmemx_ctx_session_stop(
IN shmem_ctx_t ctx);

Fig. 7. Function Prototypes to Start and Stop an OpenSHMEM Session.

Fig. 7 shows the function prototype for starting and stopping
a session on an OpenSHMEM context object. The options
argument is a set of features passed as a hint to a given ctx.



These options can be anything ranging from hints to allow
bundling operations or using single-transmit AMOs. These
options in Cray OpenSHMEMX are specific to exploiting
Slingshot 11 NIC features. Detailed examples about the vari-
ous options supported by Cray OpenSHMEMX are available
in Sections IV-B1, IV-B3, and IV-B2.

1) Session Bundling: Example shown in Fig. 8 provides
an apt usage model where hints for bundling non-blocking put
operations can be added. The code provided in this example
is a common all-to-all usecase, where every PE sends a part
of their data to all other PEs.

for (int i = 0; i < n; i++) {
shmem_put_nbi(SHMEM_CTX_DEFAULT,

src + off[i], dst + off[i],
nelems, i);

}
shmem_quiet();

Fig. 8. Example program showing the use-case for bundling operations.

In the example shown in Fig. 8, the additional information
that is unknown to the OpenSHMEM runtime is that the
completion of all these non-blocking put operations are not ex-
pected until the memory ordering operation (shmem_quiet)
at the end of the epoch. Also, the OpenSHMEM runtime
is unaware that there are multiple non-blocking operations
that is planned to be created before calling the memory
ordering operation at the end of the epoch. Without these two
information, the OpenSHMEM runtime would be forced to
trigger all the non-blocking put operations separately and this
avoids bundling these oeprations together.

shmemx_ctx_session_start(
SHMEM_CTX_DEFAULT,
SHMEM_SESSION_BUNDLE | SHMEM_SESSION_OP_PUT);

for (int i = 0; i < n; i++) {
shmem_put_nbi(SHMEM_CTX_DEFAULT,

src + off[i], dst + off[i],
nelems, i);

}

shmemx_ctx_session_stop(SHMEM_CTX_DEFAULT);

shmem_quiet();

Fig. 9. Extending example program from Fig. 8 with Bundled sessions

Fig. 9, extends the example shown in Fig. 8. Fig. 9
excapsulates the example in Fig. 8 with session
start and stop operations. As part of the options
argument, we use SHMEM SESSION BUNDLE and
SHMEM SESSION OP PUT, hinting that the implementation
is free to bundle all put operations within that session.

As the session options are an hint, it is upto the
OpenSHMEM runtime to make use of the hints to optimize
the data transfer with any implementation specific features. In

this example, Cray OpenSHMEMX chooses to optimize the
data transfer by bundling the non-blocking put operations.

2) Session Bundled PWS: As mentioned in Section III-E,
triggered communication operations with deferred execution
semantics can be used to efficiently implement the non-
blocking put-with-signal operations. It is possible to enqueue
the payload and signal data transfers in the put-with-signal
operation in such a way that the completion of the payload
triggers the execution of the signal operation. This design
will make use of a Slingshot 11 NIC HW counter per put-
with-signal operation. Needless to say, these NIC HW counter
resources are scarse.

Fig. 10 shows an example program for bundling
multiple OpenSHMEM non-blocking put-with-signal
operations using the SHMEM SESSION BUNDLE and
SHMEM SESSION OP PUT session hints.

shmemx_ctx_session_start(
SHMEM_CTX_DEFAULT,
SHMEM_SESSION_BUNDLE | SHMEM_SESSION_OP_PWS);

for (int i = 0; i < n; i++) {
shmem_put_signal_nbi(SHMEM_CTX_DEFAULT,

src + off[i], dst + off[i],
nelems, &signal, sig_val,
SHMEM_SIGNAL_SET, i);

}

shmemx_ctx_session_stop(SHMEM_CTX_DEFAULT);

shmem_quiet();

Fig. 10. Extending the example program from Fig. 8 using Bundled sessions
with non-blocking put-with-signal operations.

The benefit for bundling the put-with-signal operations
includes using the event triggering optimizations as mentioned
in Section III-C. Apart from this optimization, it is also
possible to group the put-with-signal operations in such a way
that when using triggered operations, multiple operations are
grouped to use a single NIC HW counter.

