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Abstract—In 2021, the Oak Ridge Leadership Computing
Facility (OLCF) deployed Spock and Crusher, the first two
user-facing HPE/Cray EX systems as precursors to Frontier.
Both systems were transitioned to operations in 2021 with
the goal of providing users with platforms to begin porting
scientific applications in preparation for Frontier’s arrival. While
Spock’s architecture is one-generation removed from Frontier’s
hardware, it exposed users earlier to the new HPE/Cray Pro-
gramming Environment designed for AMD GPUs. Spock is a
36-node HPE/Cray EX supercomputer with one AMD EPYC
7662 processor and 4 AMD MI100 GPUs per node. Crusher,
on the other hand, is a 192-node HPE/Cray EX supercomputer
with one AMD EPYC 7AS53 processor and 4 AMD MI250X
GPUs per node with the same hardware as Frontier. In this
paper, we present an overview of the challenges and lessons
learned encountered during the deployment and the transition to
operations of both systems. These include issues identified with
the programming environment, layout and process binding via
SLURM, and providing access to the center-wide file systems.
We also discuss settings added locally to improve the user
experience, current workarounds in-place, and the processes
developed to capture the status of evolving issues in our user-
facing documentation.

Index Terms—high performance computing, system deploy-
ment, system testing, programming environment

I. INTRODUCTION

In 2021, the Oak Ridge Leadership Computing Facility
(OLCF) deployed the first two HPE/Cray EX user-facing
systems precursors to Frontier: Spock [1] and Crusher [2].
Both systems were installed, deployed, and transitioned to
operations in 2021 with the goal of providing Exascale Com-
puting Project (ECP) and Center of Accelerated Application
Readiness (CAAR) users with a platform to begin port scien-
tific applications in preparation for Frontier’s arrival.
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While Spock’s architecture is one-generation removed from
Frontier’s hardware, it has the advantage of exposing users
earlier to the new HPE/Cray Programming Environment (CPE)
specifically designed for AMD GPUs. Spock is a 36-node
HPE/Cray EX supercomputer with one 64-core AMD EPYC
7662 processor, 256 GB of memory, and 4 AMD Instinct
MI100 GPUs per node. Spock was the first user-facing AMD
GPU-based HPE/Cray EX supercomputer deployed at the
OLCF.

Prior to opening the Spock early access system to users,
the OLCF worked closely with HPE and AMD to install and
configure the hardware, system software, and user environ-
ment. On the system-software side, transitioning applications
to use Slurm [3|] for launching jobs revealed several bugs
centered around placement and mapping of processes to cores
and GPUs. In addition, due to the initial lack of support for
IBM Spectrum Scale (GPFS) on Cray OS, we had to find
alternatives that would allow us to provide the OLCF’s center-
wide GPFS file system on Spock.

On the user-environment side, initial challenges included
compatibility issues identified between AMD’s Radeon Open
Compute Platform (ROCm) and several HPE/Cray products:
Cray Compiling Environment (CCE), Cray Performance Anal-
ysis Tools (CrayPat), and Cray MPICH. We elaborate some of
these challenges in this paper. In one case, for instance, we
found that users with codes that rely on OpenMP offloading
were unable to compile their application with CCE when
moving from ROCm 4.2.0 to 4.3.0, which was found to be
caused by a mismatch in the LLVM versions provided by each
modulefile.

In addition, we identified several bugs in the HPE/Cray pro-
gramming environment for AMD (PrgEnv-amd) that prevented
users from successfully compiling applications. Being a fairly
new addition, some of the Lua-based modulefiles required
local patches in order to provide users with a fully functional
user environment. For example, initially in CPE 21.07, loading
the PrgEnv—amd modulefile disabled cray—-mpich in the
environment due to the fact that the corresponding modulefile
was not found. This prevented users from compiling MPI



applications using PrgEnv-amd and a workaround was nec-
essary until an official fix was available in CPE.

The Crusher test and development system (TDS) has the
same processor and GPU as Frontier. It is the first system that
will be available to users to begin porting activities for Fron-
tier. Crusher is a 192-node HPE/Cray EX supercomputer with
one 64-core AMD EPYC 7A53 “Optimized 3rd Gen EPYC”
processor, 512 GB of DDR4 memory, and 4 AMD MI250X,
each with 2 Graphics Compute Dies (GCDs). On Crusher, we
encountered additional compatibility issues due to the rapidly
evolving nature of ROCm and worked closely with HPE to
address these issues. The more complex node architecture also
uncovered edge cases that were not adequately supported in
Slurm, as well as improvements needed in CPE to provide a
more streamlined user experience.

