
 

Network Integration of Perlmutter at NERSC 
 

Ershaad Ahamed Basheer , Eric Roman, Tavia Stone Gibbins, Christopher Samuel, Lisa Gerhardt, Ashwin Selvarajan, Damian Hazen, Douglas 
M. Jacobsen, Ronal Kumar 

Lawrence Berkeley National Laboratory 
{ebasheer, eroman, tavia, csamuel, lgerhardt, dmjacobsen, apselvarajan, dhazen,, ron}@lbl.gov 

 
Abstract— In this paper, we describe the integration of 

NERSC's HPE Cray EX supercomputer "Perlmutter" into the 
NERSC data center. Perlmutter connects to NERSC via 4 
networks. The Customer Access Network (CAN) provides 
administrative access to the API gateways; Users access the 40 
login nodes over the high-speed network (HSN) via an internal 
two-tier load balancer. A second external management network 
provides access to the first master node and SMNet out-of-band 
switch ports. GPFS is IP-routed through 24 gateway nodes to a 
separate Infiniband fabric. The Slingshot network connects to 
the site network via a 64-way LAG. Since every node in the 
cluster has a routable IP address, nodes operate directly with 
other NERSC resources over the high-bandwidth Ethernet 
fabric. We show that the resulting configuration is (1) secure 
because it allows us to isolate the administrative networks via 
routing rules in the data center routers, (2) reliable because 
administrators can access the NCNs and switches independently 
of the availability of the SMNet or HSN, and (3) performant 
because all high-bandwidth traffic is confined to the HSN via 
edge routers. As a result, NERSC has been able to make 
Perlmutter into a reliable high-performance system for our 
users. 

Keywords—networking, data center integration, smnet, hsn, 
hpe-cray ex, CAN, load balancing 

I. PRIVATIZED CUSTOMER ACCESS NETWORK 
The Shasta software stack uses secure tokens exchanged 

with an API gateway to manage administrative access to the 
system. While this can be an effective approach, NERSC's 
security policies require that administrative access be restricted 
to MFA-authenticated networks. To implement this policy, we 
decided to restrict users from accessing the CAN entirely. All 
user traffic is routed through the edge routers to the Slingshot 
network. Access control lists enforced in the data center routers 
block the CAN IP range from all but the MFA-secured site 
networks. CAN traffic is generally limited to a few services, 
e.g. NTP, DNS, and SSH, within the data center. Access to the 
API gateway is limited to a dedicated management virtual 
machine (VM), which is available even if the Shasta system is 
completely down, and serves as the single place where all 
system administration tasks and management workflows are 
run. Administrators run administrative tools such as the cray 
command, kubectl and sat, and other Shasta services from the 
management VM. Our administrators use SSH to the non-
compute nodes (NCNs) only in cases where no suitable 
interface is available. 

 

The standard Shasta software stack installation uplinks the 
CAN to the data center networks via a static default route 
configured on the SMNet spine switches. For increased 
reliability, we chose to employ point-to-point routes between 
the two SMNet spines and our data center routers as shown in 
Figure 1. The SMNet and data center routers exchange routes 
via OSPF, where the SMNet spines are configured as a 
separate not-so-stubby area. The data center routers export a 
summarized route to the SMNet routers. To avoid the 
possibility of exporting the SMNet RFC 1918 routes to the data 
center, e.g. the 10.252.0.0/17 NMN, we chose to use a separate 
CAN VRF for the data center routes. The use of an 
independent VRF required BGP configuration changes. First, 
metalLB needed to be adjusted to peer, in addition to the 
default VRF, on the new CAN VRF as well. Corresponding 
changes needed to be introduced on the SMNet router for the 
additional peering via CAN, and route maps were added to 
match CAN IP prefixes. Ultimately we had a configuration that 
allowed our SMNet and data center routers to be managed 
largely independently, provided configuration flexibility on 
both the data center and SMNet routers, and reliability due in 
large part to the fast convergence of OSPF. 

