
HPC Molecular Simulation Tries Out a New GPU:
Experiences on Early AMD Test Systems for the

Frontier Supercomputer
Ada Sedova∗, Russell B. Davidson∗, Mathieu Taillefumier†, Wael Elwasif∗

∗Oak Ridge National Laboratory, Oak Ridge, TN, USA
†ETH, Swiss National Supercomputing Centre (CSCS), ETH Zürich, Zürich, Switzerland
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Abstract—Molecular simulation is an important tool for nu-
merous efforts in physics, chemistry, and the biological sciences.
Simulating molecular dynamics requires extremely rapid cal-
culations to enable sufficient sampling of simulated temporal
molecular processes. The Hewlett Packard Enterprise (HPE)
Cray EX Frontier supercomputer installed at the Oak Ridge
Leadership Computing Facility (OLCF) will provide an exascale
resource for open science, and will feature graphics processing
units (GPUs) from Advanced Micro Devices (AMD). The future
LUMI supercomputer in Finland will be based on an HPE Cray
EX platform as well. Here we test the ports of several widely used
molecular dynamics packages that have each made substantial
use of acceleration with NVIDIA GPUs, on Spock, the early
Cray pre-Frontier testbed system at the OLCF which employs
AMD GPUs. These programs are used extensively in industry
for pharmaceutical and materials research, as well as academia,
and are also frequently deployed on high-performance computing
(HPC) systems, including national leadership HPC resources. We
find that in general, performance is competitive and installation
is straightforward, even at these early stages in a new GPU
ecosystem. Our experiences point to an expanding arena for GPU
vendors in HPC for molecular simulation.

Index Terms—high-performance computing, GPU program-
ming, performance testing, molecular dynamics simulation

I. INTRODUCTION

Molecular dynamics (MD) is a simulation method that prop-
agates atomistic particles in time to expose important molecu-
lar fluctuations, traverse and sample potential energy surfaces,
and predict physical observables useful for understanding
molecular phenomena in physics, chemistry, and the biological
sciences. Because MD simulations are limited to a maximum
simulation-step size of about 0.5-1 femtoseconds (fs) for ab
initio (quantum mechanical) methods or 2-5 fs for all-atom
empirical force fields to avoid unacceptable drifts in simulation
energy, and the targeted timescales to compare with many
experiments may be on the millisecond timescale or greater,
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the top-performing MD programs used on high-performance
computing (HPC) systems have made use of multiple types
of parallelism to reduce the time per step, including threading
models such as OpenMP, domain-decomposed parallel strate-
gies with MPI, and acceleration with graphics processing unit
(GPU) devices [1]–[8]. Some of these programs calculate an
MD step in the range of 1 ms wall-clock time on systems
of tens to hundreds of thousands of atoms [5], [6], [8],
which is close to the performance roof-line set by the clock
speed limit [9]. For simulations with empirical force fields,
the force calculation that must occur with each step is the
computational bottleneck [3], and for Born-Oppenheimer ab
initio MD (AIMD) using density functional theory, it is the
self-consistent-field energy calculation, from which forces are
derived [7]. Beyond academic pursuits, both methods are
extensively used in industry, from pharmaceutical research
to materials science and engineering. For this reason, GPU
vendors have an interest in supporting these types of codes
for use on cloud servers and appliances such as NVIDIA’s
DGX.1 In fact, recent container catalogs provided by NVIDIA
for the DGX appliances have included a number of these
molecular simulation programs,2 and AMD has begun to
develop its own such repository.3 Here we report on the testing
of four molecular dynamics programs: GROMACS [6], which
uses C++ with MPI and OpenMP along with native device
kernel code, Amber [10], which uses FORTRAN as its main
programming language, together with native device kernel
code, OpenMM [8], which uses C++ and native device kernel
code, and CP2K [7], which uses FORTRAN, MPI, OpenMP,
and C++ along with native device kernel code. All of these
programs have previously used NVIDIA CUDA kernels and
API as their device programming model for NVIDIA GPUs.
The AMD versions of GROMACS, Amber, and OpenMM for
AMD GPUs have been under development by AMD staff in
collaboration with the code teams, and CP2K uses several
different GPU kernels, which are in the process of being ported
to HIP by researchers at the Swiss National Supercomputing
Center (CSCS) together with AMD. The first three are codes

1https://www.nvidia.com/en-us/data-center/dgx-systems/
2https://ngc.nvidia.com/catalog
3https://www.amd.com/en/technologies/infinity-hub
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that use empirical force fields (EFFs). They are used for
biophysical simulations and condensed matter simulations of
other large systems such as aqueous solutions and polymers.
CP2K provides many different types of ab-initio simulation
methods and different empirical methods. Here we focus on
the linear-scaling self-consistent field calculation (LS-SCF) in
CP2K [7], [11], [12], which is now able to perform AIMD
on larger systems than are traditionally treated with quantum
mechanical methods, including solvated (bio)polymers, which
is an emerging capability.

