
Predicting batch queue job wait 

times for informed scheduling of 

urgent HPC workloads

Nick Brown, EPCC

n.brown@epcc.ed.ac.uk



Urgent computing



VESTEC system: Urgent computing

• The VESTEC system

federates over numerous 

HPC machines

• Run job on which machine

is most suited

• To address limitations in 

batch queue for this sort of 

workload

• However accurate job 

placement is required to 

make correct choices



Machines used in this work

ARCHER2: HPE Cray EX, 

5860 nodes, 314880 jobs in 

the standard queue and 

73472 jobs in the short queue

Cirrus: HPE/SGI 8600 system with 

280 nodes, 582200 jobs

4-cabinet: Early ARCHER2 HPC Cray 

EX, 1000 nodes, 373560 jobs



Slurm’s queue prediction

• Tracked the lifetime of all jobs submitted on ARCHER2 

and Cirrus over two week period

• Around 83% of jobs updated their estimates, and over 

50% have five or more estimates

• Can see ARCHER2 is far more accurate than Cirrus here



Basic KNN model

• Trained a basic K-Nearest Neighbours model to act as a 

foundation for our work

• Two versions: basic uses only the number of nodes and wall time 

requested, temporal also includes submission time and day.

• Can see correlation between when a job was submitted and 

accuracy of prediction

• Short queue is easy to predict for here as jobs are much more 

similar, the major challenge is standard queue



Basic KNN model

• Trained temporal model for each of our machines

• 80% of data for training, 20% for testing. However split on days 

rather then data elements to provide a fair test

• Can see for ARCHER2 more accurate predictions are better than 

Slurm’s estimator but less so for less accurate predictions

• Cirrus has much better prediction than Slurm’s estimator!



Queue state as an input

• Correlation between time and date is 

because this represents a state in the queue

• Provide queue state as input to models based on 

histograms which are binned to represent pattern of 

the queue at the time of submission

• This somewhat 

improved accuracy but 

still not perfect 

predictions



Stochastic queue state generation
• The challenge is that the amount of work in the queue is 

unknown

• Users provide maximum wall times, but these do not necessarily 

represent the actual wall time of the jobs

• E.g. on ARCHER2 and 4-cabinet on average 8 times overestimation of job 

wall time and 6 times on Cirrus.

• Significantly impacts the overall prediction accuracy

• Therefore generate 100 queue 
states for each prediction job, each 
of these comprises randomly 
generated runtimes but they follow 
the general distribution of runtimes 
on the machine so are 
representative of real jobs.



Stochastic queue state generation

• Once generated run each of 

these random queue states 

as inputs to our model and 

then combine predictions to 

generate the overall mean 

job start prediction

• This improves accuracy 

further, for the first time we 

beat Slurm’s estimator at all 

levels of accuracy



Boosted trees

• K-nearest neighbours (KNN) is a very simple model

• Instead boosted trees enables us to capture non-linear 

relationships in the data and has been shown to work well for 

similar workloads.

• We use the XGBoost library here

• Improves accuracy but not a silver bullet!



Combining classification and regression

• Can combine classification and regression approaches

• First classify if jobs are immediate starters (e.g. start in less than 10 

seconds) and if so they that is the predicted start time

• Otherwise categorise as one of seven starting categories

• Exact reports the accuracy of correct predictions being made, 

relaxed is both correct predictions and those miss-predicted but 

only in either of the two neighbouring categories



Combining classification and regression
• We undertake these

classifications for all one 

hundred stochastic queue 

states

• Specific boosted trees

regression models are trained

for each category (with

neighbours) to undertake job 

start time predictions



Combining classification and regression

• This combination of classification and regression 
considerably improved our performance across all 
machines

• We can accurately predict start times of around 65% of 
jobs within 1 minute of actual time on ARCHER2 and 4-
cabinet, and over 76% on Cirrus

• This extends to three quarters within 10 minutes on 
ARCHER2 and 4-cabinet and 89% on Cirrus



Runtime

• Prediction accuracy is our major concern, but we also 
must run our predictions within a timely fashion

• All model runs undertaken on a 26-core Intel Xeon 
Platinum (Skylake) 8170 CPU

• Model training takes a long time, but only needs to be 
done one

• Prediction for our most accurate approach is a tenth of a 
second per machine



User insights
• Whilst urgent workloads are our major focus, it is also 

possible to gain insights from running predictions through 

our models Avoid requesting 4 hours max 

wall time with 32 nodes, instead 

select 8 or 12 hours

With 16 nodes if you can stay at maximum 

wall time of 2 hours or less, as beyond this 

there is an increase in job wait time



Conclusions

• Our approach delivers 
significantly improved 
accuracy than Slurm’s
estimations and previous 
machine learning 
approaches

• We use a combination of classification and regression 

models to most accurately predict the queue wait time

• Whilst our major focus has been for urgent workloads, 

and the accuracy delivered is reasonable for this, there 

are also numerous other uses too.