 
Figure 1 Privatized CAN network topology 

 
 



II. EXTERNAL MANAGEMENT NETWORK 
Although the CAN network is the primary administrative 

route into a Shasta system, we needed a secondary external 
management network to be available when the CAN is down. 
This occurs during the early phases of a CSM installation, 
which requires that the baseboard management controller 
(BMC) of the first master node (m001) be connected to a site 
network. Even before the CSM installation can proceed on the 
first master node, the SMNet switches must be configured. We 
added the external management network to address these 
needs. This network connects the manager virtual machine 
with the BMC of the first master node, the management ports 
of all SMNet switches, and serial console servers (Figure 2). 
The serial console servers connect to the serial ports of the 
SMNet switches, and to the console ports of the River Rosetta 
switches in our development systems. Unlike the CAN, which 
retains limited routability within the data center, the external 
management network is an isolated layer-2 segment on a 
private RFC 1918 IP range. This network is only accessible 
from the manager virtual machine. Beyond the initial 
bootstrap, we have found this network valuable during regular 
operations too. Out-of-band access to the SMNet routers 
provides us a level of resilience to configuration errors in the 
SMNet, and has given us more freedom to take risks when 
managing the SMNet configurations. In addition, it provides a 
conduit for system logs, allows us to perform firmware 
updates, and collect debug data when needed by vendor 
support. Although the external management network is not a 
part of day-to-day operations, we have found it to be an 
invaluable resource during major maintenance efforts. 

 
Figure 2 External Management Network 

III. CSM EXTERNAL DNS SERVICE 
The default CSM external DNS service is currently 

provided by a coredns deployment which serves records read 
from etcd, which in turn are populated by CSM, rather than the 
traditional zone file arrangement used for many DNS services. 

The coredns external DNS service runs as a deployment within 
the CSM Kubernetes cluster and the endpoint (a static IPv4 
address) is accessed via the Customer Access Network (CAN). 
This arrangement presents some immediate challenges for 
production use. 

• The mechanism used to provide the CAN only 
supports IPv4 and so IPv6 services are not 
possible. 

• The etcd plugin for coredns does not support 
AXFR or IXFR zone transfers, and so it is not 
possible to have a secondary DNS server of any 
form, which is a requirement for any best practice 
DNS deployment. 

• For delegations in .gov the use of DNSSEC is 
mandatory and there was no provision for 
supporting that with the default configuration. 

To get an initial functional deployment in place to allow 
installation and bring up despite these limitations it was agreed 
with LBL & NERSC that they would delegate domains under 
nersc.gov to the systems, but that NERSC would ensure that 
DNS queries to those systems were only possible from inside 
the NERSC boundary. In order to make the login nodes 
accessible to users some static records for the load balanced 
IPs for them were put directly into the nersc.gov domain. 

With advice from HPE we were able to configure a simple 
DNSSEC configuration by generating appropriate DNSSEC 
keys on the manager VM and then loading them into the 
NERSC vault on that VM. We then scripted the creation of 
Kubernetes secrets from that vault and modified the coredns 
external DNS deployment to make them available securely 
within the coredns container. The final step was to modify the 
Kubernetes configmap for the coredns service to make it aware 
of those keys and to enable DNSSEC for both forward and 
reverse lookups. We were then able to communicate those keys 
to LBL IT and add it to the delegation. 

Whilst having working DNSSEC is essential it is not 
sufficient to enable the exposure of the systems external DNS 
service to the outside world, and so we have been investigating 
with HPE ways to achieve this. There are two main options 
currently under investigation: 

A. Dynamically update an external DNS service 
Use a separate service of some form that will use nsupdate 

from BIND to send dynamic DNS updates to an LBL DNS 
server which can then serve out that information on our behalf 
to external users. 

• This has some significant advantages: 

• LBL would handle all DNSSEC duties for us 

• LBL DNS servers already have functional IPv6 

• There are existing secondary servers in place for 
resilience 

• This does not rely on changes in CSM. 

 



This approach does have some drawbacks though: 

• Having the data stored in etcd means we can’t 
know when changes have been made, so it would 
be necessary to poll and compare with the public 
DNS to determine what changes need to be made, 
This would introduce some measure of latency 
between a change occurring and public records 
being made available, which would not occur with 
an on-system DNS server. 

• In order to determine whether any records have 
been left stranded in the upstream DNS due to this 
service not being able to notify them of their 
withdrawal, it would be necessary to obtain a zone 
transfer of the zone we are monitoring and 
compare it to the information stored internally and 
ensure the public-facing DNS is up to date. 

