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Abstract—There is increasing interest in the use of HPC
machines for urgent workloads to help tackle disasters as they
unfold. Whilst batch queue systems are not ideal in supporting
such workloads, many disadvantages can be worked around
by accurately predicting when a waiting job will start to run.
However there are numerous challenges in achieving such a
prediction with high accuracy, not least because the queue’s state
can change rapidly and depend upon many factors. In this work
we explore a novel machine learning approach for predicting
queue wait times, hypothesising that such a model can capture
the complex behaviour resulting from the queue policy and other
interactions to generate accurate job start times.

For ARCHER2 (HPE Cray EX), Cirrus (HPE 8600) and
4-cabinet (HPE Cray EX) we explore how different machine
learning approaches and techniques improve the accuracy of
our predictions, comparing against the estimation generated by
Slurm. We demonstrate that our techniques deliver the most
accurate predictions across our machines of interest, with the
result of this work being the ability to predict job start times
within one minute of the actual start time for around 65% of jobs
on ARCHER2 and 4-cabinet, and 76% of jobs on Cirrus. When
compared against what Slurm can deliver, this represents around
3.8 times better accuracy on ARCHER2 and 18 times better for
Cirrus. Furthermore our approach can accurately predicting the
start time for three quarters of all job within ten minutes of the
actual start time on ARCHER2 and 4-cabinet, and for 90% of
jobs on Cirrus. Whilst the driver of this work has been to better
facilitate placement of urgent workloads across HPC machines,
the insights gained can be used to provide wider benefits to users
and also enrich existing batch queue systems and inform policy
too.

Index Terms—Queue wait time prediction, machine learning,
boosted trees, HPC, classification, regression

I. INTRODUCTION

The global pandemic has demonstrated the need to make
urgent, accurate, decisions for complex problems. Each year
there are many localised emergencies including wildfires,
traffic accidents, disease, and extreme weather which, not only
claim many lives and result in significant economic impact,
but with the rise of global issue such as climate change,
are becoming more prevalent. HPC has a long history of
simulating disasters after the event, and recent technological
advances have opened up the possibility of running simulations
in real-time whilst disasters are unfolding. It is not just
the increased computational power of such machines that
unlocks such opportunities, but also the coupling with real-

time data and improved technologies enabling interaction with
simulations in real-time.

However, HPC machines are typically optimised for
throughput and not latency of individual jobs. In short, the
batch queue system means that there is an unbounded time in
which simulation jobs will wait in the queue, and it is entirely
useless for emergency responders to be waiting for insights
from an HPC simulation job that is held in the queue whilst
the forest is burning. Small scale urgent workloads previously
addressed this issue by relying upon high priority queues or
the ability to interrupt existing simulations [9], however this
is not practicable for unpredictable and dynamic situations,
where the amount of computing required can be large and vary
significantly as time progresses [10]. Consequently, leveraging
several HPC machines and making informed choices about
what workload to run where can provide more flexibility [10].

A major part of this is understanding when a job will start to
run on the supercomputer, which is a difficult undertaking as
there are numerous factors which influence this. For example,
job start time depends not just upon the configuration of the
queue itself but also, at the time of submission, both the current
queue state and jobs that will be submitted subsequently whilst
our job of interest is still queued up. There are also aspects
such as queuing policy, often determined by the HPC centre,
which mean that the queues can be somewhat of a blackbox to
users when they are trying to estimate how quickly their jobs
will start to run. Consequently the use of machine learning
based on historical batch queues data is an approach that has
gained some traction, with the idea being that these models can
capture the underlying patterns and use this to more accurately
determine how long a job will wait in the queue. However
existing machine learning models tend to be overly simplistic,
limited by specific requirements or assumptions, or only target
small-scale HPC or numbers of jobs. Whilst our driver is to
obtain queue wait time predictions to optimise the placement
of urgent real-time HPC workloads, better understanding the
likely job queuing time has numerous additional benefits.
These range from being able to better advise users what HPC
machines to use and job parameters to select in their scripts,
to better informing HPC centres so they can enhance queue
policies and queue system settings to improve throughput.

In this paper we explore the use of machine learning



to predict the queue wait time for jobs on HPC machines.
Using data from real-world jobs submitted to production
HPC machines, in Section II we survey related work before
describing the HPC machines used in this work and reporting
performance of Slurm’s built in estimator as a baseline. In
Section III we describe our initial machine learning approach
which, whilst simplistic, provides a limited degree of accuracy
before building on this in Section IV to improve our prediction
by incorporate the current state of the queue into our models.
This is then further enhanced in Section V by combining
classification and regression to specialise the prediction of
model regression, before briefly illustrating the use of our
models to produce insights for users in Section VI. Lastly
we draw conclusions in Section VII and discuss further work.

The contributions of this paper are:
• Demonstration that the estimated time provided by

Slurm’s backfill plugin tool is inaccurate for real-world
jobs and accuracy also varies significantly across ma-
chines.

• The ability to handle the highly unpredictable workload
present on a supercomputer by developing a stochastic
method which generates different random queue states
that are still representative of machine usage patterns and
used as inputs to the model.

• Illustration that whilst it is possible to generate moder-
ately accurate predictions based on a simplistic model,
by adopting a multi-model approach of classification and
regression one is able to obtain more accurate results

• Presentation of job start time accuracy within a specific
time frame of the actual start times, where the majority
of related work instead presents accuracy using a metric
such as mean standard error. Whilst such metrics are
fine, our urgent use-case, and HPC users more generally,
are likely more interested in how closely predictions will
match to actual start times within a specific time frame.

II. BACKGROUND AND RELATED WORK

The VESTEC marshalling and control system [10] is a
generic solution for running urgent, interactive workloads on
HPC machines. Integrating use-cases ranging from wildfire
fighting [16] to tracking mosquito-borne diseases [20], these
all represent highly dynamic workloads, often driven by the
arrival of data from external sources and the requirement that
such workloads must start to run as quickly as possible. To ad-
dress these requirements the VESTEC marshalling and control
system federates across multiple HPC machines, seamlessly
distributing the execution of individual codes comprising the
urgent workload across these machines and enabling users
to interact with these in a location independent manner.
Such federation is desirable because it provides a degree of
resilience, if one specific machine fails then workload can be
rescheduled, and also means that the urgent workload does not
overwhelm one individual supercomputer. Disasters are thank-
fully relatively rare, so apart from the few highly specialised
disaster tracking and relief organisations such DLR-GZS [21],
it is not realistic to have dedicated resources set aside for

these, but instead to be able to make use of existing very
large scale supercomputers which normally run scientific or
engineering simulations. The ultimate desire is to be able to
leverage a large number of HPC machines, for instance all the
tier-0 machines of Europe, when such a disaster unpredictably
occurs. However this requires making informed decisions over
job placement across these machines, and a major component
of this is to be able to accurately predict how long jobs will
wait in the queue on each individual machine before they start
to run.