II. HPC SYSTEMS AND PROGRAMMING ENVIRONMENTS

We used the Summit supercomputer and the Spock system;
both are housed at the Oak Ridge Leadership Computing Fa-
cility (OLCF). Summit is an IBM system containing approxi-
mately 4,600 IBM Power System AC922 compute nodes. Each
node contains two IBM POWER9 processors and 6 NVIDIA
Tesla V100 accelerators. Each processor is connected via two
NVLINK connections each capable of a 25 GB/s transfer rate
in each direction for a total of 100 GB/s bidirectional transfer.4

Spock is an early-access testbed for the upcoming OLCF
Frontier exascale supercomputer, and contains 36 compute
nodes each with a 64-core AMD EPYC 7662 CPU and four
AMD MI100 Instinct GPUs. The CPU is connected to all
GPUs via PCIe Gen4, with 32 GB/s transfer rate in each
direction for a total of 64 GB/s bidirectional transfer.5 For both
systems, and all four programs, the GNU Compiler Collection
(GCC) was used. For compiling CUDA on NVIDIA, CUDA
toolkit versions 10.2.89 and 11.2.1 were used. For compiling
HIP on AMD GPUs, ROCm 5.0.2 was used. Spock is a Cray
system which provides the Cray scientific libraries; these were
used on Spock for linear algebra and FFTW for portions of
the codes that use CPU-based routines. On Summit the FFTW
module (which was found to perform on par with the the IBM
Engineering and Scientific Subroutine Library (ESSL) version)
and a combination of ESSL and Netlib Lapack and Scalapack
were used (ESSL does not provide a complete implementation
of Lapack). GPU-accelerated versions of scientific libraries
are also used in these codes; ROCm’s hipFFT and hipBLAS
and NVIDIA’s cuFFT and cuBLAS were linked for AMD and
NVIDIA testing, respectively.

GPU specifications

TABLE I
SUMMARY OF OFFICIAL SPECIFICATION FOR NVIDIA V100 GPU AND
AMD MI100 GPU FOUND ON SUMMIT AND SPOCK, RESPECTIVELY6,7

FP64 perf. FP32 perf. BW GPU mem.
V100 7.8 15.7 100 16 GB HBM2

MI100 11.5 23.1 64 32 GB HBM2

FP64/32 perf: peak performance, TFLOPS, in double and single precision
BW: bidirectional CPU-GPU bandwidth, GB/s
GPU mem.: GPU memory

Table I shows a summary of the specifications published
by each GPU vendor for their respective GPUs, including

4https://docs.olcf.ornl.gov/systems/summit user guide.html
5https://docs.olcf.ornl.gov/systems/spock quick start guide.html

single (FP32) and double (FP64) peak performance, memory
bandwidth and GPU memory (type and amount), for NVIDIA6

and AMD.7

III. DESCRIPTIONS OF PROGRAMS

Here we describe the four programs we tested in more
detail, including the GPU acceleration schemes.

A. CP2K

CP2K is a large program that offers numerous different
molecular simulation methods including multiple types of
quantum mechanical methods [7], [13]. Of interest to re-
searchers in condensed matter simulations for large, non-
crystalline systems such as solutions, interfaces, and poly-
mers is the LS-SCF method which allows scaling of the
self-consistent field (SCF) across parallel compute resources
and can enable MD simulations of thousands of atoms with
quantum mechanical accuracy for hundreds of picoseconds.
The distributed block compressed sparse row (DBCSR) library
is a domain specific library used in CP2K that helps enable
the LS-SCF routines and involves the use of an optimized
small matrix multiplication (smm) library [12]. Several options
exist for such a library within DBCSR, including the libxsmm
CPU-based library8 which targets Intel and other x86 CPU
architectures with highly optimized vector-level optimizations.
A GPU version of a smm library was developed within CP2K
and is described below.

GPU acceleration: GPU acceleration can be used within
the LS-SCF in several ways.

libcusmm: DBCSR uses the libcusmm library that
deploys optimized smm kernels on the GPU. This library
now uses just-in-time (JIT) compilation to optimize the smm
kernels. On Summit, libcusmm is the primary way to run
a performance-optimized smm for DBCSR and the LS-SCF
method, as there is no version of libxsmm for the Power
architecture. For AMD, this library is still under development
and was not in a test-ready stage at the time of this writing: the
JIT functionality is being re-worked to align with the rapidly
changing ROCm software stack.