In this paper, we present an overview of the challenges
encountered, bugs and fixes identified, as well as lessons
learned during the deployment and transition to operations
of the Spock and Crusher systems. We also discuss settings
added locally to improve the user experience, the current
workarounds that remain in-place, and the processes developed
to maintain the status of evolving issues automatically updated
in our user-facing documentation. These lessons learned can be
useful for the HPE/Cray user community currently deploying
similar systems.

II. SYSTEM ARCHITECTURES

As part of the preparation for Frontier, the OLCF deployed
the Spock early access system (EAS) and the Crusher test
and development system (TDS). In this section, we detail
information about the system architecture of both platforms
as well as the center-wide Spectrum Scale parallel file system,
Alpine.

A. Alpine

The Alpine file system cluster is an existing platform within
the OLCF. As a center-wide resource, the cluster provides
a POSIX-based Spectrum Scale (formerly known as GPFS)
namespace for computational and visualization systems [4].
Alpine has a maximum capacity of 250 PB and performance
of up to 2.5 TB/s and 2.2 TB/s for sequential and random 1/O,
respectively. The cluster is attached to a Scalable I/O Network
(SION3) based on EDR InfiniBand. A schematic describing
the connectivity path between Alpine and Spock and Crusher
is shown in Figure

B. Spock

The Spock Early Access System (EAS) is one generation
removed from the hardware that will be available on Frontier.
Spock is comprised of 36 HPE Apollo 6500 nodes each with
one 64-core AMD EPYC 7662 “Rome” CPU and four AMD
MI100 GPUs. Each compute node has 256 GB of DDR4
memory and 128 GB of high-bandwidth memory (HBM2).
The CPU is connected to the GPUs via PCle Gen4 which
delivers a bandwidth of 32432 GB/s. All GPUs on a compute
node are interconnected via AMD’s Infinity Fabric (xGMI)

Crusher

Fig. 1: Schematic describing Alpine connectivity to/from
Spock and Crusher.

which delivers 46+46 GB/s between devices. Two login nodes
provide front-end services for users to compile code and
submit jobs. Compute nodes on Spock are interconnected via
HPE’s Slingshot 10 interconnect.

Spock was deployed and is managed with the HPE Per-
formance Cluster Manager (HPCM) version 1.5. HPCM pro-
vides tools for node power and firmware management, image
building, and monitoring. The compute nodes boot Cray OS
(COS) version 2.1, which is based on SUSE Linux Enterprise
Server (SLES) 15 SP2. The Alpine file system is natively
mounted on each Spock compute node. Two gateway nodes
outfitted with a Slingshot 10 interface and a Mellanox CX-6
InfiniBand interface provide Ethernet IP forwarding services to
allow the compute nodes to communicate with the file system
servers [5]]. The routing table on each Spock compute node
contains a static multipath route to reach Alpine’s network
range. Host level firewall rules on each Spock compute node
permit Spectrum Scale traffic from the Alpine cluster. A
corresponding multipath route entry and a set of host firewall
rules permit each server in the Alpine cluster to reach the
Slingshot 10 network on Spock. The compute, gateway, and
utility nodes in Spock form a distinct Spectrum Scale cluster.
This cluster is defined as a remote cluster to Alpine and is
permitted to mount the Alpine namespace [6]. HPE Slingshot
10 (SS10) [7]] is a 100Gbps network architecture composed of
HPE Rosetta switches and Mellanox interfaces. The interfaces
are Mellanox CX-5 100Gbps Ethernet adapters.

SS10 supports features seen in comparable Infiniband net-
works, such as adaptive routing and quality of service. Using
Rosetta switches, SS10 also provides new network features,
HPC optimized Ethernet, and state-of-the-art congestion con-
trol. Rosetta switches are 64 ports and support up to 200Gbps
per interface. SS10 supports the dragonfly network topology
to enable large and scalable networks. The Spock SS10
network is 3 groups with 12 computes per group providing
1.2Tbps of intragroup connectivity and 800Gbps of intergroup
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Fig. 2: Spock compute node diagram.

connectivity.

