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Abstract—Containers have taken over large swaths of cloud
computing as the most convenient way of packaging and deploy-
ing applications. The features that containers offer for packaging
and deploying applications translate to High Performance Com-
puting (HPC) as well. At The National Oceanic and Atmospheric
Administration (NOAA), containers provide an easy way to
build and distribute complex HPC applications, allowing faster
collaboration, portability, and experiment computer environment
reproducibility amongst the scientific community. The challenge
arises when applications rely on Message Passing Interface
(MPI). This necessitates investigation into how to properly run
these applications with their own unique requirements and
produce performance on par with native runs. We investigate
the MPI performance for benchmarks and containerized climate
models for various containers covering selection of compiler and
MPI library combinations from the Cray provided Programming
Environments on the Cray XC supercomputer GAEA. Perfor-
mance from the benchmarks and the climate models shows that
for the most part containerized applications perform on par with
the natively built applications when the system optimized Cray
MPICH libraries are bound into the container, and the hybrid
model containers have poor performance in comparison. We also
describe several challenges and our solutions in running these
containers, particularly challenges with heterogeneous jobs for
the containerized model runs.

Index Terms—containers, climate, benchmark, cray

I. INTRODUCTION

With the advent of containers in the form of LXC [1], they
have been continuously considered and evaluated [2] for use
in High Performance Computing (HPC) environments. The
creation of Docker brought containers into the mainstream
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and further increased its demand in various applications.
Containers found great use in cloud deployments as an easy
way to package applications and create reproducible builds in
a clean and easily distributable form. The advantages provided
by the ease of packaging and reproducible builds cannot be
understated, especially in HPC. Projects like Spack [3] were
created to address this gap in easily building and packaging
applications of libraries in HPC and have found great success,
seeing wide use in many HPC centers. However, ease of
distribution and reproducibility was still a standing problem
that needs to be addressed, especially for providing stan-
dalone environments for individual users. The use of container
technologies like Singularity aim to fill that gap in HPC, by
offering the ability to create a single Singularity Image Format
(SIF) file that can be passed around from developer to user
in a center, or whose build recipe can be adapted for other
centers with different systems.

The National Oceanic and Atmospheric Administration
(NOAA) develops and runs many environmental computer
models that run for various environmental systems at many
different time scales. NOAA’s Geophysical Fluid Dynamics
Laboratory (GFDL) develops weather and climate models
which require a tremendous amount of computing resources
and must adhere to strict scientific reproducibility guidelines.
NOAA’s supercomputer GAEA [4], a HPE Cray XC40 system
was purpose built to develop and run these models at scale to
serve the needs of climate prediction. However, these models
built natively rely on the specific software stack available
on the system itself, so reproducing these models effectively
at other centers can become a challenge, especially when
reproducibility depends on old versions of compilers and
dependencies such as netCDF. Containers solve this problem
by being able to package the software environment needed



for the model in a reproducible artifact that can then be
distributed to researchers and users who do not have access to
the GAEA system, and potentially be distributed to users on
other systems. Users can build and run their own containers
without the struggle of trying to exactly match the bespoke
software environment that the models rely on.

However, using these containerized environments to run
these models can be a challenge as these models as well
as many other HPC applications rely on MPI for parallel
computation. Evaluating the compatibility of MPI between the
container and the host, as well as performance of containers
with MPI under different models becomes a necessity. It is also
important to look at how well the stated ABI compatibility
between different MPI vendors work in practice for our
containerized applications when we bind the host MPI libraries
into the container where the application was built with a
different MPI library. The fully coupled climate models rely
on a resource manager’s ability to run heterogeneous jobs or
heterogeneous job steps with a shared MPI_COMM_WORLD
and have as such been tailored to work with GAEA’s Slurm
resource manager’s ability to run heterogeneous jobs. The
use of heterogeneous jobs is not something that has been
evaluated in previous work on studying containers for HPC.
We will be looking at the issues that arise when trying to
run such containerized models in heterogeneous jobs alongside
studying the MPI compatibility and performance of the models
with containers for heterogeneous jobs. Understanding and
evaluating these issues would provide great benefit to the
GAEA user base who can take prebuilt containerized models
with the confidence of knowing the level of performance they
will be getting out of these container images.

