

1

Configuring and Managing
Multiple Shasta Systems

Best Practices Developed During the
Perlmutter Deployment

2022/05/04

Ershaad Basheer - NERSC
James Botts - NERSC

David Fox - NERSC
Aditi Gaur - NERSC

Doug Jacobsen - NERSC
Harold Longley - HPE
Eric Roman - NERSC

Chris Samuel - NERSC
John Stile - NERSC

2

lustrelustrelustre

HPE Cray-EX Systems at NERSC

alvarez

lustreNCNs

muller

lustreNCNs compute

perlmutter

NCNs

computecomputecomputecomputecomputecompute

computecomputecomputecomputecomputecompute

computecomputecomputecomputecomputecompute

computecomputecomputecomputecomputecompute

experimentation testing for production production

To meet demands of continuous operations:
● Use pre-production test system for testing

operational procedures
● Need longer-term development system for

wider range experimentation
● Need automation and API integration to

maintain consistency

compute

3

Don't forget perlmutter phase 2

4

Key Challenges for Deployment
● Hardware integration

○ SHCD (Shasta Hardware Configuration Document)
○ Validating physical cabling
○ Node testing

● Configuration Management (multiple systems!)
○ System configuration (gitea/CFS/IMS Recipes/BOS/BSS)
○ Secrets
○ HSN configuration
○ RPMs
○ Containers/Helm charts/Loftsman manifests for site-provided services
○ HPE-provided software and System Upgrades

● System Stabilization
○ DVS-Over-HSN
○ DVS/CPS Worker Node Separation

5

Hardware Integration: SHCD

● Must ensure that any all
hardware changes are first
in the SHCD

● Be sure the hardware
configuration will support
future modes of operation.

○ NERSC wants hsn0
interfaces on one set of
switches and hsn1 on
another in river racks to
support system resiliency

● If the SHCD is wrong,
nothing else on the system
can be right

Best Practice: Get to know your SHCD, find ways to track and validate changes with your hardware support
Missing functionality: Ability to validate SHCD against documented CSM requirements

6

Hardware Integration: Validate Physical Cabling

Confirm that wiring in
the system matches
the SHCD
● For HSN,

cable_inventory
and LLDP plus
analysis scripts
(NERSC custom
script shown) can
help confirm
things are where
they belong

=== ANALYSIS ===
Incorrect island: ['x1003c3r7j15', 'x3115c0r30j17', 'x1003c3r7j15', 'x3115c0r31j17']
Incorrect island: ['x1201c1r1j15', 'x3000c0r44j19', 'x1201c1r1j15', 'x3000c0r45j19']
Incorrect island: {'x3004c0r46j15', 'x3114c0r31j16', 'x3114c0r31j15', 'x3114c0r30j15',
'x3004c0r45j15'}
Incorrect island: {'x3008c0r47j30', 'x3009c0r44j25', 'x3009c0r44j30', 'x3008c0r44j30'}
Incorrect island: {'x3010c0r45j30', 'x3010c0r46j30', 'x3009c0r47j2', 'x3009c0r47j1'}
Incorrect island: {'x3108c0r46j28', 'x3108c0r45j28', 'x3109c0r45j3', 'x3109c0r45j2'}
Incorrect island: {'x3114c0r30j4', 'x3114c0r30j3', 'x3113c0r30j25', 'x3113c0r31j25'}
Incorrect island: {'x3114c0r31j3', 'x3113c0r31j28', 'x3114c0r31j4', 'x3113c0r30j28'}
===========
Group of Incorrect connections: ['x1003c3r7j15', 'x3115c0r30j17', 'x1003c3r7j15', 'x3115c0r31j17']
Incorrect link ('x1003c3r7j15', 'x3115c0r30j17') related to missing links:
 ('x1003c3r7j15', 'x3115c0r31j17')
 Check if x3115c0r30j17 should move to x3115c0r31j17

===========
Group of Incorrect connections: ['x1201c1r1j15', 'x3000c0r44j19', 'x1201c1r1j15', 'x3000c0r45j19']
Incorrect link ('x1201c1r1j15', 'x3000c0r44j19') related to missing links:
 ('x1201c1r1j15', 'x3000c0r45j19')
 Check if x3000c0r44j19 should move to x3000c0r45j19

===========
Group of Incorrect connections: {'x3004c0r46j15', 'x3114c0r31j16', 'x3114c0r31j15', 'x3114c0r30j15',
'x3004c0r45j15'}
Incorrect link ('x3004c0r45j15', 'x3114c0r31j15') related to missing links:
 ('x3004c0r45j15', 'x3114c0r30j15')
 ('x3004c0r46j15', 'x3114c0r31j15')
Incorrect link ('x3004c0r46j15', 'x3114c0r31j16') related to missing links:
 ('x3004c0r46j15', 'x3114c0r31j15')
 Check if x3114c0r31j16 should move to x3114c0r31j15

7

Hardware Integration: Node Testing

Stabilizing both the computes
nodes and the network
simultaneously is exceedingly
difficult.