C. Crusher

The Crusher Test and Development System (TDS) is com-
prised of 192 HPE Cray EX235a nodes, each with one 64-core
AMD EPYC 7A53 “Optimized 3rd Gen EPYC” CPU and
four AMD MI250X GPUs, each with 2 Graphics Compute
Dies (GCDs). Each compute node has 512 GB of DDR4
memory and 512 GB of high-bandwidth memory (HBM2E),
64 GB per GCD. The CPU is connected to the GPUs via
AMD’s Infinity Fabric which delivers a bandwidth of 36436
GB/s. All GCDs on a Crusher node are interconnected via
Infinity Fabric delivering up to 50+50 GB/s for GCDs across
GPUs, and up to 2004200 GB/s for GCDs on the same
GPU. Compute nodes on Crusher are interconnected via HPE’s
Slingshot 11 interconnect. Crusher uses HPCM version 1.6,
which was the first version to officially support HPE Cray EX
Mountain/Olympus hardware. ORNL augmented HPCM with
its own software, Phoenix , to pre-discover the compute
nodes and automate configuration file generation. Crusher
uses 3 HPCM SU Leader nodes to distribute the load of
node boot and management. The OLCF center-wide NFS
home areas are served to the compute nodes via Cray’s Data
Virtualization Services (DVS). Although DVS is not formally
supported with HPCM 1.6 and COS 2.2, the software is still
included in the COS distribution. Local scripts were developed
to generate a DVS node map and initialize the servers and
clients. Similar to Spock, Crusher natively mounts the Alpine
Spectrum Scale file system using three dedicated gateway
nodes. Each node connects to both the internal high speed
network and SION. The compute, login, and utility nodes
of Crusher form a distinct Spectrum Scale cluster. Because
of the center-wide nature of Alpine, remote clusters must
have distinct non-overlapping subnet ranges. Careful planning
ensures that the network address scheme implemented on
Crusher and Spock do not interfere with each other, with
existing clusters, or with future systems that mount Alpine.
Slingshot 11 (SS11) upgrades SS10 by replacing the Mellanox

CX-5 Ethernet adapters with HPE Cassini 200Gbps adapters.
These adapters expand the features of the Slingshot network
by incorporating hardware tag-matching, triggered messages,
hardware-accelerated collectives, and atomic operations. With
SS11, hardware-based congestion control can throttle at the
NIC. The 192 nodes of Crusher represent two dragonfly groups
where only one is fully populated. A Crusher node has 4 NICs
per node totaling 768 200Gbps ports from the compute portion
of the network.

III. PROGRAMMING ENVIRONMENT

The Spock and Crusher systems leverage the HPE/Cray
Programming Environment (CPE) which includes a software
stack that utilizes the Cray Compiling Environment (CCE),
AMD compiler (AMD), and GNU Compiler Collection (GCC)
compilers. AMD’s Radeon Open Compute (ROCm) platform
is provided separately and includes both the ROCm device
drivers and ROCm libraries and tools.

In this section, we describe the different components in-
cluded as part of the user environment available on Spock and
Crusher.

A. Compilers on Spock and Crusher

The Cray Compiling Environment (CCE) provides C, C++,
and Fortran compilers. The CCE C and C++ compilers are
based on the Clang compiler [9] and include support for the
Unified Parallel C (UPC), Heterogeneous-Compute Interface
for Portability (HIP) [10], and OpenMP parallel programming
model [11]. The support for HIP is only available for AMD
GPUs. The OpenMP support includes the full implementation
of 4.5 specification and partial for 5.0 and 5.1 specifications.
It also includes support for OpenMP target offload on Cray
systems. The CCE Fortran compiler is a HPE/Cray propri-
etary Fortran compiler. It also fully implements OpenMP 4.5
specification with partial support for 5.0 and 5.1 specifications.

The AMD programming environment is derived from the
Radeon Open Compute (ROCm) platform [12]. The ROCm
compiler is built upon the LLVM open source compiler
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Fig. 3: Crusher compute node diagram.

framework with support for compiling GPU kernels written
using the C++ HIP specification, as well as the OpenMP
standard for parallel execution on the CPU and offloading to
the MI100 and MI250X GPUs. The ROCm compiler supports
C, C++, and Fortran using the the amdclang, amdclang++
and amdflang drivers, respectively. It should be noted that
Fortran support in ROCm is built upon the classic Flang code
base []E[], which is an open-sourced version of pgfortran,
a commercial Fortran compiler from PGI/NVIDIA, and is
not currently using the flang code base that is part of the
LLVM monorepo. The latter code base is currently under
active development.