In Section II we cover some background on using MPI with
containers and the different models available for that. In Sec-
tion III we look at past work that examine this area of container
performance under different conditions on HPC systems and
identify the gap in evaluating containerized climate models
at scale and containerized heterogeneous jobs. In Section IV
we describe the climate models we use in this study. In
Section V we describe the containers and host environments,
the experiments we performed with benchmarks and climate
models, and describe the results. In Section VI we discuss
the challenges in getting to native like performance for the
containers and discoveries made for the getting heterogeneous
jobs working for the containerized climate models. In Section
VII we discuss potential future paths we could explore as
we move forward in standardizing the use and distribution
containers for GAEA and other systems.

II. BACKGROUND

Generally speaking, as described by LXC [1], containers
are a lightweight virtualization method with the core idea of
creating a clean operating system environment without the
need for an independent kernel. Today, projects looking to use
containers have access to several different container platforms.
Approaching HPC with the idea of using containers comes
with its limitations though, in terms of aligning the container

platform with the HPC facility. The details of which we won’t
cover here, but is accessible in other texts, like Younge et al
[5].

Our intention is to evaluate and exercise the portability
and performance experience for selected containerized NOAA
climate model applications. This is a tricky problem with and
without containers. The idea of having an upstream repository
of containers that can just run on a wide array of systems
is very appealing though. The issue is the diversity of HPC
systems, across different centers and under different vendors.
A core reason is the dependency on certain libraries, provided
by the targeted HPC system, like those underlying MPI. What
we explore focuses on that specific struggle. We analyze how
to build and run containerized MPI applications while looking
to achieve performance and portability.

Container builds follow one of two models to fulfill the
MPI library dependency; either applying the hybrid or bind
model for including MPI [6]. The hybrid model refers to the
method of building and running the MPI-enabled container in
a way that the MPI inside the container will work with the
MPI outside the container. Doing this successfully requires a
couple of things. First, it is required that the MPI inside the
container is compatible with the MPI on the targeted system.
Second, if performance is critical, it is up to the container
developer to optimally build the MPI implementation for the
hardware being targeted. The bind model revolves around the
idea of integrating the system provided MPI directly into the
container. You can do this by building the container directly
on the system or building the container remotely with a
temporary, properly compatible, MPIL. The temporary MPI you
built with remotely must be ABI compatible with the provided
system MPIL. The bind model gives you a clearer path to
performance, since you can use the optimized system MPI, but
it makes portability more difficult. In our case, we are testing
Cray-MPICH and Intel-MPI from the host, and GNU-MPICH
and Intel-MPI in the containers. This means we are able to take
advantage of some work from the MPICH ABI compatibility
initiative [7]. We can predetermine what is ABI compatible,
build the container remotely, and enable the ability to grab the
system MPI at runtime. In the rest of this paper we look at the
results of doing this in practice, with real applications from
NOAA, on a production Cray system.

III. PRIOR WORK

Many prior work have evaluated the overhead produced by
containers on different platforms, including on HPC systems.
Morabito [8] identified that they have negligible overhead
even in extremely resource contained systems like Raspberry
Pis, making containers suitable for a wide variety of large
and small systems. Full virtualization is unsuitable for HPC
because of its incredible overhead, but containers almost
entirely eliminate that overhead while still providing a con-
sistent repeatable environment that can be passed around to
others. Xavier et al. [9] and Beserra et al. [2] compare the
performance of earlier container runtimes like LXC [1] and
hypervisor based virtualization on HPC systems to identify



that containers have negligible overhead and much better
performance for IO than virtualization. Similarly, Torrez et
al. [10] have performed a thorough study at HPC scale with
512 nodes to see how more modern HPC focused container
solutions like Charliecloud, Shifter, and Singularity produce
almost zero performance overhead on the system and had very
little performance difference between them, giving freedom
to HPC centers to provide whichever container framework is
most suitable for its users. This provides a consensus to the
findings of several others like Rudyy et al. [11] who studied
the performance overhead and scaling of a containerized
multiphysics biological simulation of a pulsatile artery with
Docker, Shifter, and Singularity and demonstrated Shifter and
Singularity’s comparable superiority in HPC environments;
with Younge et al. [5] who conduct a performance study of
Singularity on a Cray XC system at Sandia and find little
performance difference from native for MPI benchmarks when
using the native Cray MPI libraries and compared performance
with a deployment on Amazon EC2; and Le et al. [12] who
did MPI performance comparisons using NEURON, OSU,
and Intel MPI benchmarks between native and Singularity
and found little difference in performance at the San Diego
Supercomputing Center. Younge et al. [5] also test the dynamic
linking of vendor MPI libraries into containers and its effect
on performance, which we also investigate as part of our
work. Ruiz et al. [13] discovered potential bottlenecks for
containers used with network bound applications due to the
default network settings, which could have implications for
MPI applications in HPC. Abraham et al. [14] studied the
impact of container usage on the Lustre storage system, and
the impact of the storage system on the container application
performance, and found that Singularity due to it’s single file
structure of its image has the least impact on the MDSs and
the OSSs, which further motivates our use of Singularity on
GAEA which relies on Lustre.