PW-GPU: The PW_GPU method is another GPU routine
used in CP2K.9 Although CP2K is based on multi-level real
space grids, Fourier transforms are still used for various
calculations. The fast Fourier transform is used for instance
to merge all real-space grids contributing to the electronic
density n(r) together. CP2K applies the Fourier transform to
each distributed grid and then adds Fourier components to the
Fourier components of the largest grid before transforming it
back to real space. The GPU implementation of this method
(PW-GPU) can make use of one of two external libraries,
cuFFT which is part of NVIDIA’s cuda SDK, or hipFFT which
is developed by AMD.

6https://images.nvidia.com/content/technologies/volta/pdf/
volta-v100-datasheet-update-us-1165301-r5.pdf

7https://www.amd.com/system/files/documents/instinct-mi100-brochure.
pdf

8https://github.com/libxsmm/libxsmm
9https://www.cp2k.org/howto:compile with cuda
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Collocation and integration functionality (GRID-GPU):
CP2K uses sparse matrices to represent physical quantities
such as the potential or the density in a given Gaussian basis
set; the density must be computed in real space to evaluate
the potential along with other values. The inverse operation is
called integration. If a plane wave basis is used instead, then
these two routines are simple Fourier transforms.

The CP2K code relies heavily on the collocation and
integration routines. These two functions are mathematically
described by

n(r) =
∑
i,j

cijPi(r−ri)Pj(r−rj)e
ηi(−r−ri)

2

eηj(−r−ri)
2

(1)

for the collocation function and

cij =

∫
V (r)Pi(r− ri)Pj(r− rj)e

ηi(−r−ri)
2

eηj(−r−ri)
2

d3r

(2)
for the integration function. i and j are composite labels that
depend on the atom, angular momentum li and other param-
eters. The Cartesian harmonics polynomials Pi are expressed
as a product of (x − xi)

α, (y − yi)
β and (z − zi)

γ with
l = α + β + γ the angular momentum associated to a sub-
block of the Gaussian basis set describing the potential of
each atom i and j. In practice, the integration and collocation
are limited to a finite interval that depends explicitly on the
Gaussian parameters.

The collocation and integration routines can be cast in
a series of matrix-matrix multiplications after discretization
of the potential, density and Gaussian functions. While such
approach works well on CPU, the current GPU implementation
does not use this property because the coefficients matrix
representing the density or potential in the Gaussian basis set
are sparse and the resulting matrices of the Cartesian polyno-
mials after discretization are small and irregularly shaped. In
a new GPU version of these routines nicknamed GRID-GPU,
optimized solutions to collocation and integration in CP2K
have been developed for both NVIDIA and AMD by workers
at CSCS.

In addition to these routines and the GPU-accelerated
Fourier transform libraries, CP2K makes use of the linear
algebra routines found within scientific libraries such as MKL,
ESSL, or Cray Scientific Library. A number of domain specific
libraries can also be used for various needs; here we limit the
use of domain specific libraries to DBCSR. Here we tested
CP2K version 10.0.

B. Amber

Amber is another large package that provides numerous
different methods for molecular simulation [10]. While it
includes a native implementation of a semi-empirical [14] and
quantum mechanical methods [15], it is most widely used for
molecular simulation with EFFs [16], [17]. These are physical
potentials that are represented by simple analytical functions
with scalar parameters that are fit to quantum mechanical
calculations and experimental data. MD with EFFs is orders
of magnitude faster than any form of quantum mechanical

method but suffers from problems with generalizability; each
new atom type or molecule must be parameterized before
it can be simulated, which can be a painstaking process.
Like the other EFF-based MD programs below, Amber has
been developed primarily for the simulation of biomolecules,
although a general EFF for simulating many types of non-
biomolecular systems provided by Amber has extended its
use to multiple applications including polymer science and
more general solution-chemistry efforts. Amber is a long-
standing program that has been in use for decades. Its base pro-
gramming language is FORTRAN, with some newer C/C++
routines and device code (CUDA/HIP). Amber’s performance
strategy has not historically focused on vector-level SIMD or
threading-based optimizations.