The CCE, AMD, and GCC compilers are accessi-
ble via loading the environment module PrgEnv-cray,
PrgEnv-amd, and PrgEnv-gnu, respectively. The compiler
drivers cc, CC, and ftn for C, C++, and Fortran that invoke
the underlying compilers are made available to provide a
convenient mechanism to use common flags such as offloading
to the GPU and adding the correct path to include files.
During linking, these compiler drivers also automatically add
the necessary flags to link to commonly used libraries such
as the cray-mpich library for MPI and the Cray scientific
library 1ibsci.

In addition to the ROCm platform, AMD makes available
the AOMP research compiler [14]. AOMP combines the latest
updates from upstream LLVM development with AMD open
development that have yet to be merged into upstream LLVM.
Furthermore, the ROCm environment includes several libraries
tuned for execution on AMD Instinct GPUs. Those libraries
include rocBLAS, rocfft, MIOpen and other scientific
and machine learning libraries. The libraries deployed as part
of the ROCm environment are a subset of the open source
libraries that constitute the ROCm Software Platform.

AMD also makes available the AFAR compiler, which uses
the same LLVM code base as AOMP, but is packaged against
a specific version of ROCm, along with the associated sci-
entific libraries. While having access to research and pre-
release versions of the compilers was generally beneficial, it
was sometimes difficult to navigate feature availability and
deployment plans, especially as new features are introduced
and bugs fixed in officially released AMD tool chains.

Due to the inadequate support for Fortran and OpenMP
offloading in the amdflang compiler, two more hybrid pro-
gramming environments were added based on early application
developer feedback. The PrgEnv—-gnu-amd environment
uses the AMD C and C+ compilers with the GNU gfortran
compilers while the PrgEnv-cray—amd environment uses
the AMD C and C++ compilers with the Cray CCE Fortran
compiler. These mixed environments are supported using the
standard CPE compiler drivers providing a simple interface to
these hybrid environments.

B. Performance and Correctness Tools

The AMD Instinct accelerator series and its underlying
CDNA architecture are fairly recent entries into the realm of
general-purpose GPU-based computing. Many existing AMD
tool products are focused on graphics-oriented workloads for
the RDNA architecture GPUs, where the performance goals,
methods, and associated GPU hardware components for op-
timizing performance are very different from general-purpose
scientific computing. As a result, the necessary tooling support
for performance measurement and analysis and functional
correctness for CDNA GPUs remains in a state of active design
and development.

For performance measurement and analysis, AMD provides
the ROC-profiler and ROC-tracer API libraries that are loosely
based on functionality provided by NVIDIA’s CUDA Profiling



Tools Interface (CUPTI). These libraries provide the core
functionality for profiling and tracing of GPU code, includ-
ing collection of GPU hardware performance counters, and
are crucial for supporting third-party performance tools for
AMD GPUs. AMD also provides the rocprof command-
line utility to orchestrate use of the profiling and tracing
libraries and post-process performance results when running
a local application. Profile data from rocprof is generated
in comma-separated value (CSV) files, while trace data is
produced in the JSON trace format used by the trace viewer
embedded in Google’s Chrome web browser. For functional
correctness, AMD provides the Debugger API library for con-
trol and inspection of GPU code, and the rocgdb debugger
that integrates the library’s capabilities into the widely-used
gdb debugger. Because AMD’s tools are designed for single-
process, single-host use, they are not currently suitable for
performance analysis and debugging of long-running parallel
applications spanning many hosts or using multiple processes
per host, as is common for scientific HPC applications.

HPE’s performance and correctness tools for AMD GPUs
include the Cray Performance Measurement and Analy-
sis Tools (CPMAT) and the Cray Debugger Support Tools
(CDST). Both toolsets are dependent upon AMD’s libraries
and tools for much of their AMD GPU support. For ex-
ample, the perftools and perftools-lite suite of
performance analysis tools use the ROC-tracer API, and the
gdb4dhpc parallel debugger leverages rocgdb. As these
toolsets are designed for HPC use, they automatically aggre-
gate and summarize information collected from many parallel
processes, and thus are the preferred method for analyzing
scientific applications.

IV. CHALLENGES OF AN EVOLVING ECOSYSTEM

Given that the AMD GPU ecosystem is rapidly evolving,
unsurprisingly, the user environment that is available on both
Spock and Crusher has also had to quickly change. Initially,
due to the specific packaging of ROCm, only a single version
could be available on the system at a given time. This
negatively impacted users as they were unable to compare
changes between versions. Working with our vendor partners,
more recent versions of ROCm began supporting parallel
installations and removed hard-coded dependencies on specific
paths (e.g., /opt/rocm/). As the ecosystem matured and
became integrated with the HPE/Cray Programming Environ-
ment (CPE), we identified several potential gaps that needed
to be addressed in order to provide users with a robust and
flexible environment. In this section, we discuss specific issues
that were identified, present workarounds currently in place,
and describe suggestions on changes needed in future releases.