IV. CLIMATE MODELS

Two of GFDL’s models have been selected for use in this
study. The first is the aquaplanet model based on the physics of
the GFDL Atmosphere Model 4 [15] [16]. The aquaplanet is
an idealized full physics atmosphere model that runs without
any land or ocean variation. Instead, the surface is an “ice
model” that is smooth and has a constant surface forcing. This
model is simpler than the full AM4, runs faster, and ensures
that we are only testing the atmosphere model so that other
model components are not contributing to any load imbalance.
This model can be used for studying large scale atmospheric
phenomenon such as the Walker Circulation [17] and global
tropical cyclone frequency [18].

The second model is the fully coupled GFDL Earth Sys-
tem Model 4.1 (ESM4) [19]. This model runs with an up-
dated AM4 atmosphere model with full chemistry and the
GFDL LM4P model coupled with the Modular Ocean Model
(MOMBO6) and the Sea Ice Simulator version 2 (SIS2) ice model.
The AM4 and LM4P run on one set of MPI ranks while
the MOM6 and SIS2 runs on a different set of MPI ranks.

Two separate communicators are set up for each of the sets of
ranks referred to in the model as a “pelist”. Communication
happens in the coupler por tion of the model using the
MPI_COMM_WORLD communicator between the different
model components on the separate pelists. The method that the
ESM4 runs on Gaea is being referred to as a heterogeneous
run in this paper.

Both models are run for a month of simulation time from
January 1-31. The month run test is used by GFDL to calculate
the simulated years per day (SYPD): the number of simulated
years that the model can run in an actual day on the computer.
The times reported are the main loop times and ignores the
initialization and finalization. The main loop is where the
actual simulation occurs in the model, and the one month
benchmark has been successfully used in the past to calculate
the SYPD.

V. EVALUATION AND RESULTS

We ran our experiments, both small and large scale, on
Gaea: a HPE Cray XC 40 system located in the Oak Ridge Na-
tional Laboratory and operated for NOAA by the Department
of Energy. For production, Gaea’s C4 cluster consists of 2656
nodes, with each node running 2 18-core Intel Xeon Broadwell
CPUs and 64 GB of memory, with a peak performance
of 3.52 petaflops, and makes use of Cray’s Aries/Dragonfly
interconnect. For our small scale runs we used T4, a 20 node
test and development system, with with each node running 2
16-core Intel Xeon Haswell CPUs and also with 64 GB of
memory. Both clusters have access to the center-wide DDN
Lustre scratch file system with 38 petabytes of space.

For our evaluations of the MPI based programs, we executed
runs natively built with the Intel and the GCC compilers, as
well as using three container images with different software
environments. Separate runs were performed for hybrid and
bind MPI models for each container to get the full scope of
performance. Table I describes the relevant software packages
on the host and in the container images, for the benchmark and
climate model applications we used. We note that the climate
model experiments primarily used the Intel compiler, and the
ESM4 model and aquaplanet model with GNU compilers did
not work with the hybrid model.

