

HPE Slingshot Launched into Network Space

Duncan Roweth
CTO Office, HPC/AI BU

HPE, Inc
Bristol, UK

duncan.roweth@hpe.com

Greg Faanes
Advanced Technology, HPC/AI BU

HPE, Inc
Chippewa Falls, , WI, USA
gregory.faanes@hpe.com

Jesse Treger
Product Management, HPC/AI BU

HPE, Inc
Portland, OR, USA

jesse.treger@hpe.com

Marten Terpstra
Product Management, HPC/AI BU

HPE, Inc
Nashua, NH, USA

marten.terpstra@hpe.com

Abstract— HPE Slingshot networks are constructed from
two components, a PCIe Gen4 NIC “Cassini” and a 64-port
switch “Rosetta”. Their links use standard Ethernet physical
interfaces operating at 200 Gbps designed to construct either
dragonfly or fat-tree networks. Rosetta switches operate HPE
Slingshot specific adaptive routing and congestion management
protocols on the fabric links that connect them together. Their
edge ports, including those that connect to Cassini, support both
optimized HPC and standard Ethernet protocols. The HPE
Cray EX supercomputer system uses them in a dragonfly
network as this provides cost effective global bandwidth at scale.
Clusters of HPE Apollo servers (HPE Inc, 2021) can use either
dragonfly or fat-tree1. HPE Slingshot networks are designed to
support 64 to 250,000 or more endpoints. The largest system
under construction has approximately 85,000 endpoints.
Support for systems of this scale has a significant bearing on the
design of the Rosetta and Cassini devices. This paper presents
the key features and some early results of performance of
Rosetta and Cassini devices. This paper includes information
from early papers on the Rosetta ASIC, as well as section of not-
yet published papers on the Cassini NIC.

Keywords—Cassini, Rosetta, Dragonfly, Fabric, HPC, MPI

I. INTRODUCTION
HPE Slingshot is a modern, highly scalable,

connectionless high-performance RDMA interconnect for
high-performance computing (HPC) and artificial intelligence
(AI) clusters that delivers industry leading performance,
bandwidth, and low latency for HPC, AI/ML, and data
analytics applications. HPE Slingshot brings together the best
of HPC optimized fabrics - as pioneered by Cray over eight
generations of supercomputing interconnect silicon – with the
ubiquity of standard Ethernet. HPE Slingshot features fine-
grain adaptive routing, advanced congestion control, and
sophisticated quality-of-service capabilities (QoS). By
leveraging and building on standard Ethernet technology and
software, HPE Slingshot delivers cost-effective connectivity
and interoperability with third-party NICs and switches, and a
broad eco-system of software. Support for both high-
performance IP traffic and remote memory operations
broadens the range of applications that perform with high
performance beyond traditional MPI-based modeling and
simulation codes. HPE Slingshot delivers a converged
network infrastructure with great performance on both
traditional modeling and simulation codes alongside native
sockets-based applications and direct Ethernet connectivity to
storage without requiring gateway nodes.

HPE Slingshot delivers high bandwidth and low latency –
both average and tail latency - consistently and reliably in real-
world operating conditions, especially under load with diverse
and contending traffic patterns. HPE Slingshot moves beyond
just raw performance capability with a system-level approach
to ensure actual performance is realized and delivered
consistently and reliably. This is because it couples leading
edge enhanced Ethernet technology and bandwidth (200 Gbps
links using PAM-4 signalling) coupled with advanced features
including breakthrough fine grain adaptive routing,
congestion management, and QoS features to deliver
consistent higher effective application performance at scale.

High raw performance interconnect technology does not
guarantee high performance in practice. This is because
modern HPC systems are complex and simultaneously host a
range of workloads that present an inconsistent set of
communications patterns that challenge traditional brute
bandwidth HPC interconnects because they cannot deal well
with the unavoidable congestion conflicts. Congestion in turn
causes the effective latency of operations to spike, causing
application performance to suffer and vary from run-to-run.

HPE Slingshot consists of switches built with the HPE-
developed Rosetta ASIC, and NICs built with the HPE-
developed Cassini ASIC. Rosetta is a 64-port, 200
Gbps/direction/port HPC Ethernet switch chip that provides
state-of-the-art small packet routing, an advanced congestion
management system, and QoS capabilities. The Cassini NIC
chip provides hardware offload of MPI matching and
progression, together with one-sided operations and
collectives. The host interface for Cassini is an enhanced
version of PCIe Gen4.