A. Queue wait time prediction

Job scheduling algorithms typically rely on policies such
as first come first served, shortest job first, longest job first,
or a job scoring methodology. However in order to ensure
that the compute nodes of HPC machines remain filled and
fairly allocated amongst users there are numerous additional
complexities imposed at the system administration level which
makes their operation far less transparent. Backfilling is one
such example, where smaller jobs lower down the queue are
prioritised to fill-up small numbers of available compute nodes
which are not sufficient for the larger jobs higher up the queue.
Not only does backfilling induce additional uncertainties when
trying to understand how long a job will queue before starting
to run, but furthermore there are numerous backfilling algo-
rithms that can be selected making this even more opaque.
Backfilling is just one example and, put simply, the queue
systems of modern HPC machines are black-boxes, as such it
is not a trivial task to predict how long jobs that are submitted
to such queues will wait before they are allocated compute
node(s) and start executing.

An early approach to job wait time prediction was first
proposed in [11], which calculates the average time based
on the previous jobs submitted by a user. Whilst this method
is very simple, only needing to take the average of previous
jobs, the accuracy was found to be lacking. By contrast [18]
followed a simulation approach where they simulated first
come first served, shortest job first, and backfill scheduling
algorithms. These were then used to predict the wait time
for each application when that application is submitted to the
scheduler. As part of this they also predicted the runtime of
applications too, enabling a complete view of the state of the
machine, and errors in job wait time predictions ranged be-
tween 5.01 and 996.67 minutes depending upon the workload
being predicted and scheduling algorithm simulated.

Approaches exploiting historical queue data have become
more common than queue wait time averaging or simulation.
Supervised learning, where mathematical models are trained
using the historical queue data is most popular and [12] pro-
posed an Instance Based Learning (IBL) approach to predict
job start times based upon historical wait times. Whilst this
work was early in the field of machine learning, with more
limited techniques available to the authors and the number of
jobs fairly small, their absolute average error ranging between
210.5 to 577.1 minutes which was promising for the time and
acted as a foundation for further work. An example is [3],



which predicts the job queue waiting time by undertaking
classification of similar jobs in the historical queue data.
Their approach first predicts the wait time of a job using the
K-Nearest Neighbour (KNN) technique and then undertakes
classification using Support Vector Machine (SVM) among the
classes of the jobs, with the probabilities given by the SVM
used to provide a set of predicted wait times with probabilities.
Whilst their experiments used the grid rather than an HPC
machine, and they were aiming to predict within a window of
1 hour for the job start time, they were able to demonstrate
correct categorisation of job start times between 77% and
83% of the time. By contrast in this work we are using real-
world HPC machines, and after predictions that are as close
as possible to the actual job start time rather than predicting
within hour windows as that level of accuracy is not sufficient
for the urgent use-case.

In [13] the authors proposed a method of predicting queue
wait times based on a hidden Markov model. They were
interested in queue congestion, where the greater the con-
gestion the longer the time before a job starts. In this work
they represented queue congestion as an estimate of the state
according to the degree of congestion for the queue waiting
time expected at the time t, with the objective being that
they can then use their model to predict the queue waiting
times at time t+1. When comparing their prediction accuracy
against those of the other methods, their results show that the
proposed algorithm improves the prediction accuracy by up to
60% although at only 10836 jobs their dataset is small.

By contrast to the supervised learning approaches detailed
above, [19] studied the use of Reinforcement Learning (RL) to
predict queue wait times, where a model is trained based upon
rewarding desired behaviours and punishing undesired ones.
In [19] the authors highlight the role of RL in handling the
unknown amount of work in the queue, however their approach
also requires prediction of the actual runtime of jobs before
undertaking the job start time prediction. Undertaking runtime
prediction is needed to accurately know the amount of work in
the queue, but requires in-depth knowledge of each individual
job and is not scalable to large systems with many different
workloads. For instance in [19] the authors limited themselves
to VASP only, and by contrast we aim for an approach which
can be run on a snapshot of the machine executing a diverse
workload without requiring such in-depth knowledge.

We summarise that previous work to predict queue wait
times has demonstrated promise, but can be somewhat lim-
ited, based upon small scale datasets, or implies numerous
assumptions that often do not generalise to real-world HPC
machines [4]. However all the papers surveyed in this section
highlight the difficulty of predicting the job queue wait time
and demonstrate this is complicated by a number of factors
outside the control or knowledge of users. Often one does not
know the full set of criteria that the scheduler uses to determine
when jobs will run and there can be complicated relationships
between these. Driven by our interest in urgent computing
workloads [16], we require the ability to quickly predict how
long a job will queue for on a given HPC machine before

running based because we require that urgent jobs start to run
as soon as possible. This therefore means that we require the
predicted start time to be reported in minutes and seconds, and
it is important that the accuracy of such predictions are within
a few minutes.

B. Machines used in this work

In the experiments detailed in this paper we work with
historical data from the following three machines:

• ARCHER2: An HPE Cray EX which is the UK national
supercomputer and contains 5860 nodes, each with 128
CPU cores. At the time of writing ARCHER2 has been
operational for four and a half months from December
2021 until mid April 2022, and the historical queue
data we use in this paper comprises 314880 jobs in the
standard queue and 73472 jobs in the short queue

• Cirrus: An HPE/SGI 8600 system with 280 nodes, each
with 36 CPU cores. This is used by researchers across the
UK but is more of a high-throughput system, targeting
smaller jobs compared to ARCHER2. Our Cirrus histori-
cal data covers 15 months, from February 2021 until mid
April 2022 and comprises 582200 (standard queue) jobs.