An initial script to map out this as a way forward was 
created by HPE and is the basis of current investigations on 
how to extend it to meet our needs. 

B. Migrate to a DNS service that supports zone transfers 
Prior to the idea of using dynamic updates to LBL DNS 

servers, the thought was to use DNS zone transfers as a way of 
providing the full zone to LBL so they could act as the public 
face of DNS for the system. This was attractive because it 
provides a standard, simple way to get the information 
upstream but the initial investigation was tripped up when the 
aforementioned fact that the etcd plugin for coredns does not 
support this mechanism at all. 

Advantages to this approach are: 

• A consistent view of the zone - every update will 
pick up the full state at that point in time 

• Notifications to the secondary servers should be 
possible when the zone is updated, allowing 
minimal delay in updates (modulo the usual 
concerns around long DNS Time To Live settings 
on resource records) 

• LBL DNS servers already have functional IPv6 

• There are existing secondary servers in place for 
resilience 

The disadvantages are the inverse of some of the 
advantages of the dynamic DNS approach: 

• This requires support in CSM to be possible 

• We would need to handle all DNSSEC duties and 
would need CSM to provide reliable support for 
things like key rotation and separate zone and key 
signing key support 

IV. STORAGE NETWORK GATEWAYS 

A. Site Infrastructure 
Perlmutter has access to multiple tiers of storage. The most 

tightly integrated storage tier is the all-flash-based Lustre 
filesystem. The second tier comprises the large-capacity GPFS 

filesystems maintained by NERSC's Storage Systems Group, 
and the third is long-term tape archival storage. The GPFS 
filesystems, which are shared across all systems at NERSC, 
provide the Community File System and users' home 
directories. The GPFS cluster and all systems that mount it 
directly are interconnected by an FDR Infiniband fabric which, 
in conjunction with GPFS support for RDMA, allows high-
speed access to the GPFS filesystem. RDMA makes this 
possible by minimizing the involvement of the host CPU in 
data transfer between the HCA and the user application, and 
also by utilizing GPFS's ability to balance load across multiple 
Infiniband links on the same host.  

On our Cray XC systems, the Data Virtualization Service 
(DVS) distributes cluster filesystems such as GPFS to a large 
number of compute nodes. DVS is an I/O forwarding layer, 
which designates a relatively small number of nodes as DVS 
servers that directly mount the cluster filesystem, and which 
perform I/O operations that have been forwarded from a much 
larger set of compute nodes, thereby effectively reducing the 
maximum number of nodes that directly mount the cluster 
filesystem. By funneling I/O to the DVS servers and thereby 
limiting the degree of scale-out of the cluster filesystem, the 
overhead and complexity of maintaining a coherent distributed 
filesystem state are kept under control. 

B. Native GPFS on Perlmutter 
With the continuous improvements in GPFS scaling and the 

arrival of Ethernet compatible Slingshot, natively mounting 
GPFS on each and every compute node has become a practical 
option. Natively mounting GPFS has some desirable 
advantages including the ability to use the full suite of GPFS 
management and diagnostic tools and commands. It is 
additionally attractive since a future upgrade of the IB storage 
fabric to Ethernet will mean that compute nodes can route 
directly to the GPFS servers without requiring any protocol 
gateways, and can even support native RDMA with RoCE. 

As illustrated in Figure 3 Perlmutter has 24 service nodes 
that act as gateways between the Slingshot and Infiniband 
networks. Since there is no support for RDMA on compute 
nodes, the gateways simply route IP packets between the 
Ethernet-compatible Slingshot network and the Infiniband 
storage network. IP over Infiniband (IPoIB) encapsulation is 
used to overlay an IP network over the Infiniband fabric. The 
gateway servers are Linux servers that have connectivity to 
both Slingshot and Infiniband and are configured to forward IP 
traffic. Our primary requirements with the architecture for 
gateways were: 