The HPE Slingshot 64 port high switch radix enables the
deployment using a dragonfly topology of low-diameter
networks even at very large scale. With HPE Slingshot, a
system can scale up to 250,000 physical endpoints with only
a three-hop diameter. Reducing the network diameter reduces
latency, cost and the power consumed. Low diameter also
enhances adaptive routing algorithms that improve application
performance and reliability. HPE Slingshot’s high peak
performance and low network diameter delivers high-
performance, cost-effective networks with very low latency.

II. ROSETTA SWITCH ARCHITECTURE
Rosetta is a 64-port Ethernet switch, implemented as a

large monolithic (685 mm2) ASIC fabricated in the TSMC 16
nm FinFet process and housed in a 62.5 mm package. All main
switching logic utilizes an 850 MHz clock, which results in a

Launching Slingshot into Space – Cray User Group, May 2022 2

typical power dissipation of 160 watts and a maximum of
around 300 watts.

A. Ethernet Functionality
All Rosetta ports support IEEE 802.3 Ethernet standard

signaling. Each port has 4 lanes operating at 50 Gbps using
pulse amplitude modulated (PAM-4) signaling or 25 Gbps
non-return to zero (NRZ) signaling to provide 200 Gbps
Ethernet (IEEE 802.3bs), 100 Gbps or 50 Gbps (IEEE
802.3cd), or 100 Gbps (IEEE 802.3-2015). While providing
an optimized, low latency, high throughput HPC
infrastructure, Slingshot is fully Ethernet standards compliant
and interoperable, operating as a converged HPC / Ethernet
network.

B. Enhanced Link Functionality
The Slingshot architecture provides optimizations within

the network stack designed to improve network efficiency.
These enhancements, driven by HPC and data analytics
workloads, bring performance of the data link layer protocol
on par with, or above, the capabilities of proprietary high-
speed networks. These improvements benefit both HPC and
Ethernet applications since they enable greater throughput,
permit a higher transaction rate, and improve reliability.
Enhancements include reduced inter-packet gap, optimized
packet headers, credit-based flow control, link-level retry, and
degraded link operation (i.e. continued operation with two or
three of the four lanes disabled). Enhanced functionality is
negotiated between pairs of devices using Link Layer
Discovery Protocol (LLDP).

C. Network Protocols
HPE Slingshot’s data link layer (layer 2) and network

layer (layer 3), compliant with the Open System
Interconnection (OSI) model, can switch packets based on an
L2 endpoint address within a subnet, and can route packets
based on an L3 destination between subnets (L3 routing is
currently not yet enabled in software). Like many standards-
based networks, IPv4 and IPv6 routing is implemented as part
of the control plane. This network management overlay loads
the appropriate forwarding and routing tables, affecting the
way packets traverse the high-speed network data plane. Both
in-band and out-of-band network management paths allow
standardized routing mechanisms and protocols to
communicate with the Rosetta devices. Additionally, network
function virtualization (NFV) enables offload of many
network services and their supported protocols, providing
support for resilient, scalable services, sized to match network
requirements and load.

D. Physical Structure
Rosetta uses a tiled physical structure, using two primary

logic blocks: tile functions (TF) and peripheral functions (PF).
There are 32 TF blocks, each performing the routing, packet
forwarding, and congestion management functions for two
physical ports. The 32 TF blocks are arranged in a 4-row by
8-column matrix. Interconnect in the row and column
dimensions creates the all-to-all connections within the
matrix. The tiled design allows for the crossbars to be
distributed across tiles, avoiding global arbitration.
Distributed buffering provides a 4X internal speedup of data
movement.

There are 32 PF blocks, each also performing its functions
for two physical ports. PF functions include Ethernet protocol
functionality along with the physical coding sublayer (PCS)
and media access control (MAC) layer for each channel.
These 32 blocks are arranged on the periphery of the die along
with the eight SerDes required to support the two physical
ports of each PF block. Each PF is connected to its
corresponding TF through global channel routing, which
completes the top-level interconnect scheme. In addition to the
PF and TF blocks, there is a maintenance block (MB) that
provides the configuration and control interface into Rosetta
for system management.

E. Congestion Management
Rosetta’s adaptive routing carefully changes a packet’s path
to avoid mid-fabric congestion, which increases network
utilization and reduces latency, but adaptive routing cannot
address endpoint congestion. In this section, we describe a
novel congestion control mechanism implemented in
Slingshot that reduces the impact of endpoint congestion.