For the phase 2 system,
NERSC is leveraging an
HPCM test system to validate
each row before it gets added
to perlmutter.

8

Configuration Management: System Config

Working
multi-system,
many-contributor
administration
model for XC.

How to do this for
Cray EX?

CUG 2018 SMWFlow Paper

9

Configuration Management: System Config

Source: HPE CSM v1.4 Overview Presentation

gitea

Each layer is provided by a separate gitea git repository.

10

Configuration Management: System Config
NERSC Gitlab

nersc-cle git repository

shasta/ansible/cos-config-management

shasta/ansible/cpe-config-management

shasta/ansible/sma-config-management

shasta/ansible/nersc

shasta/alvarez_vars
shasta/muller_vars

shasta/perlmutter_vars

On-system Gitea

cray/cos-config-management

cray/cpe-config-management

cray/sma-config-management

crayvcs/nersc

crayvcs/inventory

Appropriate <system>_vars
synced to inventory repo, use for
AdditionalInventory in CFS

./
up
da
te
_s
ys
te
m_
ex
.p
y

--
br
an
ch
=d
ev
el
op
me
nt

update_system_ex.py
directly talks to system APIs
to create CFS configurations
with the commit ids in gitea.

11

Configuration Management - Secrets

vault

VM

vault

shasta cray-vault

Destructively sync
vm-vault/syskv to
cray-vault/syskv

mgrkv has secrets that are only known on the manager VM, such as
plaintext passwords, private keys for the host and admin CAs

syskv is sync'ed from the VM to cray-vault (using kubectl port
forwarding) for use with CFS.
cray-vault also gets hashed passwords for deployment on the system

This requires
policy changes by
patching the Cray
"vault/cray-vault"
kubernetes object

We do not have
an automated
process for
patching this and
keeping it
up-to-date

mgrkv/
bmc
ssh/

adminca
hostca

root

syskv/
ssh/

hostkeys
csm
cmm

slurm/
...

syskv/
ssh/

hostkeys
csm
cmm

slurm/
...

secret/
hms-creds/

x1000c0
…

cos
uan

(hash password upon sync)

./update_system_ex.py

12

Configuration Management: HSN

fabric_template.json

perlmutter/hsn_ipam.json perlmutter/hsn_ports.dat

edit_fabric.py

manage_dns.py

CSM SLS
Unbound
manager

Unbound
DNS

Slingshot
Fabric

Manager

write_special_
ports.py write_lag.py

slingshot switch

compute nodept_pt.csv
(SHCD)

Slingshot
topology tool

LLDP used to
configure IP and
MAC

SHS ve
rifi

es I
P m

atch
es

xn
ame provid

ed by D
NS

DVS does n
ot lik

e IP

addresse
s t

o ch
ange (n

or

Lustr
e o

r G
PFS) Configuration in git

NERSC-provided

HPE-provided

13

Configuration Management: RPMs

Git-LFS
Backend

nersc-zypper
nersc/RPMS
nersc-slurm/RPMS
shasta-repos.yml
update_system_ex.py

nexus
blobstore: NERSC

repo: nersc
repo: nersc-slurm

Using a git-lfs repository to manage binaries
like RPMs that get deployed to nexus. This
enables the same branching and collaborative
testing we use for configuration files.

14

Configuration Management
● Helm Charts

○ NERSC-custom charts are stored in `nersc-cle` git repository
○ Deployed with Cray's `loftsman` from manager VM (leveraging

end-user's privileges with kubernetes)
● Containers

○ Based on parse of nersc-cle charts, use skopeo to sync containers
from external source, registry.nersc.gov, or VM-constructed container
to on-system nexus

● customizations.yaml
○ Site/system overrides to helm charts. Presently not well managed

because we need a process to generate sealed secrets from git
sources (don't want to keep secrets, even encrypted in git)

15

application_ss11_dev
elopment_<suffix>

application_ss10_dev
elopment_<suffix>

compute_ss11_dev
elopment_<suffix>

compute_ss10_dev
elopment_<suffix>

Managing SS10/SS11 Hybrid Systems
● This is explicitly not supported by HPE at this time. But is a necessary

requirement for the integration of perlmutter phase 2

Base
Image

Image
Recipe

(record image id in
system_vars/image.yml under

baseImages.compute and
baseImages.application)

build_latest
_images.sh

CFS

CFS

CFS

CFS

compute_ss10_dev
elopment_<suffix>

compute_ss11_dev
elopment_<suffix>

application_ss10_dev
elopment_<suffix>

application_ss11_dev
elopment_<suffix>

update_system_ex.py
--branch=development

CFS
API

Ansible
Inventory

Product
Stream
Ansible

SMD API
(Groups) BOS

compute_ss10_dev
elopment

CFS Configs/Images BOS Session Templates

compute_ss11_dev
elopment

application_ss10_dev
elopment

application_ss11_dev
elopment

update_bos_latest
_images.sh

Main difference between SS10/SS11 images is SHS installed RPMs.