Amber’s pmemd method uses the particle mesh Ewald
(PME) approach for simulating long-range charge effects in
periodic systems [18]–[20]; periodic systems are the primary
method that MD uses to create an effective infinite system that
mimics solvated, condensed phases and avoids the use of hard
barriers to prevent the escape of particles. This program has
been ported to the GPU and extensively optimized to make
the most efficient use of a single GPU for large simulations
that previously required many cores of a cluster. Communi-
cation between CPU and GPU is minimized to obtain this
performance, at the expense of the ability to scale through
MPI-based decomposition to multiple GPUs and compute
nodes. However, single-GPU performance is now so good that
most biomolecular systems of interest to researchers can be
efficiently simulated with a single GPU. The focus for large,
parallel simulation efforts is then shifted to the sampling of
the energetic space of the system, a long-standing problem in
MD, through the use of enhanced sampling methods that can
achieve effective exploration of the phase space through the
use of many parallel replicas [21], [22]. The Amber20 and
AmberTools21 packages were tested here.

C. OpenMM

OpenMM [8] is another EFF-based MD program that also
focuses on single-node performance. It provides a Python-
based wrapper for launching simulations which interfaces with
its C++/device code back end, which can also be used as a
library without the Python component. OpenMM can make
use of threading when running on the CPU, but it achieves
substantial performance gains primarily from GPU accelera-
tion, providing the first implementation of GPU acceleration
for biomolecular MD within the programs tested in this paper
in 2010 [23]. Also focusing on minimizing calculations on the
CPU and back-and-forth transfers between host and device,
OpenMM has provided performance that rivals Amber’s im-
plementation with a fully open-source program. The Python in-
terface is used to provide object-oriented programming access
to portions of the program not traditionally easily accessible
to users, such as the creation of user-defined forces. These are
compiled onto the GPU with its JIT compilation approach,
which is also used in standard routines. OpenMM is also
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frequently used within an enhanced-sampling approach with
multiple simultaneous replicas launched in parallel.

Here we tested OpenMM 7, using Anaconda-based installa-
tion from the respective conda-forge channels (openmm-hip10

for AMD and openmm11 for NVIDIA). OpenMM for HIP is
also found on github,12 as is the official OpenMM program.13

D. GROMACS

The GROMACS program [6], [24] is an open source
package for EFF-based MD simulation that has traditionally
focused on extensive performance optimization on multiple
levels, as well as on the creation of a portable code that can
make optimal use of many different resources. At the lowest
level, hand-tuned vector instructions are provided for many
different CPU architectures using a layered approach that en-
ables an efficient addition of instructions for a new architecture
using the upper level, which propagates down through the
code and avoids extensive rewriting. Instructions have been
provided for various x86 technologies, Power architectures,
and ARM Neon and SVE extensions. Node-level threading
is provided with OpenMP, and across-node parallelization
with MPI. GPU acceleration has been supported through
CUDA and OpenCL for close to a decade. The strategy for
GROMACS has included maintaining the ability to scale to
hundreds of compute nodes while simultaneously optimizing
single-node performance as much as possible. While Amber
and OpenMM now can simulate a million atom system on a
single GPU, the total number of timesteps possible per day
of simulation still lags behind what is achievable when using
multiple GPUs or nodes on the same system; a factor of up to
10× speedup in this case is very useful for achieving optimal
sampling more rapidly. However, in recent years GROMACS
has offloaded increasingly more calculations to the GPU, and
has been involved in single-node optimizations as well, which
have recently begun to make use of GPU-direct technologies.14

GROMACS developers are currently implementing large code
structure changes which reflect some of these trends, along
with the consideration of maintaining portability in the face
of multiple emerging GPU technologies. It should be noted
that the official GROMACS strategy for AMD GPU support
is through hipSYCL,15 therefore the AMD translation to HIP
represents an unofficial version. We tested GROMACS version
2021, with the mdrun program.

E. Testing for single-GPU and small GPU-count performance

The Spock system is a small test system with 36 compute
nodes and queue policies that limit the use of too many of
these nodes at a time. Primarily for testing programs newly
ported to AMD GPUs, the interconnects and related software

10git revision ce22dbef84ec68aa910bbffed0f5e801e76ed9be
11git revision ad113a0cb37991a2de67a08026cf3b91616bafbe
12https://github.com/StreamHPC/openmm-hip
13https://github.com/openmm/openmm
14https://manual.gromacs.org/2022/release-notes/2020/major/performance.