Under normal circumstances, the flow mechanism
in Rosetta rarely needs to stop packets, because the buffering
requirements for each flow are carefully controlled. The total
mid-fabric buffer requirements are typically less than the
capacity of the mid-fabric input buffers. This ensures that
flows that are not experiencing any congestion have enough
buffer space to operate at full bandwidth.

Congestion often forms around an egress edge port.
This can occur for several reasons: an application or service
has directed many streams of packets (flows) to a single
egress port, a destination node is unable to process new data
quickly enough and starts to assert pause, or a destination
edge port is operating at a lower bandwidth than other edge
ports.

Congestion can cause network buffers to fill,
requiring traffic trying to pass through the buffers to be
stopped to prevent overflow and packet loss. Such back-
pressure can cascade and spread out upstream, a phenomenon
known as tree saturation. Traffic not even passing through the
congested bottleneck can be blocked if it shares virtual
channels with congested traffic on any of the upstream links.
To avoid this coupling, effective congestion management
must quickly detect and reduce congestion, preventing
buffers from filling and blocking unrelated traffic.

The Datacenter Quantized Congestion Notification
(DCQCN) protocol [1] is an example of a mechanism to
detect and control congestion within a network by observing
buffer occupancy and the rate at which a buffer is filling and
then sending acknowledgements to reaction points in the
network to throttle the traffic that is contributing to the
congestion. DCQCN suffers from several problems, which
include unfairness in which flows are throttled, and a large
number of control parameters that make tuning difficult. It is
possible to optimize the configuration for one pattern of
traffic and to severely impact other patterns of traffic. For
these reasons, DCQCN for a high-speed network struggles to
balance high network utilization and stability while
responding to congestion. On the other hand, congestion
schemes like Explicit Congestion Notification (ECN) [2],
have slow convergence in large networks due to the long
feedback of ECN markers in the presence of congestion.
Moreover, these schemes continue to permit inter-job

Launching Slingshot into Space – Cray User Group, May 2022 3

interference while they attempt to adjust the transmission
rates of congesting flows.

Rosetta congestion management is designed to
prevent congestion from growing within the network fabric,
and to prevent congestion from interfering with unrelated
traffic. Egress switches measure the degree of endpoint
congestion and return this indication in congestion acks for
flows directed to congested egress ports. In upstream
switches, the bandwidth of each flow is reduced to match the
available egress bandwidth. Critically, only the flows
targeting the congested egress port are back-pressured, and
this flow control is pushed back all the way to the flows’
ingress ports. Other traffic can progress unimpeded, even if
sharing virtual channels with congesting flows on upstream
links.

The mechanism strongly controls admission for
congesting flows. Packets entering the network are forced to
buffer in a flow queue at the ingress port and are only allowed
to progress through the fabric as packets from the same flow
depart downstream switches. This process limits the total
buffering requirements of a flow within the fabric to an
amount just large enough to sustain the flow’s fair share of
bandwidth at the congestion point, leaving the remainder of
the buffers available to run uncongested flows at full speed.
The endpoint output queues compute several metrics for each
traffic class related to degree and rate of congestion and
number of contributing flows. These are used to feed
congestion information back via congestion acks. Different
degrees of endpoint congestion can be reported via different
types of congestion acks. These congestion acks are used to
manage the bandwidth of flows and control the number of
bytes allowed to enter the network.

To achieve effective flow rate control, Rosetta limits
the number of bytes a flow of packets can have in the network
at any point of time. The amount of unacknowledged
downstream data belonging to a flow is tracked at every
switch along the flow’s path. As congestion acks are received
from downstream switches, flows contributing to congestion
will react by lowering their rates at each hop along the path,
guided by the congestion ack values. Flows that are not
contributing to the endpoint congestion are unaffected. This
action keeps packets away from congestion hot spots, and
minimizes buffer utilization by stalled packets, ensuring free
buffer space for unrelated traffic and improving overall
network throughput.

F. Performance
Performance data was measured on two prototype systems:
Malbec and Shandy. Malbec comprises 485 Intel Xeon-based
nodes, each with one 100 Gbps Ethernet NIC, connected by
a 512-port dragonfly network comprising four groups of eight
switches. Each switch has 16 host links operating at 100
Gbps, 28 local links operating at 200 Gbps, and six global
links operating at 200 Gbps. Peak bandwidth of the global
links is 4.8 TB/s, 79% of injection bandwidth. Shandy
comprises 1024 AMD Rome-based nodes, each with a pair of
100 Gbps Ethernet NICs, connected by a 2048-port dragonfly
network comprising eight groups of 16 switches. Each switch
has 16 host links operating at 100 Gbps, 30 local links
operating at 200 Gbps, and seven global links operating at
200 Gbps. Peak bandwidth of the global links is 11.2 TB/s,
44% of the injection bandwidth.