A. Programming Environment

The HPE/Cray Programming Environment (CPE) has mul-
tiple packages dependent on ROCm libraries. These packages
include: LibSci_acc, which provides accelerated versions of
scientific libraries for Cray systems with AMD MI100 or

MI250X targets; CCE compilers for the OpenMP target of-
floading support; and Cray-MPICH with its GPU Transport
Layer (GTL) to enable the use of GPU-aware MPIL.

Due to the rapid development of ROCm, frequent linking
failures due to breaking changes to the API have been encoun-
tered when the libraries from the above packages are needed.
With ROCm-4.2, AMD began using versioned symbols to
indicate when an interface had either changed or been created.
The older versions of these symbols are not exported in
subsequent releases, which leads to errors when the symbol
versions cannot be resolved by the dynamic linker. In this case
the versioned symbols are doing the work that a change in the
library . so name would normally do, but the resulting linking
errors are encountered at various times in the build and run
process rather than immediately.

Among the CPE packages, GTL’s library for AMD GPUs
has been the most frequently involved in link failures due to its
reliance on the less stable ROCm interfaces and the ubiquity
of its usage among the MPI applications running on Spock and
Crusher. To contrast, the LibSci_ACC package utilizes symbols
that have been stable since ROCm-4.2 and CCE uses symbols
which have been stable in all ROCm-4.x releases.

With  the release of ROCm-5.0, the library
libamdhip64.so changed its DT_SONAME to indicate
the change in major version. This has prohibited the usage
of ROCm-5.x with ROCm-dependent CPE packages prior
to version CPE-22.04, as they mark the previous releases’
DT_SONAME as needed. In April 2022, HPE’s CPE release
included partial support for ROCm 5.0. Most notably this
included a build for GTL that linked to the newer ROCm-5.x
libraries and a PrgEnv—amd environment with full support
for ROCm-5.0.2 and ROCm-5.1.0. However, CCE support
for ROCm-5.x is lagging.

GTL is packaged with Cray MPICH and is released as a
single build rather than individual builds for each compiler.
This has important consequences due to the way that CPE
packages are set as default and how their libraries are found
at runtime. When setting a default release of a CPE package,
the package’s modulefile is set as the default version and its
libraries are added to the 1d.so.cache file to be found
at runtime without modification to the user’s environment.
With the current mechanisms for setting defaults, this leaves
only one version of the GTL library for AMD GPUs to be
found without environment modifications. When compatibility
is broken between GTL and ROCm releases, this necessitates
the setting of defaults modules for PrgEnv-amd to versions
which match the ROCm compatibility of PrgEnv-cray.

Table [] shows versions compatibility between Cray-
MPICH and ROCm. They are determined by matching the
DT_SONAME from ROCm to the DT_NEEDED from Cray-
MPICH library. If all needed symbols are successfully re-
solved, the versions are deemed compatible.

Due to the fact that ROCm is not provided within PE,
we deployed site local rocm modulefiles. These can be
loaded independent from the specific PrgEnv—« loaded.
The advantage of this approach is that we can quickly



cray-mpich ROCm
8.1.10 43,45
8.1.11 43
8.1.12 4.5
8.1.13 4.5
8.1.14 4.5
8.1.15 5.0, 5.1

TABLE I: Cray-MPICH and ROCm version compatibility.
Compatibility was determined by matching the HIP library’s
DT_SONAME to the MPICH library’s DT_NEEDED, and the
successful resolution of all needed symbols.

add new ROCm versions as soon as released. However,
because PrgEnv-amd only supports up to specific ver-
sions of ROCm, we found that conflicting modules could
be simultaneously loaded. For example, a user could load
rocm/5.0.2 and amd/4.5.0 which provide a different
version of amdclang, amdclang++, hipcc and the
corresponding libraries. As the PrgEnv-amd matured, we
also no longer had the need for the rocm-compiler so
opted to hide that in our environment.