• Resiliency against failures of gateway nodes 

• Balanced network traffic across all the gateways 



 
Figure 3 GPFS Storage Gateways 

C. Design and implementation 
In order to fulfill these requirements, the first design goal 

was to prevent any compute node from losing connectivity 
when one or more gateways fail or lose network connectivity. 
From the point of view of a compute node, a gateway is simply 
a next-hop IP address for traffic that is destined to servers on 
the Infiniband fabric. In order for a compute node to have 
uninterrupted connectivity, we need to make sure any network 
packets that are sent to a gateway IP address will be forwarded 
to their destination even if the specific gateway that the IP 
address belonged to goes offline. We achieve this by assigning 
each gateway server a Virtual or Floating IP address (VIP) in 
addition to any static IP addresses on both the Slingshot and 
Infiniband facing network interfaces. By ensuring that the VIP 
of a gateway that goes offline is taken over by an online 
gateway, clients will transparently send packets to a working 
gateway server if one or more of them go offline. Also when an 
offline gateway comes back online, its VIP is automatically 
restored to it, and packets are forwarded again like before. 
Thus any load-balancing across gateways is only temporarily 
reduced by the loss of a gateway until it is restored. 

The automatic transfer of VIPs between gateways is 
achieved completely in software by using the open-source 
implementation of the Virtual Router Redundancy Protocol, or 
VRRP (RFC 2338) called Keepalived. In general, Keepalived 
uses IP multicast so that all the routers in a redundancy group 
can monitor the availability of the primary server. When 
routers detect the loss of the primary server, an election is 
triggered and a new primary server is chosen. The new primary 
server is then configured with the VIP of the failed server and 
advertises this on the network by broadcasting gratuitous ARP 
requests on the network. 

We configured Keepalived such that we have one 
redundancy group defined for every VIP, each of these 
redundancy groups consisting of all 24 gateways. By setting up 
each of the groups to contain all 24 servers instead of just a 
pair, the VIP of a server can be taken over by any server that 
has sufficient priority. For example, if server Ⓐ goes offline, its 
VIP is taken over by server Ⓑ, presuming Ⓑ has been 
configured to have the highest priority for that VIP after Ⓐ. 
Now, if server Ⓑ also goes offline, server Ⓒ will have the next 
highest priority and will now take over the VIPs of both server 
Ⓐ and Ⓑ. This can continue until there is only one server 
online, at which point it has all 24 VIPs configured on it. In our 
real-world configuration, priorities are assigned randomly 

between servers for each of the redundancy groups so that 
VIPs don't bunch up on specific nodes. So, for example, in the 
scenario above where both servers Ⓐ and Ⓑ are offline, the 
VIP of server Ⓐ may be assigned to server Ⓒ, while the VIP of 
server Ⓑ is assigned to server Ⓖ, for instance. This keeps the 
VIPs, and therefore the network load, spread out as much as 
possible across all the servers that are still online at any given 
time. 

While VRRP and Keepalived solve the issue of resiliency 
to gateway failures by ensuring that all 24 VIPs are active as 
long as at least one gateway server is online, it only provides 
one part of the solution that we designed. The other half is on 
the compute nodes. There are many approaches to configuring 
the next-hop gateway VIPs in the routing tables on the 
compute nodes. Two are, dynamic assignment managed by a 
routing daemon and static assignment of a VIP to a compute 
node in order to distribute load across the gateways. But a 
relatively new feature in the Linux kernel networking stack 
provides an elegant way to achieve this: ECMP. Equal Cost 
Multi-Pathing allows us to define more than one next-hop IP 
address for a single routing table entry in Linux. When the 
networking stack encounters a packet that matches this routing 
table entry, it chooses a next-hop address based on a hash of 
the headers of the packet. Sysctls in the /proc filesystem allows 
us to tune this behavior. We configured all the compute nodes 
on Perlmutter with the same route that lists all 24 gateway 
VIPs as next-hops to reach the GPFS servers and tuned the 
sysctls so that both L3 (IP layer) and L4 (TCP layer) are used 
to calculate the hash that determines the next-hop that is used. 
L3+L4 hashing, which uses the tuple consisting of source IP 
address, destination IP address, protocol, source TCP port, and 
destination TCP port, ensures that all the packets that are part 
of the same TCP stream always use the same next-hop. This 
avoids the possibility of packet reordering if packets from the 
same stream took different paths, which may lead to a loss of 
performance. 

D. Performance and Conclusions 
Figure 4 shows a comparison of the performance of native 

GPFS vs. DVS projection on Perlmutter. 