Tests were run using Cray MPI – derived from
Argonne National Laboratory MPICH [3] – implementing the
MPI-3.1 standard. Measurements were made with the OSU
benchmark suite Error! Reference source not found..
Programming model libraries use the TCP/IP stack or the
libfabric interface [4]. Libfabric is a core component of the
OpenFabric Interface (OFI) framework. It is an abstraction
layer that provides user applications with access to the
network. The libfabric API was designed for high-bandwidth,
low-latency NICs, with a goal to scale to tens of thousands of
endpoints. The libfabric provider for Slingshot supports the
reliable datagram (RDM) endpoint type. An RDM endpoint
provides reliable, unconnected data-transfer semantics,
supporting remote memory access, atomic memory
operations (AMOs) and tagged-messaging operations. RMA
operations are used to transfer data directly between local and
remote data buffers. The Ethernet NICs generate RoCEv2
traffic. The network is presented with UDP packets
containing up to 4K of payload data. All traffic is ordered.

Measurements show quiet network MPI latencies in
the 1.5-1.8 µs range depending on the CPU type. Each switch
hop adds approximately 300ns to the latency (including FEC
on the cable between switches). Full bandwidth is achieved
on a wide range of packet sizes.

Fig. 3 reports all-to-all bandwidth measured on
Shandy using the MPI_Alltoall collective. Performance
scales well with the number of nodes. Note the change in
bandwidth at 256-512 bytes. MPICH uses Bruck’s index
algorithm [5] at small sizes, switching to a permutation as the
message size increases. On this system 1/8th of the all-to-all
traffic remains local to each group and 7/8 uses the global
links. Peak all-to-all bandwidth of the system is 12.8 TB/s.
The highest bandwidth measured was 11.4 TB/s, 89% of
peak. Tests show that all-to-all bandwidth is maintained in
the presence of congestion. Performance counters collected
during the run show high numbers of reroutes as the network
load-balances ordered flows. No packets were dropped
during this test. It is worth underlining that these results were
for Ethernet traffic generated by standard RoCE NICs.

Figure 3

Measurements of Ethernet throughput and latency
were performed using an IXIA tester operating at 200 Gbps
in accordance with IEEE RFC 2544 [6]. The measured rate
for 64B frames was 297,619,047 frames per second (FPS).
No packets were dropped. Latency for Ethernet packets was
measured at 308-327 ns depending on the combination of
ports used. Measurements of the frame rate for smaller (40

0

2

4

6

8

10

12

8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K

Ba
nd
w
id
th
 (T
B/
s)

Message Size

nodes = 1015
nodes = 512
nodes = 256
nodes = 128

Launching Slingshot into Space – Cray User Group, May 2022 4

byte) frames were performed using Rosetta’s built-in frame
generator. The frame rate measured was 521 M FPS.

III. DRAGONFLY TOPOLOGY
Dragonfly topology-based networks offer rich bandwidth for
nearest neighbor / local communications intensive
applications and scalable cost-effective global bandwidth for
very large applications with long reach communications
patterns. HPE Slingshot’s advanced congestion management,
adaptive routing and QoS features maximize the
effectiveness of the optimized dragonfly topology and
minimizes job placement issues.

Figure 4. HPE Slingshot Extreme Scale and Performance with
Dragonfly Topology

The dragonfly network topology is a low diameter “direct”
network, avoiding the need for any external fat tree type “top”
switches and reducing the number of costly optical links
required for a given global bandwidth for large systems. The
dragonfly topology design builds on earlier work showing the
value of low-diameter networks constructed from high radix
routers. Ideally, a router would have enough ports to connect
to all the other routers in the system — the network would
have diameter one. However, this topology is not practical for
large systems. If a group of routers — acting in concert as a
single, very high radix virtual router pooled their links, then
the group could have enough links to directly connect to all
the other groups in the system. This is the key idea behind the
dragonfly network. Low-cost electrical links are typically
used to connect the NICs in each node to their local router
and the routers in a group – (L0 links).

Each router provides both “intra-group” links (L1
links) that connect the router to other routers in its group and
“inter-group” links (also known as global or L2 links) that

connect to other groups. The routers in a group pool their
inter-group links, enabling each group to be directly
connected to all the other groups. Optical links are used for
the long links between groups.