Fig. 11 shows an example transformation of the code shown
in Fig. 10. In this example transformation code shown in
Fig. 11, the implementation is free to convert multiple put-
with-signal operations internally into groups of payload puts
followed by a fence and a signal transfer to all the targets.
This transformation will allow the implementation to use
a single counter for all the grouped payload operations. If
used correctly, the put-with-signal session option combined
with the effective session bundling option can provide better
performance and effective non-blocking semantics for the
users.

3) Session Single Transmit AMOs: The single-
transmit AMOs are similar to other session options.
Using the SHMEM SESSION UNRELIABLE and
SHMEM SESSION OP AMO would convert all AMOs
inside a session epoch to single-transmit AMOs.



/* bundling all payloads */
for (int i = 0; i < n; i++) {

shmem_put_nbi(SHMEM_CTX_DEFAULT,
src + off[i], dst + off[i],
nelems, i);

}
/* order delivery of all signal operations

with respect to payloads */
shmem_fence();
for (int i = 0; i < n; i++) {

shmemx_signal_set(&sig, sig_val, i);
}
shmem_quiet();

Fig. 11. Showing the transformation of bundling non-blocking put-with-signal
operations to bundle all payload transfers before posting the bundle of the
signal transfers corresponding to all the payload transfers.

C. Cray OpenSHMEMX Signal Set

There are two types of signaling operations:
SHMEM SIGNAL SET, and SHMEM SIGNAL ADD.
The atomicity of the signaling operations is unique in
that it is atomic only with respect to itself and any other
signaling operation of the same type. The main performance
benefit in using the signaling operation for point-to-
point synchronization(Section II-A5, when compared to
other atomic operations is that signaling semantic allows the
operation to be not atomic with respect to other OpenSHMEM
atomic operations, inturn allowing the OpenSHMEM runtime
to effectively implement it.

The current OpenSHMEM put-with-signal semantics does
not allow passing the signaling operations separetely. To make
use of the signaling operation, it has to be used in conjunction
with a zero-size payload put-with-signal operation.

In Cray OpenSHMEMX, the signal set operation
(shmem_signal_set) is a new extension to provide
the signaling semantics without the payload usage. The
function prototype of the signaling operation is provided in
Fig. 12. Using the signaling set operation against using atomic
set operation (shmem_atomic_set) or zero-sized payload
put-with-signal operation shows performance benefits.

void shmemx_signal_set(
IN uint64_t *sig,
IN uint64_t sig_val,
IN int pe);

shmemx_signal_set(&sig, sig_val, i);

Fig. 12. Function prototype and example usage of Signaling set operation.

V. PERFORMANCE ANALYSIS

In this section, we provide detailed performance analysis
of different OpenSHMEM features supported by the Cray
OpenSHMEMX SW stack on the Slingshot 11 NIC. We
provide details of the different Slingshot 11 features impacting
the performance of the OpenSHMEM operations.

A. Test System Overview

Performance analysis reported in this section used the latest
Cray OpenSHMEMX SW package released as part of the
latest HPE Cray Programming model SW stack. We used
an internal HPE Cray EX system equipped with multiple
AMD EPYC 7763 processors code named Milan. Each node
consists of dual-socket AMD Milan processors and the nodes
are connected using HPE Slingshot NIC (Slingshot 11) with
one Slingshot 11 NIC per socket. All AMD Milan processors
are configured to use 4 NUMA nodes per socket (NPS-4).

B. Test Suite Overview

For the performance analysis, we used to two different test
suites: (1) OSU Microbenchmark (OMB) [4] suite, and (2) an
internal HPE developed random access (HRA) suite. While
the different latency, bandwidth, and message rate tests for
various OpenSHMEM operations in the OMB suite are well
known, the internal HRA suite performs a random access
all-to-all communication pattern. There are two user inputs
required in the HRA suite: (1)size and (2)n-updates. size
determines the size of a remotely accessible table created,
and n-updates determines the number of updates performed
by a single PE. For each update, the source PE determines a
random location within a table created and a random target PE
to perform different kinds of update. The type of supported
updates includes different types of RMA, put-with-signal, and
atomic memory operations.

The results of these updates from these two microbench-
marks are described in the following sections. And, these
tests refer to the most commonly used usage models for the
applications based on the OpenSHMEM programming model.

C. Impact of Transfer Protocol Selection

Results from running PUT-based tests in HRA suite on 16
nodes with 128 PPN is shown in Fig. 13. We can understand
the impact of the right transfer protocol selection from these
tests. As mentioned earlier in Section III-B, there are two types
of transfer protocol available in Slingshot 11 NIC for data
transfer operation.