• 4-cabinet: The preliminary 4-cabinet ARCHER2 system
that was available before the full ARCHER2 system was
commissioned. An HPE Cray EX, at 1000 nodes this
was approximately a fifth the size of ARCHER2 and we
use historical queue data over 9 months, from February
2021 to October 2021 which comprises 373560 (standard
queue) jobs.

These three systems represent production HPC systems in
use on a 24/7 basis, and provides a diverse set of system and
job sizes to use for developing and evaluating our models. All
systems run the Slurm [17] queue system and we used the
sacct command to obtain the historical queue data.

It can seen that we report the number of jobs in the
standard and short queue for ARCHER2, but just the standard
queues for Cirrus and the 4-cabinet system. This is because,
as we highlight in Section III, short queues are much easier
to accurately predict job start times for compared with the
standard queue. This is because jobs are always small, short
running, and tend to start very quickly, in contrast to the
standard queue which does not have these limitations and jobs
can wait for considerable amounts of time [14]. Therefore in
the majority of this paper we focus on prediction for jobs in
the standard queues across our machines as that is the major
challenge for job start time prediction and also due to the
limits of the short queue (e.g. jobs running for a maximum
of 20 minutes), a workload of any complexity must use the
standard queue.

C. Slurm estimated time

The Slurm queue system [17] provides its own job start
prediction capabilities by providing an expected start time for
jobs if Slurm is configured to use the backfill scheduling
plugin. This prediction is only offered by Slurm once a
job has been submitted, which is not quite suitable from



our requirements in urgent computing, but nevertheless this
estimated time acts as a baseline against which we can then
compare the success of our machine learning approach in
subsequent sections.

We tracked the lifetime of all jobs submitted on ARCHER2
and Cirrus over a two week period, using a script that contin-
ually polls the queue system for newly submitted jobs. Jobs
are then stored and their details updated if required as time
progresses, specifically amending the start time estimate if
appropriate and once the job starts running our script compares
Slurm’s job start estimate(s) against the actual start time of that
job.

Table I reports the accuracy of the estimated start time
provided by Slurm for the standard queues on both ARCHER2
and Cirrus. In this table we report the percentage of jobs
whose start time estimates were accurate to within a specific
time-frame of when the job actually started. Slurm updates
the estimated start time for jobs if appropriate, and therefore
there are two accuracy numbers reported for each machine in
Table I; the accuracy of the initial prediction made by Slurm
when the job was submitted, and the best accuracy obtained
across all the estimated start times for a job. For ARCHER2,
on average, 83% of jobs had multiple estimates provided by
Slurm over their lifetime and 53% of jobs had more than five
updated estimates made.

Predictions accurate
within

ARCHER2 Cirrus
initial best initial best

1 minute 5.13% 16.55% 0.42% 4.12%
5 minutes 12.47% 23.51% 0.42% 4.26%
10 minutes 19.91% 30.99% 0.85% 4.40%
30 minutes 41.31% 58.25% 2.69% 11.78%

1 hour 58.40% 70.25% 4.40% 16.34%
2 hours 69.91% 79.17% 8.38% 25.99%
6 hours 81.47% 90.59% 30.11% 52.70%
12 hours 90.45% 94.39% 50.85% 67.90%
24 hours 95.39% 99.31% 77.98% 86.93%

TABLE I: Prediction accuracy of Slurm’s backfill scheduling
plugin for the standard queue on ARCHER2 and Cirrus. Both
prediction accuracy for the initial estimate, when the job is first
scheduled, and the best estimate over all updates is reported.

From Table I it can be seen that the estimates generated by
Slurm are fairly inaccurate, especially for Cirrus. Irrespective
of the machine in use the initial estimates are less accurate
than the best estimate across all estimated start times an it can
be seen that it is most common for predictions to be made
that are accurate to an hour or more of the actual start time.
The difference in Slurm’s estimation accuracy is interesting
between ARCHER2 and Cirrus, and this is because of the
differences in usage model for the machines. Cirrus is a high-
throughput system with many jobs requesting smaller numbers
of nodes for a shorter amount of time. Consequently Slurm
was overestimating the start time on Cirrus in 96% of cases,
whereas on ARCHER2, which follows a more traditional HPC
system usage model, overestimation of the start time was in
60% of cases.

From Slurm’s estimated start times we can conclude that
the usage mode of the machine makes a significant impact
to the accuracy of predictions generated. Slurm tends to
overestimate, rather than underestimating, the start time and
tends to be able to generate more accurate estimates for
systems whose workload is more traditional HPC style.

III. INITIAL MACHINE LEARNING MODEL

Previous work in [2] and [3] demonstrated that K-Nearest
Neighbour (KNN) [22] is a successful approach for generating
queue wait time predictions, and a simple approach acting on
the data was our starting point. KNN is a simple supervised
machine learning algorithm for solving both classification
and regression problems and works under the assumption
that similar items exist in close proximity. Calculating the k
neighbours that are nearest to the feature of interest, these
closest neighbouring values are then reduced to the overall
prediction, often by taking the mean. An important configu-
ration for KNN is what value of k to use, i.e. the number of
closest neighbours to each point that need to be considered.
Based upon experimentation we found that k=10 was most
appropriate, using the KNeighborsRegressor from Sklearn [15]
and the default minkowski distance metric used to determine
the nearest neighbours.

This simple KNN approach had two purposes, firstly to
understand how even a very basic machine learning approach
compares against Slurm’s built in estimator, and secondly
to act as a foundation for more complex machine learning
approaches described in subsequent sections. Initially focusing
on ARCHER2, based on the historical queue data we trained
two regression KNN models. The first, basic, only selects the
number of nodes and wall time requested by the user as fea-
tures for each job. The second model, temporal, also includes
the time and day of the week when the job was submitted
as features and this enables us to understand the importance
of when a job was submitted for accurately predicting job
start time. Features for each job are normalised such that they
all have approximately equal range, where we calculate the
mean and standard deviation for each element for all jobs,
and adjusting these as per Equation 1 so that they are centred
around zero, with a standard deviation of 1.

fi →
fi − ⟨fi⟩
STD(fi)

, (1)

Throughout the experiments in this paper we select 80% of
jobs for training and 20% for testing. However it was found
that simply selecting every fifth job to be a test job resulted in
a poor distribution of test data and artificially high predictions.
This is because users can submit multiple similar jobs in one
go, and therefore naively selecting one job in five for testing
will mean that the models have likely seen very similar jobs
previously. Instead to provide a fairer testing regime we select
every fifth day of jobs to be a test job, for instance if all jobs
on a Monday are selected as test jobs then the next test day
will be a Saturday. This ensures that we have a wide range of



test jobs across different hours and different days to test our
predictions against sight unseen.