There are several possible group sizes with the
Slingshot dragonfly topology depending on several factors.
These include the desired maximum scale of the system, the
desired scalable unit of compute capacity to add at a time, and
the optimal cost point driven by the trade-offs of cable cost
and switch count depending on the rack density and physical
layout.

Each dragonfly group has a fixed number of routers
and provides a fixed maximum number of global ports.
Sufficient global ports are provided to allow connections to a
large number of other groups while network cost scales
linearly with the system size. The number of inter-group links
used can be adjusted to tailor the global bandwidth of the
system.

The global bandwidth of a dragonfly network is
given by:

𝐺𝑙𝑜𝑏𝑎𝑙 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = 𝑙𝑖𝑛𝑘 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ × 𝑔𝑙𝑜𝑏𝑎𝑙 𝑙𝑖𝑛𝑘𝑠 𝑝𝑒𝑟
𝑔𝑟𝑜𝑢𝑝 × 𝑔𝑟𝑜𝑢𝑝𝑠

For a large system, the global bandwidth is twice the
bisection bandwidth as each group has an equal number of
connections to each of the other groups. Global bandwidth
grows linearly with system size. In all but the largest systems,
each group has many more global links than there are groups,
thus multiple connections can be made between every pair of
groups. Where full global bandwidth is not required, the
number of global links can be reduced to minimize cost.
Notably absent in dragonfly topologies are the discontinuities
in cost that characterize fat tree networks as they are scaled
up.

In a dragonfly network, the shortest path between
any two nodes is known as the “minimal” path. It may be
within one group or between groups. A minimal path between
groups may require hops in the source and destination groups
plus an optical hop between groups. Intra-group bandwidth is
over provisioned to allow for the higher loading on the intra-
group links.

Where traffic from each group to each of the other
groups is balanced — as it is for all-to-all or uniform random
communication — the links are equally loaded on minimally
routed traffic. However, if all nodes in one group were to
communicate with nodes in one other group, there are
insufficient links to achieve full bandwidth with minimal
routing. To achieve high bandwidth on this type of traffic, it
is necessary to select “non-minimal” paths in which packets
are adaptively routed intermediary groups. (HPE Slingshot
supports adaptive routing of both ordered and un-ordered
traffic effectively.) Non-minimal routing increases the
aggregate network load but balances the traffic over all the
available links and delivers scalable effective performance.

The scope of the advantage a dragonfly network has
over a fat tree can be understood by the extent to which
packets are minimally routed. With 100 percent minimal
routing, dragonfly has a 2:1 network hop advantage — each
packet takes one global hop at most, as opposed to two in a
three-layer fat tree. If all traffic is non-minimally routed, then
load on the global links is equal to that in a full bandwidth fat

Figure 2. Trace packet latency with congesting background

traffic

0

2

4

6

8

10

12

14

100 150 200 250 300 350 400 450

La
te
nc
y
(µ
s)

Simulation time (µs)

Launching Slingshot into Space – Cray User Group, May 2022 5

tree. Traffic patterns generating high volumes of global
traffic are well suited to minimal routing given good diversity
in the range of destinations to which each node is
communicating at any given point in time. Application traffic
patterns with low path diversity require a higher proportion
of non-minimal traffic. However, if the traffic is local, a high
proportion of it is contained within a dragonfly group, then
the load on the global links will be low. The large dragonfly
group size with high-bandwidth optical network connections
between groups ensures that systems are well suited to a wide
range of HPC applications. Where high global bandwidth is
not required, the optical network can be scaled back to reduce
cost.

IV. CASSINI NIC
HPE Slingshot networks are designed to support 250,000 or
more endpoints1. The largest system under construction has
approximately 85,000. Support for systems of this scale has
a significant bearing on the design of the NIC.

Cassini is a 200 Gbps HPC NIC ASIC chip developed by
HPE. The host interface is PCIe Gen4 with support for
extended speed mode (where supported by the CPU or GPU).
The network link port conforms to the 200 Gbps (4×50 Gbps
PAM 4) and 100 Gbps (4×50 Gbps NRZ) Ethernet standards.

Each node in a system is connected to the network by one
or more Cassini NICs. In EX systems with multiple NICs per
node all the NICs are attached to a single network slice. This
network design, referred to as multi-port, allows each NIC to
communicate with any other NIC in the system. It is used in
preference to a multi-slice network (where device d on node
n connects to port n of slice d). This implementation choice
allows processes bound to a socket that is local to their NIC
to send and receive using that NIC, improving performance.