It is shown in Fig. 13 that using inject and DMA pro-
tocol for small and large message sizes provides the best
bandwidth close to the Slingshot 11 theoretical max. But
for medium sized messages from 256 bytes to 1K it is not
efficient to directly shift from using inject protocol to the
DMA protocol. The performance of using DMA protocol for
the medium sized messages is not good. To accommodate a
smooth transition from the inject to DMA protocol selection,
Cray OpenSHMEMX implementation makes use of a SW
protocol selection optimization module. The impact of this
SW optimization module is shown in Fig. 13.

Also, the impact of using unregistered memory for
data transfer is shown in Fig. 13. PUT_NB_lstack and
PUT_NB_lheap shows the usage of local stack and heap
variables as source buffers for the data transfer operation.
Local stack and heap variables are unregistered memory



Fig. 13. HRA Random Access Non-blocking PUT Bandwidth Analysis on 16 nodes with 128 PEs per Node. Showing the performance impact of using
different transport protocols as mentioned in Section III-B and registered memory for optimized data movement operations.

region. As soon the inject protocol is not used, without the SW
optimization layer in Cray OpenSHMEMX the performance of
using local stack and heap variables are hit. This is shown by
the sudden drop in performance for PUT_NB_lstack (No
SW Protocol Selection) and PUT_NB_lheap (No
SW Protocol Selection) runs in Fig. 13.

In brief, through this performance analysis, we show the
benefits of using the optimized SW transfer protocol selection
module in Cray OpenSHMEMX runtime. Also we show the
need for using the registered memory from the SDOs for
optimized performance across different data sizes.

D. Impact of Completion Semantics
Fig. 14 shows the impact of Slingshot 11 NIC completion
selection semantics. We used OSU blocking and non-blocking
PUT microbenchmarks to measure the impact of local and
remote completion semantics. The No Completion tests
denote the usage of memory ordering operation at the end of
n-iterations, while the tests with local or remote completion
shows the usage of either shmemx_local_complete or
shmem_quiet per operation.

We can see that tracking the completion of the non-blocking
PUTs per operation (PUT_NBI Remote Completion)
performs the worst when compared to all other types of
completion tracking. This is because, we are trying to serialize
the data transfer operations. Meaning, we post a non-blocking
PUT on the source PE and wait for it to reach the remote
target memory before posting the next operation.

Consider the run (PUT_NBI No Completion and
Blocking PUT No Completion) that tracks the com-
pletion of all operations at the end of n iterations. Both the
blocking and non-blocking PUT performance are similar for
small messages less than 512 bytes. This is due to the usage
of inject protocol as mentioned in Section V-C. For large
messages, since the non-blocking PUTs when not tracked can
generate multiple parallel transmission of data, it performs

Fig. 14. OSU Blocking and Non-blocking PUT Bandwidth Analysis on
2 nodes with 1 PE per Node. Showing the performance impact of local
completion for source buffer re-usability.

better than the blocking PUT operation. And, it can be seen
that the non-blocking PUT PUT_NBI No Completion can
be used to achieve the maximum bandwidth when compared
to other runs.

The benefit of using local completion tracking is shown
clearly by the PUT_NBI Local Completion results. We
can see that, it performs very closely to the Blocking PUT
No Completion. When used correctly on use-cases where
the local completion of non-blocking operations is sufficient,
the shmemx_local_complete extension can be used to
achieve better performance.

E. Impact of Memory Registration

Fig. 15 is an extension to the registered memory usage
analysis performed in Section V-C. We further analysis the
usage of registered memory for data movement operations.
This tests shows the performance of OSU non-blocking PUT
microbenchmark using global and symmetric memory for the



Fig. 15. OSU Blocking and Non-blocking PUT Bandwidth Analysis on
2 nodes with 1 PE per Node. Showing the performance impact of using
hugepage backed memory for data movement operations.

data movement. We can see the benefit in using the symmetric
data object when compared to global memory on the medium
sized messages using the DMA protocol.

This analysis again shows the benefit in using the registered
symmetric memory (SDO) for the data movement operations
against the usage of global/static memory.

F. Impact of Event Bundling

In this section, we show the performance impact of
bundling communication operations with the new proposed
OpenSHMEM session extension. Fig. 16 shows the mes-
sage rate comparison on non-blocking PUTs using OSU mi-
crobenchmark with and without bundling the operations across
a range of tests with different process per node (PPN) usage.
Example program in Fig. 9 shows the bundled operation used
for this evaluation.