html
15https://enccs.se/news/2021/09/gromacs-adopts-hipsycl-for-amd-gpu-support

and middleware do not represent what will be deployed on
Frontier. Therefore, scaling performance is not a primary goal
of the research presented here; results should also not be
used to gauge the final performance of these programs on
Frontier but rather to give a glimpse into the ongoing progress
in deploying a new GPU architecture on an HPC system.
CP2K and GROMACS still obtain significant performance
gains from the use of multiple nodes; CP2K requires this
for reasonable results due to the computational demands
of quantum mechanical calculations. Other than these two
programs, all benchmarks were limited to single node tests.
For GROMACS we tested single-GPU performance for all
benchmarks, and additionally single node, multiple-GPU runs
for both ADH systems and with 2 nodes for the STMV input
described below. The test system for CP2K’s LS-SCF is one
of the smaller examples of inputs for this routine, and the use
of about a dozen nodes for this test thus represents a smaller
test of performance equivalent to a single-node test for the
three EFF-based programs.

Fig. 1. Illustration of small and medium inputs for MD with EFFs, showing
atom count and approximate system sizes. A: small system (∼25K atoms),
B: medium system (∼90K atoms), C: another medium system (∼ 92K
atoms) with a different protein and box shape. Explicit solvent molecules
are represented as a water surface around the solute.

F. Inputs

Official inputs were used from each code’s distribution,
when available.16,17 For testing GROMACS, we used the
benchmark suite reported in [6] and available at Zenodo.18

For the EFF programs, we tested a range of system sizes,
including small and medium inputs typically simulated on
single GPUs, along with two larger inputs that have only
recently become possible to compute with single-node re-
sources. Figure 1 shows some representations of the system
sizes used for the small (about 25,000 atom) and medium
(about 90,000 atom) systems. The dehydrofolate reductase
(DHFR) system at 23,558 atoms represents the size of the
small inputs and is the official small benchmark for OpenMM
and Amber; GROMACS uses the ribonuclease (RNase) ZF-
1a system which has 24,040 atoms. The medium-sized input
is about 90,000 atoms. Amber uses the Factor IX protein
with 90,906 atoms and OpenMM uses the apolipoprotein A-I
(apoA-1) with 92,224 atoms. For a medium input, GROMACS
provides the NADP-dependent alcohol dehydrogenase protein

16https://ambermd.org/Amber20 Benchmark Suite.tar.gz
17https://github.com/openmm/openmm/tree/master/examples
18https://zenodo.org/record/3893789#.YfR-7FjMJmc
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Fig. 2. Illustration of large inputs for MD with EFFs, showing atom count
and approximate system sizes. A: cellulose system, ∼400K atoms and B:
STMV system, ∼1M atoms. Explicit solvent molecules are represented as a
water surface around the solute.

(ADH) in a trunctated dodecahedral solvent box with 95,561
atoms.

Large inputs, illustrated in Figure 2, include a 408,609
atom cellulose system, and a 1,067,095 atom satellite tobacco
mosaic virus (STMV) system. A version of STMV exists for
all three EFF programs. There is no input the size of the
cellulose system found in the GROMACS benchmark set we
used. In order to test the effects of using multiple GPUs for
GROMACS on more inputs, we added a 134,177 atom version
of ADH that is solvated in a cubic box and used both ADH
systems and the STMV input with the MPI version.

For the EFF programs, we used official benchmark run
parameters with the exception of the Amber inputs—here we
removed one optimization, the netfrc=0 flag, which turns
off the net force correction that is used to correct energy
drifts due to the smooth PME implementation, and is only
advisable to use if strong thermal control is not required
(without this flag the default value of 1 is used which turns on
the correction).19 We also added an NVT ensemble input to
the Amber testing to produce additional data for comparison to
OpenMM, for the large benchmarks. The OpenMM benchmark
script allows for ensembles to be specified as input arguments,
and we tested the NPT, NVT and NVE ensembles provided.
All of the GROMACS inputs used the NVT ensemble. Within
OpenMM’s benchmarks, the program is initialized to activate
the JIT compilation so that the output performance data does
not include compilation time.

Fig. 3. Illustration of the water molecules system (1.5K atoms) used as input
for CP2K.

19https://ambermd.org/doc12/Amber20.pdf

For CP2K, we used one of the LS-SCF regression tests for
the LS-SCF20 that includes a parameter that can be set to
increase the size of the system through the replication of unit
cells. This input generates a box of water molecules located
at a set of points on a lattice. Figure 3 illustrates our input
which used a replication number of 8, and contained 512 water
molecules (1536 atoms). We added molecular dynamics to this
input file using a 0.5 fs timestep, an NVE ensemble, and an
initial temperature of 300 K.