A. Supporting HPC on Ethernet
As link speeds increase and the cost of developing new
physical interfaces increases, high-speed networks are
converging on the same set of physical standards. However,
Ethernet was designed for local and wide area networks
rather than the system but work within a supercomputer.
Packet overheads are large and packet switching rates have
been relatively low by the standards of HPC systems.
Ethernet relies on being able to drop packets when there is
network congestion. Transport protocols such as TCP/IP
have developed in this environment. Remote direct memory
access (RDMA) protocols used in HPC and storage
applications perform badly under these conditions.

The ubiquity of Ethernet physical standards makes
it attractive for an HPC vendor to develop networks that
combine Ethernet interoperability with HPC functionality
and performance. Cray took this direction with Slingshot and
it is being continued at HPE.

HPE Slingshot devices negotiate a set of
enhancements to Ethernet protocols using link layer discover
protocol (LLDP). The minimum packet size is are reduced
to 32 bytes and inter-packet gaps are removed. Header sizes
are reduced. Packet rates are increased. Link reliability is

1 The largest dragonfly network that can be constructed has
511 groups of 512 nodes.

greatly increased through use of link level retry (LLR) and
reduced lane operation. Packet drops are avoided in almost
all error and congestion cases. An efficient transport layer
protocol has been developed for message passing and remote
memory access (RMA). While some of these enhancements
are specific to the fabric links connecting Rosetta switches,
others can be widely adopted: The low latency forward error
correction FEC2, RS(272,257+1,7,10) is being used by the
25-Gigabit Consortium and flow based congestion
management is an active area of research.

This new functionality is fully interoperable with
standard Ethernet protocols. The link between a Cassini NIC
and a Rosetta switch can carry Ethernet frames, v4 and v6 IP
traffic, MPI messages, one-sided operations, low latency
barrier operations, and RoCE storage traffic simultaneously.
Traffic is assigned to quality of service (QoS) classes using
the DiffServ model (IETF Network Working Group, 1998).

B. Reliability
Cassini provides upper layers of software with a reliable
RMA and messaging transport. Where a packet is lost, or
resources are exhausted the transport will take the actions
required to complete the operation. A fatal error is only
returned when endpoints remain disconnected for some
period.

Support for LLR on links between HPE Slingshot
devices and use of ECC within those devices ensures that
packets are not dropped as a result of soft errors, but they can
be dropped when a device or cable fails. End-to-end retry is
required for these cases.

Some network operations are idempotent, they can
be replayed. Examples of this include one-sided Put and Get
operations. Other operations must be executed once and once
only. AMOs are one well-known example, but there are other
widely used operations that cannot be replayed. MPI message
matching and setting a target side completion event are
important cases.

Cassini provides two reliability models: a simplified
or “restricted” model for idempotent operations and an
“unrestricted” model for operations that manipulate target
state. The restricted model is connectionless. The
unrestricted model uses dynamically allocated connections
that persist while in use. It stores the result of an operation,
checking its store for the result before executing a retry, and
releasing the result as the operation completes.

Consider execution of a fetching AMO. In normal
operation the AMO request is executed and the result is
stored. Storage space is released when the operation
completes. If the original request is dropped a retried request
will find the result store empty. The AMO can be executed
safely. If it was the response that was dropped, a retried
request will find and return the original result rather than
execute the operation.

Maintaining the state necessary to perform a retry is
expensive – it can be more expensive than performing the
operation itself. Cassini takes away this burden, maintaining
the state required for retry in hardware. Use of LLR reduces
the rate of packet loss and hence the rate of end-to-end retry.

2 Ethernet standards mandate use of FEC at speeds of 100
Gbps or higher so as to retain a bit error rate (BER) of 10-12
or better.

Launching Slingshot into Space – Cray User Group, May 2022 6

This allows policy on when to retry to be implemented in
software.

C. Ordering and Completion
MPI requires point-to-point ordering of message matching.
If a given sender sends two messages to the same destination
and both can be matched by a single receive, the receive must
match the one that was sent first. Similarly, if a receiver posts
two receives and both match the same message, the message
must be matched to the first receive. These semantics have a
significant bearing on the design of offload NICs.

PGAS programming models require address
ordering. Where a write to an address is followed by either a
read (raw) or a second write (waw) the second operation
cannot start until the result of the first is globally visible.
Implementing address ordering in software is expensive. A
process or thread must block until it has received
confirmation that the first operation has completed.
Offloading this step to the NIC is desirable. Cassini does this
through use of a fence command. It ensures that operations
ahead of the fence have completed before those behind the
fence are issued. The progression is in hardware.