A. OSU Benchmark runs

As an initial performance evaluation to see how well the
containers performed under heavy MPI communication work-
loads, we ran the osu_allgather benchmark from the OSU
Micro Benchmark suite [20]. We ran separately compiled
benchmarks for the Host Environment as well as separately
compiled in each container, so that we are not mixing binaries
built for different environments, host or container. For each
container, we ran the benchmark using both the hybrid and
the bind MPI model. For the GNU MPICH container, we
ran the bind model tests by binding the Cray MPICH (ABI
compatible) libraries built for GCC, as well as binding the
non-Cray Intel MPI libraries just to see how far the ABI
compatibility could stretch and see how their performance



TABLE I: Container images and the package versions used

Environment Packages
RHEL 8.4

GNU MPICH container GCC 84.1

(hpcme_gnu_rhel8.sif) MPICH 3.3.2
Netcdf 4.8.0

Ubuntu 18.04

Intel 2021.5

Intel MPI 2019.10

GCC 7.5.0

Netcdf 4.8.0

Ubuntu 18.04

Intel 2021.2

Intel MPI 2021.2

GCC 7.5.0

Netcdf 4.7.4

Intel 19.0.5 (PrgEnv-intel)
GCC 8.3.0 (PrgEnv-gnu)
Cray MPICH 7.7.11
Intel MPI 2019.5

Intel MPI container
(ubuntu-intel_2022.1.1.sif)

Intel 2021 OneAPI container
(intel2021.2_netcdfc4.7.4_ubuntu.sif)

Host Environment

differed. For the Intel containers, we only bind mounted the
Cray MPICH libraries built for Intel for the bind model runs.
We ran each of these on the small scale on the T4 cluster,
with each run on 16 nodes running 32 ranks per node. The
results of the small scale runs were taken as the median of 5
repetitions. The large scale runs on C4 used 450 nodes with
32 ranks per node but due to time limits were only able to do
1 repetition.

With the small scale runs and also in the large scale runs,
we can already see the clear difference between hybrid and
bind models in time to complete the osu_allgather benchmark.
There is an order of magnitude difference between the Host
Cray MPICH bind containers and the other containers (the
hybrid and the GNU MPICH-Host Intel MPI bind container)
on allgather performance for message sizes up to 8 bytes.
The Host Cray MPICH bind containers are close to or on
par with the native runs in performance for the small message
sizes, with the GNU MPICH-Host Cray MPICH bind container
being the slowest among them. Figure 1a and Figure 1b shows
this difference for the small and large scale runs, without
the GNU MPICH hybrid container. The GNU MPICH hybrid
container in the large scale run performs the worst and jumps
several orders of magnitude worse starting at § bytes. Figure 2
shows the comparison for large scale runs up to message size
of 8 bytes on log scale in order to display the GNU MPICH
hybrid performance. Further analyses of these benchmarks will
not consider the GNU MPICH hybrid container.

Another interesting thing to note about the large scale runs is
that the GNU MPICH container-Host Intel MPI bind run, the
Intel 2021 OneAPI container hybrid run, and the Intel MPI
container container hybrid run display these spikes in their
time to complete at the 16 and 64 byte message sizes during
the large scale run. Figure 3 shows the graph where the spikes
are visible in comparison with the other runs. This could be a
quirk of the GAEA networking or the PMI communication or
something to do with how the MPI parameters on GAEA are
tuned. Further investigation is required to make sure actual
containerized application that require those message sizes

TABLE II: GNU MPICH-HOST Intel MPI bind vs Intel 2021
OneAPI-Host Cray MPICH bind upto 512 byte message size

Message Size GNU MPICH- Intel 2021 OneAPI-
Host Intel MPI bind | Host Cray MPICH bind

1.00 2106.26 172.13

2.00 3705.07 266.33

4.00 5357.16 363.31

8.00 5982.68 612.30

16.00 311939.36 1022.08

32.00 5132.17 1663.66

64.00 38318.42 2983.23

128.00 7422.58 5457.56

256.00 11731.34 10497.98

512.00 18970.68 19832.21

aren’t affected and to determine the cause of the spikes.

For the large scale runs, the GNU MPICH container hybrid
model run and the GNU MPICH container-Host Inte]l MPI
bind model run could only complete up to 512 bytes message
size before the job timed out. There seems to be some setup
time overhead for the GNU MPICH-Intel MPI bind run that is
not being measured in the benchmark itself because the actual
measured performance gets closer to the other bind model
runs at 256 and 512 byte message size. Table II shows the
the performance from 1 to 512 byte message sizes comparing
the GNU MPICH-Host Intel MPI bind container and the Intel
2021 OneAPI-Host Cray MPICH bind container.