B. Process placement and mapping

Task placement and distribution through Slurm proved
to be challenging on both Spock and Crusher. Spock sets
CR_Pack_Nodes in its Slurm configuration to pack tasks as
tightly as possible onto the first node of the allocation before
placing tasks on the next node and repeating the process. This
packing behavior initially ignored task-to-GPU locality despite
the job step being given flags to control such placement and
binding. This issue has since been resolved by SchedMD.

Crusher’s unique node architecture has also presented
unique allocation challenges. With 13cache_as_socket
configured, Slurm allocates CPU cores cyclically across L3
domains; each one with its own xGMI link directly attached
to a single MI250X GCD. The order in which each GCD is
allocated to the tasks does not follow the same cyclic order
on a Crusher compute node. This leads to cases where the
job step’s allocated CPU cores and GCDs are frequently not
connected by a single xGMI link, but instead must route
through multiple links. A fix to enforce the allocation and
binding to the nearest GCD is expected to be released in Slurm
22.05.

C. Application workloads

1) GPU-Aware MPI Collectives: Early on during Crusher’s
deployment, we noticed that some applications that relied on
GPU-Aware MPI will result in nodes rebooting unexpectedly.
One application suite that was able to reliably reproduce
the problem was the ROCm-enabled version of the OSU
Microbenchmarks [16]. In particular, the osu_ialltoallv
test when using 8 ranks per node on two or more nodes
will result in at least one node crashing. The issue was

impacting different applications including GenASiS, Cholla,
and multi-node ML workloads using PyTorch and the RCCL
backend. To work around this problem, users had to set
MPICH_SMP_SINGLE_COPY_MODE=NONE. The issue is
still being investigated but it appears to be related to an
interaction between XPMEM and specific versions of the
AMD GPU driver. A new Integrated Firmware Image (IFWI
042) version was deployed on Crusher in early April to
partially address this problem [[17]].

D. File system availability and I/O

The hardware capabilities and software stack of Crusher
created a number of challenges for directly accessing Alpine
with native Spectrum Scale clients. The compilation flags and
specific version of the kernel first deployed on Crusher fell
outside of normal interoperability testing performed by IBM.
This led to the stock Spectrum Scale client software failing
to function without manual intervention and changes to the
GPFS portability layer (GPL). Various Spectrum Scale client
versions were tested on Crusher as an initial troubleshooting
step before settling on version 5.1. 3.

One kernel compilation flag difference involved
CONFIG_RANDOMIZE_MEMORY. To create a functioning
Spectrum Scale client, the GPL was updated to check for the
presence of another compilation flag instead. Without this
change, the client software would fail with a variety of error
signatures including a refusal to start the Spectrum Scale
daemon or a failure to mount Alpine followed by a stream of
errors in the Spectrum Scale log. Though this change allowed
the Spectrum Scale client to successfully start on the Crusher
login nodes, compute nodes continued to fail during daemon
startup. Extensive troubleshooting discovered that the high
amount of GPU memory in the Crusher compute nodes led
to a conflict between the AMD GPU driver and Spectrum
Scale software. Vendor support resolved this incompatibility
with a new release of Spectrum Scale.

Issues with the underlying network can produce failure
modes in the Spectrum Scale data path. Each additional
entry in a multipath route introduces another potential point
of failure because packets could be directed to a failed
nexthop. In an attempt to avoid such a routing pattern, the
net.ipv4d.fib_multipath_use_neigh sysctl set-
ting was enabled on Spock, Crusher, and Alpine [18]. This
configuration improved the resiliency of the Spectrum Scale
data path but has not fully mitigated against errors introduced
by a failed gateway node.

A change to atomic opens in the upstream kernel meant
that workloads encountered a Permission denied mes-
sage when creating a copy of a file that lacked the write
permission bit. This issue surfaced both when some workloads
attempted to restore files from archives and when cloning
particular git repositories. This behavior was corrected in
Spectrum Scale version 5.1.3.0.



E. Cassini Hardware Resources

The SS11 NIC is an advanced RDMA adapter that provides
many facilities for offloading tasks that are traditionally per-
formed using CPU cycles. Examples of this are tag matching,
rendezvous offloading, and message triggering. To accomplish
this, the NIC has a set of hardware resources that are allocated
to each communicating process on the node. There are a
limited number of these hardware resources and when they
are all utilized, the communication subsystem, specifically
libfabric, must fall back to traditional software mech-
anisms for performing this work. This led to some initial
issues on Crusher, when the automatic fallback was not
yet released. Using GPCNet as part of the initial network
testing created a workload on the system that utilized 20
ranks per node with phases generating a significant amount
of unexpected messages on the network. To accommodate
unexpected messages in hardware, the NIC uses a resource
called portal table list entries. The workload of GPCNet caused
these resources to be totally consumed and without software
fallback the tests failed. Further evaluation found that this
issue could be exacerbated with as little as 10 ranks per
node. HPE was able to provide a workaround by setting
FI_CXI_MSG_OFFLOAD=0 effectively disabling this offload
and posting the messages to a request buffer. This workaround
was no longer necessary with the release of HPE Slingshot
version 1.7.0 (Field Notice #6735b).