Where there is one path between initiator and target,
a response can be returned, releasing a fence, when the target
write has reached a point of global ordering in the target NIC.
For Cassini, this point is on the NIC side of the host interface.
Where there are multiple paths between nodes, a response
must be delayed until the first operation has reached a point
of ordering within the target node. This point is within the
target node’s PCIe root complex. Cassini provides to the
option to specify which behaviour is required on an
operation-by-operation basis (in libfabric terms, selecting
between the FI_TRANSMIT_COMPLETE and
FI_DELIVERY_COMPLETE options).

Completion of an operation is notified by generating
events at the initiator and (optionally) at the target.
Completion events (and other events indicating errors) are
written to an event queue in user memory. MPI point-to-
point messaging and most RDMA protocols require
individual completion events in the sending and receiving
processes, with details of the transfer that has completed.
Other APIs use bulk completion, with notification being
provided when a set of operations have completed
successfully or at least one has failed. This lighter-weight
model is known as counting events. It was first provided by
Quadrics (Beecroft, et al., 2005) and has been adopted by
Portals and libfabric. A counter is incremented as each
operation completes. A completion action is triggered when
the counter reaches a threshold. This action may be a full
completion event or a new triggered operation.

D. Software APIs
Libfabric (OpenFabric Working Group, 2018) provides a set
of APIs that match the needs of HPC programming models.
They can be implemented in software over hardware
interfaces such as verbs or the hardware can implement up to
the software interface. Cassini does the latter, providing
direct hardware support for many of the libfabric interfaces.
The Cray programming environment layers over libfabric
providing MPI, OpenSHMEM, UPC, Chapel and a wide
range of tools. This environment is now portable across Cray

and HPE systems implementing libfabric. Other MPI
implementations including MPICH (Argonne National
Laboratory, 2021) from which Cray and Intel MPI are derived
and OpenMPI (Open MPI Project, 2020) also support
libfabric.

The Portals API (Barrett, et al., 2014) provides a set
of interfaces designed for scalability and performance.
Portals was traditionally focussed on message passing, but
version four adds support for one-sided remote memory
access. Cassini adopts Portals ideas relating to message
matching, completion and triggered operations, but it does
not attempt to offload the whole API.

Cassini provides direct support for Ethernet APIs
used in a modern Linux stack, the generic send offload (GSO)
and generic receive offload (GRO) in particular. Hardware
support includes calculation of checksums (including RoCE
CRCs), controlling how incoming Ethernet packets are
distributed over endpoints (referred to as receive side scaling
or RSS), and placement of data into target memory. Ethernet
packets can be created by user processes (where permitted)
or driver threads.

V. EARLY PERFORMANCE RESULTS
This section provides preliminary data on Cassini
performance measured on the Shadow system. Tests use up
to 64 MPI ranks per NIC, 128 ranks per dual socket node.
Figure 5 plots MPI point-to-point bandwidth using one NIC
or two. The OSU benchmark test (Ohio State University,
2021) used 16 processes per node. Where the system has
multiple NICs, the MPI implementation divides the ranks
over the NICs. The receive queue for that rank is offloaded it
its NIC. All other ranks send messages for that process to its
NIC.

Figure 5: MPI point-to-point bandwidth

Figure 6 illustrates RMA bandwidth as a function of message
size for increasing numbers of processes per NIC.
Measurements were made on a single NIC using a SHMEM
performance test. Half peak bandwidth of 12.5 GB/s is
achieved for transfer sizes of approximately 128 bytes using
16 or more PEs per NIC. Asymptotic bandwidth is achieved
on transfer sizes of between 1K and 2K depending on the
number of active PEs.

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K

Ba
nd

w
id

th
 (G

B/
s)

Message Size (B)

Dual NIC

Single NIC

Launching Slingshot into Space – Cray User Group, May 2022 7

Figure 6: RMA bandwidth as a function of Message Size

Figure 7 illustrates MPI latency for Intel Xeon and AMD
Rome CPUs. Latency is measured with the OSU benchmark
test using nodes connected by a NIC-switch-NIC path. This
measurement includes the full prototype software stack, two
NIC crossings, the FEC latency on both links, and one switch
crossing. Latency is the same for messages of between 0 and
96 bytes, all of which are issued using a write to the NIC. For
payload sizes above 96 bytes the command and any inline
data is read by the NIC. Latency increases by the DMA read
latency of the CPU.