 
Figure 4 Native GPFS vs. DVS Performance 

While native GPFS mounts were not expected to 
outperform DVS, primarily due to the inability to utilize both 
Infiniband interfaces available on service nodes, these early 
benchmark results indicated a lower-than-expected DVS 
performance. Our hypothesis is that this is due to congestion on 
the network caused due to fan-in traffic from various systems 
ingressing into the same fabric Line Card. While these 
benchmarks are not conclusive and there are ongoing tuning 
efforts, we have found that native GPFS performance has been 



generally good and doesn’t degrade the user experience. This is 
despite the fact that native mounts cannot take advantage of the 
performance benefits of RDMA. 

V. LOAD-BALANCING LOGIN SSH SESSIONS 
Most users of the Perlmutter supercomputer access it 

remotely using SSH which gives them a shell on one of the 40 
login node UANs. A load balancing setup is required in order 
to distribute the users' shell sessions across all the login nodes 
more or less uniformly. On other NERSC systems like Cori, 
this is handled by a dedicated hardware load-balancer, which 
has disadvantages, including high procurement cost and being 
a bottleneck for ingress network traffic. The essential 
requirements for the design of a load-balancing system for 
Perlmutter were the following 

• Balance SSH login sessions across 40 login nodes 

• Utilize all 40 nodes for ingress traffic. In contrast 
with Cori which has one dedicated load balancer 
that handles all ingress traffic. 

• Minimize disruption of established SSH sessions 
if nodes fail 

For SSH session load-balancing, we are able to base the 
solution on the same basic technique of using floating virtual 
IP addresses that are in use for gateways nodes. The complete 
setup for distributing sessions among login nodes is comprised 
of the 3 components described below. 

A. DNS 
All 40 login nodes in Perlmutter are configured with an 

identical user environment, so a user that initiates a connection 
to Perlmutter can be directed to any of the login servers where 
they will have access to their home directories on the shared 
global filesystem and the ability to submit jobs to the batch 
scheduler. As far as the view from the public Internet is 
concerned, load-balancing of SSH access to login nodes is 
handled in a similar way to how it is handled for many popular 
web-based services and websites, where a single DNS address 
resolves to multiple IP addresses. The DNS hostname that 
users use to login to Perlmutter is login.perlmutter.nersc.gov 
which resolves to 40 IP addresses belonging to each of the 
login nodes. The order in which these addresses are returned by 
the DNS server is randomized and therefore each client will 
generally pick a different IP address and therefore end up on 
different login nodes. 

 

While this form of load-balancing is conceptually simple, it 
presents two limitations for our use case. First, there is no 
quick way to take a login node out of the set of load-balanced 
IP addresses if, e.g., a login node needs to be taken offline for 
maintenance. Clients generally cache DNS entries and 
therefore dynamically updating the DNS entry may not be 
effective and is very dependent on client configuration. 
Second, when faulty login nodes establish connections slowly 
or take a long time to drop a connection, users may be unable 
to login to an otherwise working login node. It's also possible 
in this case that the connection process becomes very slow as 
the client tries each IP address in succession. 

B. Virtual Ips 
These limitations can be avoided by guaranteeing that IP 

addresses available to clients are assigned to login nodes that 
are both healthy and accepting connections. We achieve this in 
the same way as the gateway solution, where we assign a VIP 
to each of the login nodes in addition to any existing static IP 
addresses. Keepalived detects when a login node goes offline 
and migrates its VIP to a working server. In this way, even if 
only one login node out of the 40 is online, a client connecting 
to any of the VIPs will be directed to this online node. This 
was our initial solution during the early stages of system 
deployment, but there is an obvious problem with this 
approach alone, especially since SSH is based on persistent 
TCP connections. Consider the following sequence of events. 
A login node Ⓐ with IP address VIP1 goes offline for any 
reason and Keepalived migrates VIP1 to another login node Ⓑ. 
Following this, a client establishes an SSH connection to VIP1, 
now assigned to Ⓑ. Now, while this connection is active, if Ⓐ 
comes back online, Keepalived will reassign VIP1 back to Ⓐ. 
Once this happens network packets sent to VIP1 are directed to 
Ⓐ, even though the connection was originally established on 
Ⓑ. Since Ⓐ does not recognize this packet as belonging to any 
established socket or TCP connection, it replies with an RST, 
causing the connection to be dropped immediately and the 
user's session to be disconnected. The solution we found to this 
problem was to introduce an additional level of indirection and 
IPVS was found to fit this requirement. 