In the large scale runs, there are a couple of instances at
8192 and 16584 bytes message size where the Intel container
hybrid runs seem to perform better than the native or the Intel
container bind runs. Figure 4 shows this. Further investigation
could net useful information on why this might be happening.
But from an overall perspective, it is clear that the Intel
containers with the Cray MPICH libraries bind mounted are
the closest to native performance, and indicates to us that we
should target that set up for containerizing applications to run
on GAEA.

B. Aquaplanet model runs

The aquaplanet model was scaled using an increasing num-
ber of MPI ranks and run on bare metal, using a Singularity
Hybrid-MPI method, and the Singularity MPI-Bind method.
The container and executable for both hybrid and bind are
identical. The aquaplanet models were compiled using the
intel oneAPI 2021.2 compilers and gfortran/gcc 8.4 for the
intel and GNU runs, respectively. The container builds use a
newer version of netCDF than bare metal.

The timings for the month runs of the aquaplanet with intel
are found in Table III. The hybrid model runs much slower
than the bare metal runs. As the number of cores increases,
the percent difference increases from 12% for 216 cores to
102% for 1728 cores. For smaller and short runs, such as for
development purposes, the hybrid model would be a viable
choice, but for production runs at scale, the hybrid method is
not a reasonable methodology.

The MPI-Bind timings are similar to the bare metal runs.
The difference between the bare metal and MPI-Bind timings
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Fig. 1: Performance of osu_allgather for message sizes up to 8 bytes
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Fig. 2: Performance of large scale run of osu_allgather (450
nodes, 32 tasks per node) for small message sizes in log scale

TABLE II: Number of cores (column 1) with main loop
timings (in seconds) from one month runs of the aquaplanet
model using bare metal, and the Singularity MPI-Hybrid and
Bind configurations in the intel2021.2_netcdfc4.7.4_ubuntu.sif
container.

total cores | bare metal (s) | hybrid (s) | bind (s)
216 1533.07 1745.50 1587.56
384 1194.56 1467.48 1217.80
432 847.57 1131.60 850.40
576 632.96 946.75 635.71
864 467.62 722.46 464.47
1152 378.64 775.05 392.15
1728 283.91 572.44 302.46

is within the difference in timings experienced on a run-to-
run basis on the machine. Compared to multiple bare metal
runs (not shown), the MPI-Bind timings are faster in some
cases. While there is a steeper learning curve and a great deal
of system work to be done in order to figure out what needs
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Intel 2021 OneApi hybrid
——Intel MPI hybrid

——GNU MPICH-Host Cray MPICH bind
Intel 2021 OneAPI-Host Cray MPICH bind
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Fig. 3: Performance of large scale runs up to a message size
of 512 bytes. Spikes observed at 16 and 64 byte message size

TABLE IV: Number of cores (column 1) with main loop
timings (in seconds) from a one month run of the aquaplanet
model using bare metal, and the Singularity MPI-Bind config-
urations in the hpcme_gnu_rhel8.sif container.

cores | bare-metal (s) | bind (s)
216 2026.35 1951.29
384 1597.43 1532.81
432 1108.32 1103.46
864 877.39 601.98

to be bound into the container to get the MPI-Bind model to
work, the MPI-Bind method is a viable use case for production
runs.

Similar results are observed in Table IV when the aquaplanet
was run in MPI-Bind mode using the GNU container. The
timings are all within the natural variation of run-to-run
differences, except for the run with 864 cores where the
container was about 30% faster. The bare metal run appears to
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Fig. 4: Performance of large scale runs for large message sizes.
Hybrid runs of the Intel containers seem to perform better in
a couple of instances.

be losing its scaling, but the container seems to maintain the
scalability. This result would become important for a higher-
resolution model that might be run on many thousands of
cores, such as a weather model. It may be possible to get better
scaling performance using a container based on this result.

C. ESM4 runs

The ESM4 model programs were compiled in the same
manner as the aquaplanet model. Then the standard one-month
timing test suite was run on both the Host and Container
environments. Table V shows the test experiment configura-
tions; the coupled ESM4 model runs the atmosphere/land and
ocean/ice on separate sets of MPI ranks, and OpenMP threads
are used for the atmosphere and not the ocean model compo-
nent. These configurations are chosen so that the atmosphere
and ocean components run in a similar amount of time.

Challenges were overcome in order to run the coupled
ESM4 model within the container environment, including
binding needed library directories, setting specific environment
variables, and including the submitting Gaea job environment
in the batch environments. Additionally, only the MPI-Bind
method was used, as the container’s Intel MPI is currently
incompatible with heterogeneous jobs. These are described
more in the Discussion section.