IV. EASE OF BUILDING AND INSTALLATION

We evaluated the building procedure and any problems
that made building difficult. GROMACS and Amber use
CMake/Make as a build strategy. The AMD versions of both
programs now install successfully from source with minimum
effort on Summit and Spock. OpenMM was installed success-
fully with Anaconda on both systems. CP2K currently uses
Make and an in-house toolchain to assist with generation of
the input arch file. Overall, this procedure was more difficult
than installation of the other programs, but not more so than
on any other HPC system such as Summit, due to the need
to process many more user-defined build parameters and the
potential to include a variety of third-party libraries.

V. PERFORMANCE

Performance was measured using the provided performance
output for each program. The metric used in the EFF pro-
grams is the simulated nanoseconds per day (ns/day), which
must be combined with the MD timestep to be comparable
across programs. For Amber and OpenMM benchmarks, the
timestep is 4 fs, and for GROMACS it is 2 fs, therefore
to compare GROMACS to Amber or OpenMM the value
should be multiplied by 2. Reported values are the average
over 3 independent runs. Variability was within 3 ns/day for
all systems for all programs, except for the small system
for all programs, which varied up to 5 ns/day. On Spock,
performance was sensitive to NUMA placement and affinity;
the srun parallel launcher within the SLURM scheduler
provided identical control compared to manual control with
numactl and additional AMD affinity flags.

For CP2K, the time per MD step depends on the conver-
gence of the SCF calculation for that step. As the energy and
position of the atoms varies, this time can also vary. CP2K
uses values calculated during the first MD steps as an initial
starting point for subsequent MD steps, and this speeds up
SCF calculations after the first 5-19 steps significantly, after
which the time per step usually stabilizes to within about 1
second. Here we report the average time per MD step over the
last 10 seconds of our CP2K runs; all values had converged
by this point.

In order to understand the scientific significance of the
ns/day metric, it is important to consider the type of data
that is being extracted from the simulation, which can vary.
For comparison to many experimental values such as enzyme

20https://github.com/cp2k/cp2k/blob/master/tests/QS/regtest-dm-ls-scf-3/
H2O-curvy-prop.inp
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kinetics, large conformational changes, or binding events,
long timescales (up to seconds or minutes) may be needed,
which are not possible for direct MD simulations. However,
strategic use of various theoretical approaches can help to over-
come this barrier. For instance, for estimating protein-ligand
binding affinities, methods such as free energy perturbation
or thermodynamic integration can be used, which gradually
modify forces on atoms across many replicas and can arrive at
values that match experimental data [25]. Other replica-based
methods, such as umbrella sampling, Markov state modeling,
temperature replica exchange, and metadynamics, can use
many parallel replicas to accelerate the sampling of the free
energy space, and this information can be used within physical
theories to provide long timescale data such as activation
energies and rates [22], [26], [27]. Scaling of the sampling of
the energy surface for weighted ensemble replica methods may
be superlinear [28], meaning that a more effective sampling of
the energy surface can be achieved using N replicas for M/N
timesteps than by running a single replica for M timesteps.
Other types of molecular events, such as thermal expansion
and equilibration, vibrations, and smaller molecular confor-
mational changes including solvent structure, can be simulated
within pico- or nanosecond timescales. Microsecond to mil-
lisecond timescales are useful for determining residue-level
dynamics and can also be used to compare to millisecond-
scale values such as NMR relaxation data through correlation
function based approaches. Therefore, for many tasks related
to simulation of biomolecules and other polymers, obtaining
over a microsecond of simulation time or more represents
a breakthrough in the number of experimental values that
can be predicted, and sampling equivalent to millisecond or
second timescales via parallel replica methods is now enabling
unprecedented insights, as well as the ability to fine-tune the
physical models, which can now be better assessed knowing
that any errors are not due to inadequate sampling of the space
[29]. For the types of problems treatable with AIMD, the
ability to simulate 5-10 ps/day for a system of several thousand
atoms can lead to unprecedented ability to sample more rare
events such as reactions and proton transfers, cooperative
interfacial phenomena, and transport properties, and also opens
the field to the study of conformation and solvent effects on
reactions in larger systems such as polymers. Replica methods
can also be applied to AIMD simulations, paving the way for
nanosecond to microsecond scale simulation when deployed
on HPC resources such as the upcoming exascale systems.