As seen from Fig. 16, we can understand that when smaller
number of PEs are used per node, bundling of operations has
a huge performance benefit (close to 2.5X improvement on 16
PPN case) when compared to applications where multiple PEs
per node are used. And, this performance benefit is observed
mostly for smaller message sizes less than 8K bytes.

In brief, the bundling extensions added in Cray
OpenSHMEMX through the OpenSHMEM sessions
proposal provides a better performance benefit for smaller
messages when smaller number of PEs are involved in the
communication operation per node.

G. Impact of Put-with-Signal Communication

This section shows the benefits in using the put-with-
signal (shmem_put_signal) operations available
in the OpenSHMEM specification when compared
to manually setting up the put-with-signal semantics
using the (shmem_put_nbi, shmem_fence, and
shmem_atomic_set) operations.

As shown in Fig.17, we used the put-with-signal tests in
HRA suite on 16 nodes with 128 PPN. Using the standard put-
with-signal operation shows on average a 1.6X performance

improvement over using the manual implementation of the put-
with-signal semantics. This test shows the benefits of using
the standard put-with-signal operations when compared to
manually implementing the put-with-signal semantics in the
application.

H. Impact of AMO Reliability

Fig. 18 shows the performance results of running different
fetching and non-fetching AMO tests using the HRA suite on
8 nodes with 128 PPN. It shows the performance benefits in
using single-transmit AMOs as mentioned in Section IV-B3
and the performance impact of the shmemx_signal_set
atomic operation.

In general, the performance of non-fetching AMOs are
much better than the the fetching AMOs. This is seen in
Fig. 18 by comparing the performance of shmem_int_add
against shmem_int_fadd. The single-transmit AMO usage
using the session extension shows a 1.4X performance im-
provement over the default AMOs. This performance improve-
ment is observed only on the non-fetching atomic operations.
This is a known behavior as the fetching atomic operations
have no effect from the single-transmit AMO settings.

As specified in Section IV-C, the shmemx_signal_set
atomic operation has an unique atomicity semantics when
compared to other atomic operations. This allows the Cray
OpenSHMEMX library to efficiently implement the signalling
set operation. The performance in Fig. 18 shows a 1.9X
performance improvement in using the signaling set operation
when compared to other AMOs. The single-transmit AMO
settings have no effect on the signaling set operation.

In brief, users can be benefited through the right usage of
the single-transmit AMO settings using the sessions extension
and the signaling set operations.

VI. CONCLUSION

In this work, we introduced various HPE Slingshot NIC
(Slingshot 11) features that impacts the performance of the
operations supported by OpenSHMEM programming model.
We discussed specifically on the impact of completion seman-
tics, transfer protocol selection, event bundling, and different
types of available atomicity operations. All these discussed
features have a varying level of performance impact on the
OpenSHMEM remote memory access (RMA) and atomic
memory operations (AMO).

We introduced new extensions in Cray OpenSHMEMX, a
HPE proprietary library implementation of the OpenSHMEM
standard specification, to specifically exploit the various fea-
tures available in Slingshot 11 NIC. For example, the bundling
operation hints provided through the new OpenSHMEM ses-
sions extension provides a 2X performance improvement on
certain application models involving communication opera-
tions with low process count per node. Similarly, the usage of
single-transmit AMOs and signaling set operations can provide
around 1.4X and 1.9X performance improvement over the
default AMOs.



Fig. 16. OSU Non-blocking PUT Message-rate Analysis on 2 nodes with different number of PEs per Node. Showing the performance impact of bundling
multiple PUT operations together against posting each PUT operation separately.

Fig. 17. HRA Random Access Blocking Put-with-Signal Bandwidth Analysis
on 16 nodes with 128 PEs per Node. Showing the performance impact of
OpenSHMEM Blocking shmem_put_signal routines compared to Manu-
ally implementing the put-with-signal semantics using blocking shmem_put
followed by shmem_fence and shmem_atomic_set signaling operation.

To conclude, we showed the performance impact on various
parameters like the memory buffer, and completion seman-
tic usage on different OpenSHMEM RMA and AMO op-
erations using microbenchmark kernels representing various
OpenSHMEM application usage models. A complete support
of the OpenSHMEM programming model over the Slingshot
11 NIC is an on-going effort. In future, similar performance
analysis and tuning suggestions is planned to be performed
on other OpenSHMEM operations like collectives and team
(process subset) management.
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