FE. Compilers and Programming Models

For Frontier, HIP and OpenMP are the primary program-
ming models to target GPU. While HIP is based on C++
dialect, OpenMP is a directive-based language available for
the most commonly used programming languages in HPC:
C, C++, and Fortran. As such, OpenMP with target offloading
must be supported by the vendor compilers on Spock, Crusher,
and eventually, Frontier.

Support for GPU offloading was first introduced in OpenMP
4.0 specification. It was significantly refined in OpenMP 4.5
specification. OpenMP 5.0 and 5.1 versions of the specification
extended it further with new concepts such as declare
variant, metadirective, and task detach.

For testing of functionality related to target offload in
OpenMP, we rely on the verification and validation test suite
SOLLVE_VV [19] that is developed as part of the Exascale
Computing Project (ECP) “Scaling OpenMP With LLVm for
Exascale Performance and Portability (SOLLVE)” [20]]. This
test suite aims primarily at validating different compilers
implementations of OpenMP offloading support starting with
version 4.5 of the OpenMP specification as well as new
features that are added to the specification that may not involve
GPU offloading (e.g., the Loop construct that was added in
OpenMP 5.0).

We use the SOLLVE_VYV test suite to track and evaluate
functional support for OpenMP in the two main compiler
suites on Spock and Crusher. During the evaluation period, the
test suite experienced rapid development as more tests were

added to cover more OpenMP features, while concurrently the
compilers gained better support for more features.

Table [[Il shows the evolution of the SOLLVE_VYV test suite
and the number of passing tests for OpenMP 4.5 and OpenMP
5.0 features. The compilers used are the latest releases avail-
able on the testing platform at time of testing. As the table
shows, there was a significant progress in support for OpenMP
in both compilers during the evaluation period, especially for
5.0 Features. Both compiler suites more than doubled the
number of passing tests for OpenMP 5.0 features (while the
number of tests in the test suite itself also increased). Work is
still ongoing to fill any functional gaps in support for OpenMP
5.0 and subsequent versions of the OpenMP specification.

Beyond the issues uncovered using SOLVVE_VV tests,
more were discovered when we used the compilers to build
applications on Spock and Crushers. These issues can be
broadly categorized as (1) issues in the base language im-
plementation (i.e., C, C++, or Fortran) itself, (2) issues in
the OpenMP implementation independent of the target CPU
or GPU (offload) backends, and (3) issues that are directly
related to compilers support for the the AMD GPU. Most
of the applications we use to test the compilers have been
developed, tested, and verified on the OLCF current system
Summit. Therefore issues that are only on Spock or Crusher
are marked as high priority since they represent functional
regressions from Summit. We have reported these issues to the
vendors whom have since made a good progress in resolving
them.

G. Performance and Correctness Tools

As mentioned in Section HPE’s performance and cor-
rectness tools for AMD GPUs are dependent upon AMD’s
libraries and tools for much of their AMD GPU support.
One of the unfortunate implications of these dependencies
is that due to rapidly evolving AMD development, the HPE
tools are often incompatible with the most recently released
ROCm software release. The integration required to adapt to
breaking API changes and subsequent release testing of HPE
tools often leads to compatibility gaps lasting months. Further
compounding the compatibility issue is the desire to quickly
adopt new ROCm releases to address bugs or issues that have
been preventing application development progress.

Both AMD’s and HPE’s sets of tools suffer from a lack of
adequate documentation and usage examples. For example, al-
though GPU hardware performance counters can be collected,
AMD documentation provides only the counter names and
a brief description for each counter. There is no guidance
related to sets of counters that may be used to investigate
various performance issues, such as whether a given GPU
kernel is compute-bound or memory-bound. This is primarily
due to developers focusing on delivering needed functionality
at the expense of generating useful documentation. Further-
more, both originally only supported GPU applications using
the HIP programming model, due to ongoing delays in the
development of OpenMP offload support for AMD GPUs in
the vendor compilers.