Table II reports the results of prediction using our simple
KNN models for ARCHER2. Accuracy is reported as the per-
centage of predictions that are made correctly within a specific
time-frame of the actual job start time, with the smaller the
difference the more accurate the model. We trained each model
for both the ARCHER2 standard queue (314880 jobs) and
short queue (73472 jobs) and it can be seen that the temporal
models, which are also provided with job submission date and
time as features, result in increased accuracy of prediction
compared against the basic model. This demonstrates that
there is a correlation between when a job is submitted to the
HPC machine queue and how long it will wait for in the queue.
Whilst such a statement will likely not surprise an experienced
user of such machines from their own personal experience, it
is still important to identify that this relationship exists in the
data.

Predictions accurate
within

Standard queue Short queue
basic temporal basic temporal

1 minute 9.27% 22.67% 33.53% 66.08%
5 minutes 28.79% 35.53% 46.46% 78.16%
10 minutes 39.53% 41.37% 50.47% 83.76%
30 minutes 52.60% 53.32% 96.73% 92.21%

1 hour 64.37% 61.85% 98.55% 96.18%
2 hours 72.05% 68.68% 99.37% 97.50%
6 hours 83.28% 80.70% 99.67% 99.23%
12 hours 88.31% 87.40% 99.68% 99.67%
24 hours 94.39% 92.68% 100.00% 100.00%

TABLE II: Prediction accuracy of simple KNN model on
the queue data for ARCHER2 standard and short queues
comparing basic model (the requested number of nodes and
wall time only as features) and temporal model (also including
job submission time and day).

With the temporal model for the standard queue in Table
II, when compared against the estimates generated by Slurm
and reported in Table I, it can be seen that this simple KNN
approach improves the accuracy of predicted start times up
to and including accuracies that fall within 10 minutes of
the actual start time. Although this is at the cost of lesser
accurate predictions, where for instance only 61% of jobs in
the ARCHER2 standard queue are correctly predicted to start
within an hour of the actual start time, compared to 70% for
the estimation generated by Slurm. In contrast to the standard
queue, predictions for the short queue are more accurate
and there is less difference between the basic and temporal
models. This is because there is much more uniformity to
the short queue, small jobs with a short requested wall time
being submitted to a set of reserved nodes, compared with
the standard queue and as such this makes it much more
predictable.

We then trained our temporal KNN regression model on the
historical data from the standard queues of ARCHER2, Cirrus,
and 4-cabinet. There is a separate model trained for each
machine, and the results of using these trained models to test
predicted job star times for 20% of the data, sight unseen, are

Predictions accurate
within ARCHER2 Cirrus 4-cabinet

1 minute 22.67% 51.48% 12.41%
5 minutes 35.53% 61.20% 24.35%
10 minutes 41.37% 65.28% 29.27%
30 minutes 53.32% 75.38% 38.73%

1 hour 61.85% 80.03% 44.87%
2 hours 68.68% 88.47% 55.24%
6 hours 80.70% 93.52% 71.18%

12 hours 87.40% 96.43% 81.31%
24 hours 92.68% 98.49% 89.34%

TABLE III: Prediction accuracy of simple KNN model on
standard queue across our machines of interest

reported in Table III. It is interesting to observe that predictions
for job wait times on Cirrus using our simple model are
considerably more accurate than those for ARCHER2 and 4-
cabinet. This is in contrast with estimations made by Slurm
and reported in Table I, which were considerably less accurate
for Cirrus than ARCHER2 and in all cases the simple KNN
model predictions for Cirrus in Table I beat what Slurm
can provide. The high-throughput nature of Cirrus means
that jobs on average tend to be smaller and faster running
than ARCHER2 and 4-cabinet, thus starting more quickly.
Consequently the model is biased towards predicting these
pattern of jobs, and whilst not all jobs comply with this,
enough do to make the predictions more accurate in this
regime. Consequently on Cirrus pushing beyond this level
of accuracy will be more challenging as to do so we must
undertake accurate start time predictions for those jobs that do
not conform with the most common machine usage pattern.

Even though the predictions in Table III are far from perfect,
given the simplicity of the model in use we were surprised
at how well this performed. Compared against the accuracy
of estimates provided by Slurm based on the best accuracy
reported in Table I, it can seen for ARCHER2 that the KNN
regression approach provides a greater number of predictions
that fall very close (10 minutes or less) to the actual start time
for ARCHER2 although there is a reduction for less accurate
predictions. For Cirrus the KNN regression predictions are
considerably more accurate than those provided by Slurm.

Whilst the prediction accuracy delivered by our simple
model is encouraging, with our urgent workloads in mind
this is not sufficient. Indeed more generally, users wanting to
obtain a view of how long their application will queue on an
HPC machine would expect to be able to obtain a reasonable
accuracy within about 10 minutes or less.

IV. QUEUE SNAPSHOT MACHINE LEARNING APPROACH

It was highlighted in Section III that for accuracy of
prediction it is important to include as features when a job was
submitted to the queue. This demonstrates there is a correlation
between how long a job waits in the queue and when the user
submitted it to the HPC machine. However, more generally, it
is not the exact time and day when a job was submitted that
is directly important, but instead the fact that this represents
that the queue is in a specific state. For example at 10pm on



Name Description
nodes req Number of nodes requested by the job
req wtime The requested wall time (hours)
day Day of the week (0-6)
hour Hour of the day (0-23)
s q jobs The number of queued jobs
s q nodes The total number of nodes requested by the queued jobs
s q work∗ The total work (nodes × wall time) of the queued jobs
m q wait The median time queued jobs have been waiting for to run (hours)
d q nodes[0-7] Histogram of the nodes requested by queued jobs (8 values)
d q work[0-7]∗ Histogram of work requested by queued jobs (8 values)
d q wait[0-7] Histogram of wait times for queued jobs (8 values)
s r jobs The number of running jobs
s r nodes The total number of nodes requested by the running jobs
s r work∗ The total remaining work (nodes × remaining time) of the running jobs
d r nodes[0-7] Histogram of the nodes requested by running jobs (8 values)
d r work[0-7]∗ Histogram of remaining work of running jobs (8 values)
d r remain[0-7]∗ Histogram of remaining times for running jobs (8 values)