The results between the Native Intel and the MPI-Bind
timing experiments are shown in Table V. While the MPI-
Bind container runtimes were overall 1-2% slower on average,
the differences were within the natural run-to-run variation.
Overall, the results are consistent with the OSU benchmark
and aquaplanet experiments in showing similar performance
between Native and MPI-Bind container applications.

While there is more work to understand and optimize which
system resources and directories need to be bound in the
container, it is encouraging that when using the MPI-Bind

TABLE V: ESM4 experiment configurations (nodes, atmo-
sphere MPI ranks and OpenMP threads, and ocean MPI
ranks) with main loop timings (in seconds) from a one month
run of using Native and MPI-Bind configurations in the
intel2021.2_netcdfc4.7.4_ubuntu.sif container. (Timings are an
average of 2-3 runs. Ocean model does not use OpenMP.)

nodes | atmos ranks x threads | ocean ranks | Native (s) | Container (s)
30 216 x 2 648 2898.5 2899.6
36 216 x 2 951 2904.5 2971.4
51 432 x 4 951 1675.0 1732.4
54 432 x 4 1057 1720.7 1734.5
60 432 x 4 1296 1685.3 1732.9
61 432 x 4 1300 1656.1 1714.9
69 576 x 4 1300 1366.0 1417.9
85 864 x 4 1300 1057.8 1047.0
89 864 x 4 1441 1018.8 1016.0
93 864 x 4 1608 975.8 1010.6
94 1152 x 4 1057 1072.5 1065.0
105 864 x 4 2044 971.5 1010.7

method, the performance impact of containerization on real-
world MPI applications such as the ESM4 model is low.

VI. DISCUSSION

A useful feature of containerization is the ability to simply
package up the application and the required dependencies,
including any MPI libraries, in a single container image to
pass on to other users. However, from our evaluation there
is a clear benefit in being able to bind the optimized host
Cray MPICH libraries into the container, provided the host
MPI libraries are ABI compatible with the container’s MPI
libraries. This is useful to know for any given supercomputer
so that the appropriate paths can be mounted into the container.
However, the process of binding these paths is manual where
the appropriate MPI module, that is ABI compatible with the
MPI library in the container, has to be loaded if it even exists
on the system, and then add the appropriate paths pointing to
the 1ibmpi. so location as mounts in the container with the
——bind flag. This can be a process of trial and error when
it comes to Cray MPICH installations because in addition to
the 1ibmpi.so, one also needs to make sure that all the
supporting libraries that 1ibmpi.so depends on are also
mounted in the container. This includes Cray specific libraries
like alps, ugni, udreg, xpemem which provide host specific
optimizations for MPI communications. Part of the reason
for the slowness of the hybrid model runs may come from
the container’s internal MPI libraries not having access to
these optimizations. There is no standard documentation for
mounting these for container runs so figuring it out took some
time and effort. Being able to automatically discover these
libraries and mount them would be a useful feature in our
system and also useful if the containers we build are passed
to other users elsewhere who just want to be able to run it
with maximum performance without needing to go through
the excess effort in finding all the host libraries they need.
eds-cl [21] was built for this, where it is able to automatically
discover the MPI libraries and creates a profile of the libraries
to mount into the container. A container run using e4s-cl will



automatically bind the discovered libraries that are saved in the
specified profile into the container. However, this is currently
still a work in progress and the automatic discovery is limited
since it requires the use of mpicc as part of the discovery
process, which GAEA does not have.

The need to bind mount the host’s MPI libraries into the
container in order to get significantly better performance does
break some portability. It is not so simple as just taking
a container image and running. It is possible with future
improvements to Cray’s PMI could bring performance of the
hybrid model runs of containers closer to that of the bind
model and native runs, which would make usage of containers
on HPC so much more seamless and save users the hassle of
needing to manage ABI compatible libraries for binding.