OpenMP Version 4.5

SOLVE_VYV Tests

April 2021 (Spock) 206
April 2022 (Crusher) | 229

CCE AMD
5.0 45 50 | 45 5.0
166 172 61 195 77
226 203 130 | 205 157

TABLE II: Results of compilers execution of SOLVE_VYV test suite. The first column indicates the date on which the test suite
was pulled from its repository. The second column shows the number of tests for OpenMP 4.5 and 5.0. The third and fourth
columns show the number of passing tests for the CCE and AMD compilers, respectively.

H. Known Issue Tracking
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Fig. 4: Automated Jira to Sphinx-based documentation in RST.

As known issues (KIs) were discovered during the de-
ployment and testing of the Crusher Test and Development
System, we tracked these issues through Jira. To get these Kls
published so that users could see them and their status, we
developed a simple Python script that connected the API out-
put of Jira to the reStructuredText (RST) input of our
documentation system as illustrated in Figure[d] By moving the
Jira issues between different statuses (i.e., Open, In Progress,
or Resolved), the KIs would change status automatically on
the published documentation. The KIs were also classified on
the documentation system through a set of categories (e.g.,
running, compiling) that we were already using to categorize
help tickets (we used the same Jira project for help tickets),
to further aid in the readability of this information.

This setup reduced the overhead and increased the accuracy
of KI tracking through several means. It offered a single,
centralized and synchronized place to track incoming help
requests, internal tracking of the Kls, and the published KI
information to the end users. When we had an update to a KI,
a single edit to a Jira issue would update internal tracking
and the published KI information in one step. In previous
deployments, we sometimes found the internal tracking of Kls
would diverge from the externally published lists as updates
got left out of one or the other over time. Additionally, the
KIs and help tickets could be linked inside Jira, so that we
could quickly see how many help tickets a particular KI had
generated, and when a KI was resolved or a workaround was

found, we could quickly see which tickets needed following
up with the user.

V. LESSONS LEARNED

Throughout this work, we have described several areas
in the deployment of Spock and Crusher that required
workarounds or site-specific updates. As a result, we have
identified the recommendations and lessons learned that are
listed in this section.

o While the timely provision of the newest ROCm release
is important to assist in development efforts for users
of the systems, it also creates friction when that release
has multiple incompatibilities with the installed CPEs.
We developed a set of scripts to quickly test for the
dynamic linking compatibility between new ROCm li-
braries and Cray PE. The discovered incompatibilities are
now documented in the Crusher Quickstart guide [2f] to
help minimize the time users spend troubleshooting these
issues.

o With the relatively disproportionate amount of computing
power delivered through GPUs for Spock, Crusher, and
eventually Frontier, it is of utmost importance that we
treat GPUs as first class resources. With each Slurm
release, testing has been primarily focused on the place-
ment, distribution, and binding of tasks relative to GPUs
to ensure that progress is made towards the optimal
utilization of hardware resources. Continued work with
vendor partners will ensure that GPU capabilities are
accessible in a user-friendly fashion.

e The rapidly evolving ecosystem for AMD GPUs necessi-
tated efficient mechanisms to communicate known issues,
workarounds, and fixes with the early users on both
Spock and Crusher. As a result we developed a system
that integrated the OLCF’s internal bug tracking system
(JIRA) with the individual system pages. This automatic
mechanism to expose known issues and announces fixes
has allowed us to keep users apprised of any changes in
the status of open bugs.

« Careful coordination with vendor partners is critical in or-
der to successfully deploy any new system and integrate it
with center-wide resources. As described in Section
unexpected issues impacted our ability to make Alpine
available on Spock and Crusher. Working closely with
both HPE and IBM, we were able to receive the key bug
fixes to complete successful deployment of both systems.



VI. CONCLUSION

In preparation for Frontier, the OLCF has deployed two
separate systems that are available to the OLCF user com-
munity: Spock and Crusher. Spock is a MI100-based system
which is one generation removed from the hardware that will
be available on Frontier. Crusher is a test and development
MI250X-based system with the same hardware as will be
available on Frontier. Crusher has provided a platform to test
the rapidly evolving AMD GPU ecosystem and has allowed
users to get early experiences using the AMD MI250X GPU.
As we have discussed here, the deployment of both test
systems has helped OLCF get familiar with the programming
environment, identify issues, put workarounds in place, and
develop best practices that would be helpful for future Frontier
users.
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