TABLE IV: The features used in our queue state aware machine learning model. Features with asterisks are calculated using
actual wall times for historical data and for model testing. For prediction, randomly drawn wall times are used to calculate
these.

a weekend the queue might be very quiet and submitted jobs
will start to run quickly, whereas at 2pm on a Wednesday
afternoon it is likely that many users are contending for the
compute nodes and hence jobs will wait much longer in the
queue. Whilst including the date and time of job submission
as features improved the accuracy prediction of our simple
model in Section III, it was our hypothesis that these are a
rather crude way of representing the state of the queue and
accuracy can be improved by providing the current state of
the queue as features to our model when training and testing.
This is illustrated in Figure 1 where queue state represents, at
the time of job submission, all other jobs that are running or
waiting to run on the HPC machine.

Fig. 1: Illustration of model incorporating snapshot of queue
for job start time training and prediction.

Consequently, for each job, we capture the state of the
queued and running jobs at the time of submission and provide
this to our model along with details of the job itself during
training. Once trained, when making predictions for job start
times using our test data, we take a snapshot of the running
and queued jobs from the historically gathered data. When

deploying our approach in the real-world this can be done in
real-time via the appropriate Slurm commands and providing
this as inputs to the model.

Representing the state of queued and running jobs must
be done in a manner that our models can easily consume.
Specifically, providing values directly for every single queued
or running job at the time of job submission would be cumber-
some and liable to result in a very complex model. Instead, the
current queue state is divided into queued and running jobs,
and there are seven features representing the queued jobs and
six representing the running jobs. These are summarised in
Table IV, and it can be seen that for both queued and running
jobs there are three histograms. These histograms enable us
to categorise the queue state into distinct bins that form a
distribution, with these distributions representing the state of
the queue.

Each histogram comprises eight bins and it is important to
appropriately calculate the size and shape of each bins forming
the histogram. To achieve this we aim for bins to roughly
approximately to the same number of elements from a global
perspective across all our jobs of interest in the training data.
This is calculated by a script working through each submitted
job in the training data and, based on the other jobs currently
queued and running, will calculate the appropriate dimension
of each histogram bin. It should be highlighted that whilst
we aim for roughly each bin to hold the same number of
elements from the global perspective, at the individual job
level the size of each bin representing the current queue state
often varies significantly and it is this which is providing the
characterisation of the state.

Based on providing this enhanced queue state information
we then retrained the KNN models and reran our experiments
on the ARCHER2, Cirrus, and 4-cabinet systems for the
standard queues. Using the same split and selection of training
and test data as previously, the accuracy of our predictions
when including the queue state are reported in Table V. When



comparing against prediction accuracy of our simple KNN
model in Table III it can be seen that providing the state of
the queue as an input to the machine learning model tends to
generally improve prediction accuracy, but this improvement
is fairly limited.

Predictions accurate
within ARCHER2 Cirrus 4-cabinet

1 minute 28.52% 63.45% 18.43%
5 minutes 37.09% 69.48% 24.54%
10 minutes 38.81% 72.10% 32.88%
30 minutes 59.34% 76.74% 39.28%

1 hour 61.70% 79.89% 45.00%
2 hours 70.20% 87.70% 62.28%
6 hours 81.74% 91.60% 79.94%
12 hours 88.18% 97.74% 91.44%
24 hours 93.35% 98.73% 92.80%

TABLE V: Prediction accuracy when queue state is provided
as an input to the KNN model

We suspected that the limited improvement in predication
accuracy reported in Table V compared against the simple
KNN model of Section III was because of uncertainties in
the queue state. When a job is submitted we know exactly the
number of other jobs already running and queued up waiting to
run, and the number of compute nodes requested by the queued
jobs and in-use by the running jobs. However we do not know
exactly how long jobs will run for, and this was highlighted
in [19]. Users provide a maximum wall time for their jobs,
however when surveying the historical queue data we found
that this maximum wall time tends to overestimate the actual
job runtimes on average by around 8 times on ARCHER2 and
4-cabinet and 6 times on Cirrus. The most common source of
these over estimations is where users select a default value,
such as an hour or a day, as the maximum job wall time of
their job.

Consequently when a job is submitted to the HPC machine
there is uncertainty around how much work there is on the
supercomputer in terms of how long running jobs will continue
to run for and how long queued jobs will actually run for. The
amount of work considerably impacts the start time of a job
and approaches such as [19] look to address this by undertak-
ing a prediction of runtime for currently running jobs. However
predicting the runtime of running and queued jobs requires
in-depth knowledge about those jobs, and instead it was our
hypothesis that we could use this workload uncertainty as an
advantage because it enables us to quantify the uncertainty on
our predicted wait time.

To address the uncertainty of work in the queue we adopt a
stochastic approach where we train our KNN regression model
on the actual wall times of jobs from the historical data, as
these actual runtimes are known. When undertaking job start
time predictions, at that point we only know the maximum
specified wall time for jobs and therefore a large number of
possible queue states are generated based on randomly chosen
wall times for the queued and running jobs (as these are
the unknowns). Each of these possible states are then run
through our trained model as separate predictions and the

resulting distribution of predicted job wait times is then used
to determine the expected, mean, wait time. The error, standard
deviation or similar, can also be generated to provide an
estimate of accuracy. This confidence estimation is especially
useful for the urgent computing case, as if the accuracy
estimation is low then the VESTEC urgent computing system
could submit the workload to multiple HPC machines and pick
results from the job which ran through to completion first.

Fig. 2: Illustration of stochastic approach operating over
distinct randomly generated queue states

This stochastic approach for job start time prediction is
illustrated in Figure 2, where for clarity of presentation we
only illustrate four distinct queue states being predicted by
our trained model, although in reality we generate a hundred
distinct queue states. It can be seen that the same job details
are provided to each prediction, but each provided a separate
queue state and generating its own distinct predicted start
time. These predictions are then fed into the combination stage
which generates the overall, mean, prediction and quantifies
the uncertainty.