The ESM4 model’s reliance on heterogeneous jobs ex-
posed issues in both host and container runtime environments.
Slurm allows both heterogeneous job allocations and job
steps. Running jobs with the host MPI library resulted in
hangs on MPI_TInit with hetergeneous allocations, but ran
successfully with heterogeneous job steps. Intel’s MPI library
was incapable of receiving the heterogeneous task distribution,
resulting in incorrect creation and access attempts of shared
memory resources. The MPICH library in GNU toolchain
container ran successfully only if the job allocation was made
with the het job flag, and hung on MPI_TInit otherwise.
Updating Slurm on a similar test system has resolved the
host MPI library hang on MPI_Init while the other libraries
maintain the same behavior. This has made the linking of the
host MPI library into the container’s executable important for
both performance and basic functionality.

When running performance tests for containers with Cray
MPI libraries, it was initially found that the container with the
GNU toolchain did not benefit from the addition of the library
path to LD_LIBRARY_PATH. This was due to the container’s
mpicc compiler wrapper setting RPATH for the container’s
MPI library. Multiple workarounds were successfully tested in-
cluding compilation with -W1, ——enable-new-dtags to
instead set RUNPATH, setting LD_PRELOAD for the Cray MPI
library, and launching the executable in the container by invok-
ing the dynamic linker directly with the ~——inhibit-rpath
flag. Each method was found to have its drawbacks. For the
first, the user of the container may not have the means to
rebuild the application. For the second, loading the library
through the environment variable applies to a wider scope than
just the executable we wish to run. In the last case, explicitly
excluding search for MPI libraries in RPATH when a matching
host library cannot be found can result in several different
outcomes. Since version 2.30, the GNU dynamic linker offers
a ——preload flag to preload a library only for the specified
executable. When available within the container this option
offers the ability to reliably load host libraries in the proper
scope.

The Slurm scheduler (used on GAEA and other HPC sites)
allows users to specify which environment variables are passed
from the submitting environment (login/head node) to the
batch environment (compute nodes). While the default is

to pass all environment variables through ——export=ALL,
the most common use on Gaea is to pass no environment
variables through —-export=NONE, which then populates
the batch job environment using the system default shell
initialization. This helps ensure a clean batch environment for
reproducible experiments. However, we discovered that using
——export=NONE caused heterogeneous jobs (simple tests
as well as ESM4) to hang immediately after launching. More
work is needed to discover which environment variables in the
login user environment are needed for heterogeneous jobs.

Containerizing the climate models can be time consuming,
but should not be detrimental to the overall development of
climate model code. The most time consuming part of dealing
with climate model containers is compiling packages and
dependencies that are required, such as HDF5 and netCDF.
There is currently an effort to cut down this overhead to make
containers even easier to build. Also, providing containers that
can be used with the Intel compiler poses unique licensing
challenges because there is not clarity as to whether we can
share containers that have the compilers necessary to compile
the model. Once these hurdles are overcome, there were only
slight modifications to the GFDL workflow that were needed
to compile and run the model. The portability and shareability
of the container make it an attractive choice for the future of
climate modeling.

VII. FUTURE WORK

There are some further things we could evaluate as we move
forward in getting containers ready for regular use on GAEA.
Testing how well the Lustre filesystem handles reads from
the container images for very large scale deployments is of
importance in the exascale era especially if the SIF files are
large and aren’t properly striped. Automatically discovering
and bind mounting the right libraries from the host into the
container is another useful area to look at. e4s-cl [21] has
done some work in this regard but currently relies on the
presence of mpicc and mpirun, which does not work on a
Cray system if it doesn’t have those executables and may not
correctly pull in the necessary Cray libraries. Exploring faster
builds for model software dependencies packages is planned
to be done through a partnership with E4S utilizing spack
caches and large base containers. Using the containers to run
on other HPC platforms and the cloud is a planned goal for
NOAA. The next-generation models will likely be shared with
containers instead of just a repository on GitHub.

VIII. CONCLUSION

In this paper, we explored the containerization of MPI based
applications and climate models on the GAEA supercomputer
then evaluated their performance under different conditions.
We identified that binding the host’s MPI libraries into the
container nets the best performance when done correctly, as
well as identifying some odd behavior during benchmark
runs for some hybrid model containers. We explored the
challenges and figured out solutions for containerizing and
running applications that specifically rely on the ability to run



heterogeneous jobs. We articulate steps needed to effectively
run those applications at native performance without needing
to modify the applications themselves to suit the more conven-
tional non-heterogeneous job blueprint. We discuss the future
benefits of containerization for distributing climate models and
engendering collaboration in the climate science community.
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