A. CP2K LS-SCF Performance

Figure 4 shows a comparison of performance for the CP2K
benchmark on Spock and Summit, and the effect of the two
GPU routines on performance on Spock. Because of the
lack of the libxsmm library for Power CPU architectures
and the in-progress status of GPU-DBCSR for AMD, exact
comparisons are not possible. Nevertheless, performance on
Spock is clearly better than on Summit. This is in part
due to the highly optimized libxsmm. The new GRID-GPU
method provides a 40% relative speedup over the CPU-only

version, and the PW-GPU method provides an additional 20%.
On Spock, scaling continues to 16 nodes, but on Summit,
substantial scaling seems to stop at about 8-10 nodes. On
Summit PW-GPU provides a comparable speedup to that on
Spock (not shown), but this is still not enough to achieve the
performance possible on the x86 system with GPU. The time
per step demonstrated on Spock can provide about 7 ps/day
if using a 0.5 fs timstep, and over 14 ps/day if using a 1 fs
timestep.

Fig. 4. Performance of CP2K water benchmark on Spock and Summit. On
Summit, GPU-DBCSR was used along with GRID-GPU, with 6 ranks per
node and 7 threads per rank. On Spock, DBCSR used the libxsmm library,
GRID-GPU and PW-GPU, with 8 ranks per node and 8 threads per rank.
Shown is averaged time over the last 10 MD steps in a run with 20 steps.
Lower is better.

B. Large inputs for Amber and OpenMM

Figures 5 and 6 show performance results for the large
inputs for Amber and OpenMM. The trends are similar, with
the AMD MI100 outperforming the V100 for all ensembles
and both large inputs. Amber performance is better than
OpenMM for these systems, with the MI100 values for STMV
without barostat at around 43 ns/day, and for cellulose about
110 ns/day, compared to about 30 and 83 ns/day for OpenMM.

Fig. 5. Performance of large inputs for Amber on Spock and Summit, using
one MI100 GPU or one V100 GPU, respectively. Simulations used a 4 fs
timestep. Higher is better.
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Fig. 6. Performance of large inputs for OpenMM on Spock and Summit,
using one MI100 GPU or one V100 GPU, respectively. Simulations used a 4
fs timestep. Higher is better.

C. Small inputs for Amber and OpenMM

For the smaller inputs for OpenMM and Amber, the results
are reversed, as seen in Figures 7 and 8. For OpenMM, the
MI100 performance on Spock for these tests is approximately
80-95% lower than on the V100 on Summit for most tests,
but comparable for the ApoA-1 PME tests, and below 65%
for the DHFR generalized Born and surface area (GBSA) test
(a continuum solvent model) and the AMOEBA (a polarizable
model) PME test. It should be noted that these two methods are
potentially not the first to be optimized in a new porting effort
as the standard PME methods with fixed point-charge models
are more commonly used and more in demand; it is therefore
possible that these two calculations have not been treated
with a similar optimization effort than the PME methods. The
reaction field (RF) methods are similarly less commonly used.
Nevertheless, the 77% relative performance of the DHFR PME
test may point to a more general pattern.

For Amber, relative performance only drops to a low of
about 84% for the NVT version of DHFR, but remains below
87% for all three ensembles tested for the small system.
The medium system (Factor IX) test results in about 97%
relative performance for all three ensembles. It is possible
that smaller kernels are under-performing on the MI100, while
larger kernels are performing well. It is also possible the
that lower-bandwidth interconnect on Spock may contribute
to some performance deficits.

D. GROMACS with and without MPI

As mentioned above, GROMACS makes use of OpenMP
threading on the CPU, in addition to GPU acceleration, and
MPI-based domain decomposition and multiple-GPU utiliza-
tion. Despite an increasing amount of calculation ported to
the GPU, we found that on Spock and Summit, CPU thread-
ing contributed non-negligibly to performance. An optimal
number of 16 threads on Spock and 14 threads on Summit
was found in all cases for the non-MPI build, except for the

Fig. 7. Performance of small inputs for Amber on Spock and Summit, using
one MI100 GPU or one V100 GPU, respectively. Simulations used a 4 fs
timestep. Higher is better.

Fig. 8. Performance of small inputs for OpenMM on Spock and Summit,
using one MI100 GPU or one V100 GPU, respectively. Simulations used a 4
fs timestep. Higher is better.