For such a stochastic prediction method to work, we need to
generate a set of random wall times for queued and running
jobs as part of the hundred queue states. Ideally these will
follow the same distribution of wall times as jobs previously
submitted to the queue, and to achieve this, we consider the
distribution of actual wall time to requested wall time for
historical jobs. Figure 3 illustrates our approach of distribution
generation for ARCHER2 where we consider all jobs within
certain node ranges and aim for such a random distribution
of queue states for that specific machine to conform to this
pattern.

Based upon these distributions of the actual to requested
wall times, we then generate a random number that obeys this
distribution. This is achieved using the cumulative distribution
function of the distribution chosen. Given the probability
density function (PDF), in our case the histogram of Figure 3,
we determine the cumulative distribution function (CDF) from
Equation 2 where the CDF ranges from [0, 1].



Fig. 3: The distribution of actual to requested wall time for
all jobs stratified by node count submitted to ARCHER2 in a
single month

CDF(x) =
∫ x

xmin

PDF(x′)dx′, (2)

Consequently, based upon the CDF, if we pick a uniform
random number, x, between [0, 1] we can then obtain a random
number y that follows the PDF by using Equation 3. This
approach enables us to generate random numbers that have
the same distributions as the histogram shown in Figure 3, and
using these random numbers we can determine random wall
times by calculating y times the requested wall time. Therefore
whilst the runtime of each job of each queue state is random,
these follow a realistic pattern given the jobs that are typically
run on such a machine.

y = CDF−1(x). (3)

From a code perspective once the raw job data has been
cleaned and preprocessed into a usable state, we run a Python
script which operates across the data and generates the CDF
wall time distributions. This data is then stored and used by the
subsequent script which, for each job, constructs a list of the
running and queued jobs in the queue at the job’s submit time.
For the 20% of total jobs selected for testing, for each of these
a hundred set of queue features are generated with the random
wall times. Based on the predictions generated by our KNN
model for each generated queue state we then take the mean of
the k nearest (based on a distance metric) vectors’ actual wait
times to be the predicted wait time. The prediction accuracy of
this approach is reported in Table VI for ARCHER2, Cirrus,
and the ARCHER2 4-cabinet system. It can be seen that
this stochastic queue generation approach improves prediction
accuracy especially for ARCHER2 and the 4-cabinet system.
Whilst even our simple KNN approach out-performed Slurm’s
estimations for the most accurate predictions, this is the first

time where we outperform job start estimations generated by
Slurm for all levels of accuracy across all machines.

Predictions accurate
within ARCHER2 Cirrus 4-cabinet

1 minute 41.70% 50.45% 20.41%
5 minutes 54.16% 69.98% 27.16%
10 minutes 61.17% 75.00% 45.00%
30 minutes 69.09% 76.18% 51.48%

1 hour 74.50% 79.65% 60.87%
2 hours 76.12% 89.72% 78.57%
6 hours 87.58% 92.36% 80.98%

12 hours 91.73% 98.05% 93.96%
24 hours 95.00% 99.67% 95.34%

TABLE VI: Prediction accuracy of stochastic queue state ap-
proach, running our KNN regression model with one hundred
randomly generated queue states for each job to determine the
overall prediction.

A. Boosted trees

Until this point we have used a regression machine learning
model based on K-Nearest Neighbours (KNN) as this was
demonstrated to work well with queue predictions in [3] and
[2]. However KNN is a fairly simple approach and-so an
important question was whether a more advanced technique
would provide increased prediction accuracy. We explored the
use of boosted trees [5] which model non-linear relationships
in the data, and this is potentially advantageous as highlighted
by [19] who themselves had some success with boosted trees
in their work.

Otherwise known as gradient boosting, boosted trees rely on
the concept of decision tree ensembles where a model consists
of a set of classification or regression trees and features of the
problem are split up amongst tree leaves. Each leaf holds a
score associated with that feature and as one walks the tree,
scores are combined which then form the basis of an overall
prediction answer. A single tree is not sufficient for the level
of accuracy required in practice, and so an ensemble of trees,
where the model sums the prediction of multiple trees together,
is used. As one trains a boosted trees model, the trees are built
one at a time, with each new tree helping to correct the errors
made by previously built trees. This is one of the factors that
makes boosted trees so powerful and they have been used to
solve many different machine learning challenges [6] [7] [8].

Predictions accurate
within ARCHER2 Cirrus 4-cabinet

1 minute 50.90% 65.86% 30.58%
5 minutes 54.63% 74.44% 42.78%
10 minutes 58.66% 77.55% 55.56%
30 minutes 74.28% 82.76% 65.90%

1 hour 79.74% 86.23% 73.70%
2 hours 82.71% 88.33% 78.69%
6 hours 93.71% 96.55% 85.78%

12 hours 94.47% 98.52% 93.53%
24 hours 97.50% 99.38% 97.23%

TABLE VII: Prediction accuracy of stochastic predicted queue
state boosted trees model across HPC machines of interest.



We used the XGBoost library [1] which is an open source
software framework aiming to provide a scalable, portable and
distributed gradient boosting library for Python and numerous
other languages. Training our boosted trees model using the
same approach for the stochastic queue state representation for
the KNN model, results for this approach are reported in Table
VII. Whilst it can be seen that this generally provides more
accuracy than the KNN approach in Table VI, for instance it
addresses the reduction in accuracy up to 1 minute for Cirrus
seen in Table VI, it is not a silver bullet. Still only around 55%
of jobs on ARCHER2 and 4-cabinet are correctly predicted to
start within 10 minutes of the actual start time.

V. COMBINING CLASSIFICATION AND REGRESSION

In [2] the authors improved the accuracy of their predictions
by splitting their data on jobs that start within an hour, termed
quick starters, and longer waiting ones. They did this because
the quick starters were commonplace and found to bias their
models towards such predictions. In contrast, until this point
we have been using regression models trained with 80% of the
historical data for each machine to generate a numeric queue
wait time estimation. However, intuitively often users don’t
consider wait times to the exact second but instead within a
specific bound, for instance whether the job will start within
the next minute, 10 minutes, or hour.