C. IPVS 
IP Virtual Server (IPVS), which is part of the Linux Virtual 

Server (LVS) project implements transport-layer load 
balancing inside the Linux kernel. IPVS running on a host acts 
as a load balancer in front of a cluster of backend servers called 
Real Servers. It can direct requests for TCP/UDP-based 
services to the Real Servers based on configurable criteria and 
makes services replicated by multiple Real Servers appear as a 
single Virtual Service available via a single IP address. On 
Perlmutter, each login node is configured to expose one virtual 
service for each of the 40 VIPs. The real servers that serve as 
the back-ends for each of these VIPs consist of the static/fixed 
IP addresses of all the login nodes. IPVS is configured with the 
Source Hashing scheduler with the sh-port option enabled. 
What this means is that when a client establishes a connection 
to a VIP, which is the Virtual Service IP, decides which 
backend real server that connection should be redirected to 
based on the source IP address and source TCP port of the 
incoming connection. We configure the IPVS Virtual Service 
to Real Server mapping to have Real Servers in exactly the 
same order on all the login nodes and this is key to solving the 
problem with VIPs alone described above. Although Source 
Hashing is not a consistent hashing algorithm in the same way 
that the Rendezvous and Maglev algorithms, to name a few, we 
do not require such an algorithm in our use case since the 
number of Real Servers is static and does not shrink or grow. 

The mechanism by which IPVS solves the problem of 
clients getting disconnected when a VIP is restored to a login 
node that was offline is illustrated by the following sequence of 
events as illustrated in Figure 5: 



a) Round-robin DNS directs client sessions across 
different Virtual IPs. An IPVS Hash function 
takes the client's IP address and port number as 
input. It then decides which node the connection is 
redirected to. Every node is initialized with 
identical hash tables. In the figure below, the 
client session has the destination IP of the 
VIP/Virtual Service on login01. The packets are 
intercepted by IPVS and then routed to 
static/permanent IP address of login03 based on 
the hash table. The SSH client eventually connects 
to the SSH server on login03. 

b) New connections from clients may be directed to a 
different VIP, but thanks to the identical hash 
tables on each of the login nodes, the connection 
ends up on the same server, determined by the 
hash function, regardless of which VIP it arrives 

on. 

c) In the event of a server node failure, the VIP of the 
failed node is migrated to an online node. Network 
packets from already established connections to 
this VIP now arrive on the new node. Since the 
hash calculation is identical to what was on the 
failed node, the packets are correctly routed to this 
new node. Therefore, except for those on the 
failed node, all sessions remain uninterrupted. 

D. Health Checks for Real Servers 
While it is possible to manage the IPVS configuration 

independently of Keepalived using configuration management, 
one of Keepalived's powerful features is the ability to manage 
IPVS configuration automatically. By managing IPVS 
configuration dynamically, Keepalived can keep it in sync with 
the changing state of the topology of the servers participating 
in the VRRP group. For example, Keepalived can set the load-
balance weight for a Real Server down to zero based on the 
exit status of a script to prevent IPVS from routing new 
sessions to those servers. This allows us to dynamically 
remove login nodes from the load-balance group based on the 
result of health check scripts that are run at regular intervals. 
The health check scripts check the health of filesystems, 
network interfaces, and the presence of administrative files that 
allow us to drain a node for maintenance, thereby preventing 
new sessions from landing on the node. 

VI. SLINGSHOT HSN 
One of the most exciting features of Slingshot is its 

Ethernet compatibility. The Ethernet compatible high-
performance interconnect enables site-integration of the 
Perlmutter system to data center networks and beyond. As a 
result, compute nodes connect directly with site-hosted, and 
externally hosted, services and data sources. To make this final 
design a reality, many hardware and software configurations 
were put into place to ensure high-performance, resilient 
routing between the Perlmutter Slingshot interconnect and 
NERSC’s site networks. 