STMV benchmark on Spock which gained an additional 2
ns/day when using the entire node for threading (64 cores).
In the case of the AMD EPYC 7662 “Rome” CPU, the
deployment of a replica simulation on each of the four GPUs
with the optimal 16 CPU cores for threading for each one
would be possible. On Summit, however, the use of 14 threads
would prevent the effective deployment of 6 replicas, and
therefore a reduction in performance from the optimal setting,
per replica, would be expected from the use of 7 threads per
replica. Using 14 threads on Summit provided a substantial,
12 ns/day performance boost over the use of 7 threads for
ADH-cubic, 60 ns/day for ADH-dodec, and 145 ns/day for
the small RNase; the STMV test only gained about 2 ns/day
performance when increasing from 7 to 14 threads. Figure 9
shows the performance of the no-MPI build on Spock and
Summit, with 7 threads on Summit which would be the
required settings to support a 6-replica run that made use of
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Fig. 9. Performance of GROMACS, single GPU (no MPI) version, on Spock
and Summit, using 16 threads on Spock and 7 threads on Summit which is
representative of a replica configuration that runs one simulation per GPU.
ADH-dodec: dodecahedral version of ADH; ADH-cube: cubic version of
ADH. Simulations used a 2 fs timestep. Higher is better.

all 6 GPUs on the node.
MPI for ADH and STMV inputs: Use of MPI and multiple

GPUs provided a significant performance boost for the three
tested GROMACS inputs (AHD-dodecahedral, ADH-cubic,
and STMV). Figure 10 shows performance with the MPI
version, using all 4 GPUs on the node, compared to the single-
GPU version on Spock, illustrating the substantial performance
gains that multi-GPU/multi-rank usage provides GROMACS.
The performance for STMV, when the 2 fs timestep is ac-
counted for, exceeds the performance of OpenMM for this
benchmark. Using 2 nodes on Spock produced a result of 32
ns/day, which exceeds Amber’s best result by about 20 ns/day
when the smaller timestep is accounted for, demonstrating
the usefulness of multi-node parallelization which can provide
large boosts in amount of sampling possible per day for larger
systems. However, the GROMACS STMV benchmark uses
the reaction field method instead of PME for treatment of
long-range forces, and thus direct comparisons may not be
appropriate. On Summit, scaling past 3 GPUs with the STMV
benchmark was difficult, potentially due to the reaction field
method and other aspects of the input file; we have previously
tested scaling of a 1.1 M atom system on Summit up to 40
nodes with a a more standard simulation scheme, achieving a
final performance of over 100 ns/day. Figure 11 shows scaling
across an increasing number of GPUs on a node of Summit
for the ADH-dodecahedral and the ADH-cubic systems.

VI. DISCUSSION AND CONCLUSIONS

We have found that all 4 MD programs that have been
ported to AMD GPUs were able to be built and run as expected
on the Spock test system. Performance was comparable be-
tween the Spock test-bed and the production Summit system.
For larger inputs, performance on Spock was better for Amber
and OpenMM, while for small inputs, performance lagged.
Reasons for this reduced performance could be due to higher
kernel launch overheads and the effect of a lower bandwidth
interconnect. For GROMACS, CPU threading was found to
provide significant performance increases on both systems,

Fig. 10. Performance of GROMACS, MPI version, on Spock, using 4 ranks,
16 threads per rank for the ADH-dodecahedral (ADH-dodec) system and the
STMV system, and 8 ranks, 4 threads per rank for the ADH-cubic system
(ADH-cube). Simulations used a 2 fs timestep. Higher is better.

Fig. 11. Performance of GROMACS, MPI version, on Summit, using 7
threads per rank and an increasing number of GPUs. One MPI rank per
GPU was used. Dodecahedral: ADH-dodecahedral system. Cubic: ADH-cubic
system. Simulations used a 2 fs timestep. Higher is better.

with a much larger effect on Summit, for the non-MPI version;
run configurations that can make use of a multiple replica
deployment, important for enhanced sampling applications,
would thus suffer more on Summit. The larger number of cores
on Spock can support an optimal thread count for each task
that runs on a single GPU. For this reason, performance of
the two medium-sized inputs was higher on Spock, but for
the small input, performance was again lower compared with
Summit despite the use of 7 threads which was suboptimal.
For CP2K, GPU acceleration of the GRID and PW routines
provided a 1.7× speedup while the libxsmm library for x86
also helped boost performance to over 2× that of Summit.

Our findings present an optimistic view of the expected
performance of these important programs on a new accelerator
architecture that is breaking into the HPC domain, and promise
exciting possibilities for scientific applications in molecular
simulation on the Frontier supercomputer at the OLCF.

VII. ACKNOWLEDGMENT

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory,

8



which is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC05-00OR22725.

We thank Vicky Tsang, Mazda Sabony, Leopold Grin-
berg, Anton Gorenko, Alfio Lazarro, David Case, Thomas
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[26] John D Chodera and Frank Noé. Markov state models of biomolecular
conformational dynamics. Current Opinion in Structural Biology,
25:135–144, 2014.
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