Whilst the quick starters concept developed in [2] was
driven by grid computing rather than HPC, nevertheless when
exploring the historical queue data on our HPC machines we
found that a large proportion of jobs start within 10 seconds
or less. Such quick job start times account for around 25% of
jobs on ARCHER2, 60% of jobs on Cirrus, and 28% of jobs
on 4-cabinet. Consequently these frequent very short queue
times bias our models during training for predicting shorter
job queue times across the board. Therefore we modified our
approach to the prediction of job start time by first defining
categories of job start time and categorising jobs within these.
This categorisation no longer involves generating an exact
predicted time, as per regression, but instead for our model to
determine which category of start time a job will reside in. We
define the term immediate starters which represent jobs that
start within 10 seconds of being queued and first use a binary
classification model to predict whether jobs are immediate
starters or not. We focus our classification on the category
with the most jobs in, for ARCHER2 and 4-cabinet the non-
immediate starters category and for Cirrus immediate starters.
Driving the grouping by this most numerous category because
those jobs are more plentiful and hence easier to predict for,
for instance with ARCHER2 categorisation is driven by those
jobs predicted to be non-immediate starters, and every other
job is assumed to be an immediate starter.

Those jobs not classified as immediate starters will then be
fed to a subsequent model which categorises them into one
of seven start categories, starting within a minute of being
submitted to the queue, within 5 minutes, within 10 minutes,
within 30 minutes, within 1 hour, within 4 hours, or stating
over 4 hours after being submitted. For both classifications we

Fig. 4: Illustration of categorising job start times and then
for each category, red in this example, running the boosted
trees model trained on that category and the one immediately
preceding an following it.

found that using a boosted trees approach was most effective
and Table VIII reports accuracy of classification for our
different job start categories. Whilst this classification follows
the approach of [2], albeit we use boosted trees compared to
[2] who used SVM, in contrast it can be seen that we report
both exact and relaxed accuracy. The exact accuracy is the
percentage of correct predictions made in that exact category,
whereas the relaxed accuracy is the percentage of predictions
which are either correct or miss-predicted only in the category
either side. The reason for this relaxed prediction was that we
found it fairly common for some predictions to be close to
the category boundary but the classifier is making a distinct
choice, therefore whilst the prediction is not in the correct
category it is close by. It can be seen from Table VIII that
the classification of jobs who are either immediate starters or
starting within a minute of submission, is especially accurate.
The accuracy is more variable for other categories although
still tending to be fairly good for most.

In contrast to [2], we still want to obtain numerical start
time predictions and Figure 5 illustrates the overall flow of our
modified approach when predicting the start time of a job. The
binary classification of whether the job will start immediately
or not is first undertaken for all hundred stochastic queue
states and the dominant decision, whether it is immediate or
not, is selected. If it is selected as an immediate starter then
the predicted job start time is set to be 10 seconds after the
queue time. Otherwise the job is fed into instances of the
classification and regression models, each running with the
one hundred distinct queue states. For each of these queue
states, once the job start category has been determined then the
appropriate regression model for that category is selected and
used generate the predicted start time. All hundred predicted
start times are then combined, with the mean prediction taken
as the overall start time prediction as described in Section IV.

The regression model for each category has been trained
on data from that category and the categories either side of
it. The idea is that, as per Table VIII, if a job is going to be
miss-categorised then it is most likely to have been so into one



Job start time category ARCHER2 Cirrus 4-cabinet
exact relaxed exact relaxed exact relaxed

Immediately 73.81% - 89.69% - 88.67% -
Up to 1 minute 73.60% 83.45% 88.38% 91.48% 68.45% 75.33%

Between 1 and 5 minutes 63.98% 78.93% 75.48% 80.04% 43.26% 69.32%
Between 5 and 10 minutes 61.51% 71.81% 62.79% 78.15% 61.95% 72.10%
Between 10 and 30 minutes 75.90% 89.55% 65.54% 80.26% 71.93% 80.54%

Between 30 minutes and 1 hour 60.54% 82.20% 70.62% 84.16% 71.48% 74.52%
Between 1 and 4 hours 70.91% 74.77% 80.68% 84.55% 77.02% 82.26%

Over 4 hours 80.26% 83.34% 87.03% 93.00% 77.55% 82.85%

TABLE VIII: Prediction accuracy of classification of jobs into start categories using boosted trees

Fig. 5: Illustration of overall flow for job start time prediction with combined classification and regression models

of the categories either side of the correct one. Consequently
by training a regression model with three categories of data
it provides the opportunity for the these miss-predictions to
snap back to within the correct category.

This is illustrated in Figure 4, where those jobs not cate-
gorised as immediate starters are categorised as starting within
one of seven timing categories on the left of the figure. Boosted
trees regression models are trained for each category using data
from the category itself along with the categories either side.
The appropriate pre-trained model is then selected for under-
taking predictions as illustrated in the overall flow depicted in

Figure 5. Table IX reports overall accuracy for this approach,
where it can be seen that this results in considerably improved
prediction accuracy compared to the models in Section IV.
Our combined classification and regression approach correctly
predicts jobs starting within 1 minute for 63% of jobs on
ARCHER2, 76% on Cirrus, and 66% on 4-cabinet compared
with Slurm’s estimator reported in Table I that only accurately
predicts jobs starting within a minute at-best 16% of the time
on ARCHER2 and 4% of the time on Cirrus. From Table IX it
can also be seen that we are reporting three quarters of all job
start times accurate within 10 minutes on ARCHER2 and 4-



cabinet, and 90% on Cirrus, compared with Slurm’s estimator
that predicts accurately within 10 minutes only a 30% of the
time for ARCHER2 and 4% of the time for Cirrus.

Predictions accurate
within ARCHER2 Cirrus 4-cabinet

1 minute 63.49% 76.87% 66.25%
5 minutes 71.46% 88.31% 71.89%

10 minutes 75.67% 89.69% 75.29%
30 minutes 81.93% 92.11% 80.37%

1 hour 85.17% 93.55% 83.19%
2 hours 89.11% 95.39% 86.63%
6 hours 95.87% 98.65% 94.74%

12 hours 98.99% 99.68% 99.79%
24 hours 99.93% 100.00% 100.00%

TABLE IX: Prediction accuracy of combination of classifica-
tion and regression boosted trees models

A. Model runtime

In this paper we have mainly focused on the prediction
accuracy of our machine learning models. However such
models must be realistic to run for jobs, especially with our
focus of undertaking predictions of urgent workloads as part
of the VESTEC system which needs to rapidly make decisions
around job placement across numerous supercomputers. Con-
sequently the machine runtime of models is also important,
especially when undertaking job start predictions. We ran all
our machine learning scripts on a 26-core Intel Xeon Platinum
(Skylake) 8170 CPU with the runtime in seconds for different
aspects reported in Table X for each machine. With the
exception of CDF generation and histogram bin identification,
all codes were threaded across all 26 cores and it can be seen
that model training is by far the most time consuming activity,
although it only needs to be performed once per machine,
whereas queue wait time prediction for a single job is less
than a second. The boosted trees classification and regression
models described in Section V ran faster than the KNN model
described in Section IV, training in considerably less time
and also generating predictions in less time too. This was
unexpected given the more advanced nature of boosted trees
compared to KNN and fact that the boosted trees models
undertakes classification and regression. Irrespective, for job
wait time prediction the runtimes are small and we highlight
that our approach is realistic to be used as in a semi real-time
fashion, returning results in approximately a tenth of second
for each machine when using our most accurate prediction
approach.