16

Configuration Management: Workflow
$ cd nersc-zypper
$ git checkout development
$./update_system_ex.py # uploads RPMs to nexus
$ cd nersc-cle
$ git checkout development
$./update_system_ex.py --branch=development

record timestamp as `suffix
 # sync HSM groups for SS10/SS11 differentiation`

syncs secrets
writes feature/a ansible directories to dmjtest branches in gitea
generates CFS configuration objects, uploads using CFS API

compute-development-<suffix>
login-development-<suffix>
gateway-development-<suffix>

generates bos-sessiontemplates-<suffix> with unconfigured images
$./shasta/scripts/build_latest_images.sh development
$ cd bos-sessiontemplates-<suffix>
$../shasta/scripts/update_bos_latest_images.sh -i development -d development

generates and uploads usable BOS sessiontemplates
compute-development, login-development, gateway-development

$ cray bos session create --template-uuid compute-ss10-development --operation reboot
$ cray bos session create --template-uuid compute-ss11-development --operation reboot

Or use prep_boot_config.py
to scalably rewrite BSS/CFS
for all nodes and avoid bos
completely. Enables dynamic
rolling updates

17

Configuration: HPE Provided Software and Upgrades
● Installation of most CSM-compatible product streams have two phases:

○ Nexus artifact installation
■ Changes content in some common repositories non-destructively but content immediately is

accessible and default for similar product lines (SLES repos vs SLES 22.01 repos)
○ Loftsman manifest deployment to configure the product

● NERSC does not have automation around the management of these
products

○ the non-interactive `./install.sh` used almost across the board make automated data
transfer/installation a clear future direction

● HPE Cray EX software recipe upgrade installation often start with CSM, then
firmware (HFP), then COS and other products
○ This could result in three interruptions of each ncn-worker node
○ For major upgrades NERSC has usually found it's been fine to

reorganize the update procedure to minimize the number of steps
■ The devil is in the details here, but there are many opportunities for

automation and improving efficiency of the rolling update process

18

System Stabilization: DVS over HSN

● Switching DVS to HSN instead of NMN several benefits:
○ Nodes that have an incorrect HSN configuration fail to boot (making their problem

obvious)
○ Use of HSN for DVS improves user experience because NMN bandwidth is

limited
○ Increases options for backend LND (could use o2iblnd for SS10 or kkfilnd for

SS11)
● In COS 2.0 and 2.1 this required patching the initrd to properly setup

lnet and then dvs to add the needed lnds, and then modifying the
cos/uan_config_management layers for configuration

● In COS 2.2 configuration in ansible inventory is all that is required

This was a key change during perlmutter deployment that led to major progress in the project

19

System Stabilization: CPS/DVS Worker Node Separation

● During perlmutter integration we had several instances of resource
collisions and ncn-w* node crashes not tied directly to bugs in DVS, but
contention with other critical workloads

● Perlmutter has 26 worker nodes, we chose to dedicate 8 of them to
CPS/DVS by preventing management jobs to schedule on those nodes.

○ cray cps deployment update --nodes=<list of nodes>
○ kubectl drain --delete-local-data --ignore-daemonsets <node one at a time>
○ Leave them cordoned

● Estimate each worker node is capable of forwarding to 500 nodes
● NERSC's experience is that separating CPS/DVS from management

pods has improved worker stability

20

What is the Impact?
● Focusing on process-oriented management that abstracts system

details enables:
○ Scalable transfer of capability from small scale to test to large scale

production
○ High fidelity transfer of features from test to production
○ Collaborative integration of difficult work on test systems with simple

deployment to production
● Migrating HPE product stream code (ansible, recipes) into NERSC

repository:
○ Enables rapid workarounds or improvements in HPE-provided code
○ Reinforces the separation of code vs data
○ Supports inclusion of HPE products in the development/deployment process

21

Conclusions
● Using the techniques in this presentation, NERSC was able to

successfully deploy and maintain three Cray EX systems with
minimal overlapped effort

● Insights gained using this work has enabled NERSC and HPE
to develop a method of iteratively deploying perlmutter phase 2
with minimal disruption, despite all the hardware in the system
being taken offline at some point during the process

● NERSC has demonstrated repeatedly the utility of having test
systems to optimize deployment procedures and even start
doing scalable test by moving production resources