We deployed a pair of Arista 7808 chassis to support our 
LAG connections to the Service switch group. The LAG width 
of 64, distributed across a switch group of 16 Slingshot 
switches, was determined by the need for both L1 and L2 
resiliency - each Rosetta switch in the Service switch group 
would connect to each Edge Router via a single cable carrying 
2 links, thus ensuring a single cable or single link could fail 

without L1 isolation. Each cable connects to the routers via a 
single 400g physical port, carrying 2x200G logical links. 
Special keying was required to enable this functionality on the 
Arista. 

The Edge Router pair itself is configured in an MLAG 
setup with VARP implemented. The single MAC address is 
then added to the Fabric Manager. VARP provides better 
traffic balancing and faster redundancy convergence, 
implementing active-active First Hop Router Redundancy to 
provide active/active unicast IP routing.  

The ‘first’ Slingshot interface (hsn0) for each endpoint on 
the fabric is configured with a publicly routable IPv4/IPv6 
address on both compute and login nodes. NIC and OS settings 
are adjusted to support the high bandwidth speeds the NIC is 
capable of with standard TCP, e.g. interrupt affinity, 
send/receive socket buffer size. 

For connectivity northbound to the NERSC data center, we 
currently have 4x400G ECMP links to the data center routers 
from the Edge Routers for direct data streaming. This 
implementation delivers an aggregate bandwidth of 1.6Tb/s to 
and from the system. Site DNS and perimeter security are 
configured to allow SSH logins via the HSN border addresses 
of the login nodes. Login sessions are load balanced between 
the 40 login nodes using the methods described earlier in the 
section on Storage Networking. 

Figure 5 VRRP and IPVS login load balancing 



VII. PLANNED WORK 
While each GPFS server in NERSC's Community 

filesystem has up to four Infiniband HCAs and each of the 
gateways has two, only one HCA on each end is actually used 
for communication at any given time. This is due to a 
limitation in the IPoIB implementation of NIC bonding that 
only allows an active-backup configuration of interfaces. 
Solutions are being explored for ways to utilize all available 
links including managing interfaces individually instead of as 
part of a bond. Another area of exploration is GPFS's MCOT 
or Multiple Connections over TCP which allows multiple 
sockets to be opened between a client-server pair. One of the 
hurdles that need to be overcome is the explosion in the 
number of open sockets on servers from all ~5000 nodes of 
Perlmutter phase-2. 

With 24 gateways routing traffic for ~5000 nodes in 
Perlmutter phase-2, network latency under heavy traffic load is 
a concern. If latency grows too large, it can cause GPFS 
timeouts that can lead to computes getting expelled from the 
GPFS cluster, which can lead to wider filesystem issue if a 
large number of computes were to expel simultaneously. 
Network queuing disciplines that are optimized to limit 
maximum latency such as CODEL could offer a potential 
solution. 

NERSC's GPFS infrastructure is planned to migrate to 
Ethernet in the near future. This includes an additional 8x400G 
ECMP link between the HSN edge routers and the NERSC site 

network. There will be additional tuning required to optimize 
for this new network, including exploring the user of 
(soft)RoCE. 

Realtime processing of data from remote experimental 
facilities is a major upcoming use case for Perlmutter. Design 
work is in progress to enable dynamic network routes that will 
allow these facilities to directly stream data to compute nodes. 

VIII. SUMMARY 
HPE Cray EX systems have a flexible networking 

architecture highly suited to the evolving needs of HPC. This 
flexibility comes with increased complexity, which we manage 
and harness to our advantage using the methods and techniques 
described in this paper. By privatizing the CAN, we were able 
to set up a centralized management bastion server hosted in a 
resilient virtual machine infrastructure where administrators 
can login as themselves and perform administrative actions 
such as managing the Kubernetes cluster. The storage gateway 
and login load-balancing solution frees us from having to 
depend on dedicated hardware load-balancers while allowing 
us to expand and spread load even more by simply adding 
servers. By using IPVS, we can dynamically take login nodes 
out of service with minimal impact to users. Slingshot HSN 
integration into our data center allows users of the Perlmutter 
supercomputer to have seamless high speed access to the rich 
set of computing services that are provided at NERSC while 
also allowing them to create workflows with off-site data 
sources.

 