VI. USER INSIGHTS GAINED FROM MODELS

Our main objective in this paper has been to develop a
model that can accurately predict job wait times for urgent
workloads, enabling our VESTEC system to make informed
choices around workload placement. However these models
can be used more widely by users to help understand optimal
job configurations when submitting to the queue. For instance
answering questions such as whether changing the number of
nodes will impact the overall queue wait time or the maximum

wall time. Based on the models developed in Sections IV and
V, we undertook a number of predictions for the queue state
of ARCHER2 on a standard Tuesday morning at 11am, for
different number of nodes and maximum requested wall times.
These predictions are illustrated in the heatmap of Figure 6,
where users can obtain specific insights. For example it can
be seen that if the user was after running over 16 nodes then
if possible they should set a maximum requested wall time of
2 hours or lower, because from 4 hours requested wall time
onwards the queue wait time increases sharply. If the user was
requesting 32 nodes, then it can be seen that they should avoid
requesting 4 hours maximum wall time as this is predicted to
result in a much longer queue wait time than, for instance,
requesting 8 or 12 hours maximum wall time with 32 nodes.
Whilst these are simple examples, they illustrates how our
prediction models can be used to provide insights to users
around how changing the number of requested resources will
impact their queue wait time and hence make more informed
choices around job configuration.

Fig. 6: Predicting job queue wait time on ARCHER2 for
different numbers of nodes and maximum wall times requested
the the queue representing a standard Tuesday morning at
11am

VII. CONCLUSIONS

In this paper we have explored the use of machine learning
to predict job start times on three production HPC machines
that represent a diverse size of machine and usage model
types. Beginning with job start time estimates provided by
Slurm as a baseline, we then explored the accuracy of a
simple KNN model. Building upon this simple KNN model
we explored how to provide the queue state as an input to our
models, however this was found to be further complicated by
uncertainties in the overall amount of work in the queue at job
submission time as only maximum wall times are provided
which can vary significantly from the actual runtime. Con-
sequently we devised a stochastic approach which generates
one hundred different queue workload states for each job and
whilst these are random, being based on the distribution of wall
times from jobs previously submitted they are still a realistic
representation.

After exploring the improved prediction that our stochastic
approach provides, both with KNN and boosted trees tech-



Activity Type ARCHER2
(seconds)

Cirrus
(seconds)

4-cabinet
(seconds)

Cumulative Distribution Function (CDF) Training 264 420 310
Histogram bin identification Training 6981 11298 7256

Split training and test data including binning Training 4322 6223 5098
Generating random queue test states Training 7650 14890 8442

Train Section IV stochastic queue KNN model Training 20884 70667 33410
Train Section V classification and regression boosted trees models Training 13574 34589 15911
Single job prediction for Section IV stochastic queue KNN model Prediction 0.88 0.89 0.89

Single job prediction for Section V classification and regression boosted trees models Prediction 0.11 0.18 0.10

TABLE X: Runtime of model training and prediction activities on a 26-core Intel Xeon Platinum (Skylake) 8170 CPU

niques, we then further developed this into a multi-stage
approach which combines classification and regression. By
adopting this approach we demonstrated significantly im-
proved prediction accuracy for job start time, predicting within
1 minute for around 65% of jobs on ARCHER2 and 4-cabinet,
and 76% of jobs on Cirrus, as well as accurately predicting
three quarters of all job start times within 10 minutes on
ARCHER2 and 4-cabinet, and 90% of jobs on Cirrus. This
represents a 3.8 times more accurate prediction for ARCHER2
and 18 times more accurate for Cirrus when compared to
Slurm’s estimations within a 1 minute accuracy window. When
considering a 10 minute window our approach is 2.2 times
more accurate for ARCHER2 and 20 times more accurate for
Cirrus than Slurm’s estimations.

The models we have developed can also be used to provide
enhanced insights to users around when they can expect their
jobs to run. In Section VI we provided an example of this
around changing the number of nodes and requested wall time,
with the job submission time fixed to be an average Tuesday
at 11am, but it is also possible to vary the queue submission
time and explore how submitting jobs at different times might
reduce the overall wait times and this would be interesting to
explore. Our approach could be incorporated into a tool that
users can use to dynamically explore the most appropriate
parameters for their jobs to optimise configurations, as well
as potentially enhancing the Slurm queue system to provide
more accurate job start predictions.

To better improve the accuracy of our models, when binning
the queue state we could consider the distribution of actual
to requested wall times within certain wall time ranges, for
instance for jobs with requested wall times less than one hour.
This would provide a more accurate possible distribution for
each given job, although for some edge cases there may be
few jobs to draw a distribution from which would impact
accuracy. Furthermore whilst our start time predictions take
into account the existing jobs currently running and queued at
job submission, we do not consider additional jobs that might
be submitted after the job of interest has been queued but is
still waiting to run. These subsequent jobs could impact the job
start time and it would be possible to generate some stochastic
representation of the likelihood and dimensions of such jobs,
providing these as part of our queue state model inputs which
could further improve prediction accuracy.

We conclude that our approach significantly improves upon

the prediction accuracy of Slurm’s estimator, and in contrast
to existing machine learning techniques for predicting job wait
time on HPC machines we are able to generate numerical job
start times that tend to fall within one and ten minutes of actual
job start times across our machines of interest. Our approach
has been incorporated into the VESTEC urgent computing
system to accurately predict job queue wait times across many
different machines to ensure suitable job placement, and is also
of benefit more widely to users and system administrators of
HPC machines.
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