Figure 7: MPI Latency

Figure 8 plots MPI message matching rates for increasing
numbers of processes per node. The OSU message rate test
was modified to include a number of failed match attempts
for each message. This allows the dependency of matching
rates on list length to be determined. The results demonstrate
that Cassini meets its target of an average of 64 match
attempts per message without degrading the message rate.

Figure 8: MPI matching rates as a function of match attempts per

message

The Sandia message rate test (Sandia National Laboratory,
2021) measures performance under conditions that are more
representative of an application: the cache is invalidated
before sending messages, messages are sent and received at
the same time, and each process communicates with a number
of peers. There are four tests:

• The single direction test is similar to a traditional
message rate test except that the cache is invalidated
mimicking the application using the cache between
communication phases,

• In the pair-based test, each process exchanges
messages with a number of peers

• In the pre-posted test, each process pre-posts
receives before cache invalidation.

• The all-start test mimics an application which
finished a computation phase, issues all of its
communication calls and then wait for them all to
complete.

Aggregate rates for processes using one NIC are shown in
Figure 9 to compare with those from the simple micro-
benchmark. The pair-based test reaches the message rate
seen in the best-case test but requires more processes to do
so. The CPU is limiting performance on the other three tests.

Figure 9: Aggregate message rates measured with the Sandia test.

0

5

10

15

20

25

30

8 16 32 64 128 256 512 1024 2048 4096 8192

Ba
nd

w
id

th
 (G

by
te

s/
se

c)

Transfer Size (Bytes)

4 8 16 24 32 64

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2 4 8 16 32 64 128 256 512 1024

La
te

nc
y

(u
s)

Message Size (B)

Intel Xeon

AMD Rome

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300

M
es

sa
ge

 ra
te

 (m
ill

io
ns

)

Match attempts per message

64 PPN

48 PPN

40 PPN

32 PPN

24 PPN

16 PPN

0

10

20

30

40

50

60

70

80

90

100

0 16 32 48 64 80 96 112 128

M
es

sa
ge

 R
at

e
(m

ill
io

ns
)

Processes per Node

single direction pair-based

pre-post all-start

Launching Slingshot into Space – Cray User Group, May 2022 8

VI. HPE SLINGSHOT DEPLOYMENT STATUS
HPE Slingshot fabrics have been deployed since 2020. As of
the publishing date of this paper, all production deployments
are based on the Rosetta switch, along with the NVIDIA CX5
NIC. Deployments with Cassini started in fall of 2021, all of
which are currently in a pre-production state.
 HPE Slingshot is represented by 8 top 500 [7]
entries on the November 2021 list, with the NERSC
Perlmutter system topping the HPE Slingshot entries at
number 5. It is expected that additional HPE Slingshot based
entries will be submitted for the summer 2022 top 500 list.

A. Early Cassini Deployment Observations
As mentioned above, several Cassini based deployments are
under construction. Early performance data indicates that the
in-house results presented in previous sections hold true in
larger (pre) production environments. HPE is limited in what
can be shared in terms of deployment types, size and
performance results as all of such data is owned by the end
customer. We fully expect some of these customers to publish
some of their results in due time.

VII. CONCLUSIONS
HPE Slingshot brings the performance and functionality of
supercomputer networks to Ethernet. Significant new
functionality is added in the areas of congestion management
and adaptive routing. The design overcomes many of the
obstacles to adoption of standards-based networks in HPC:
latencies and packet overheads are low, performance
variability is minimized, links are hardware-protected, and
scalability is sustained. The results demonstrate that an
Ethernet network can deliver excellent performance on HPC
workloads.

Rosetta implements a novel, flow-based congestion
control mechanism that minimizes switch buffer utilization
and provides freedom from head-of-line blocking across the
entire fabric, greatly reducing tail latency and performance
variability. GPCNeT results demonstrate that the mechanism
almost completely eliminates interference from congesting
applications, and significantly reduces interference from

bandwidth-intensive applications sharing a network with
tapered global bandwidth.

Measured results from early Rosetta-based systems
validate the system simulation results. They demonstrate that
systems with up to 2048 ports achieve high bandwidth, low
latency, high packet rates, and excellent tail latencies, even in
the presence of congesting traffic. Systems with tens of
thousands of network of endpoints are being deployed in
2022.
 The Cassini NIC provides high performance for
MPI messaging, RMA access in PGAS programming models
and Ethernet. Matching is offloaded to the NIC, minimizing
use of CPU resources and freeing up memory bandwidth for
the application.

The HPE Slingshot network, comprising Cassini
NICs and Rosetta switches, is being used in HPE Cray EX
supercomputer systems including all three of the US Exascale
systems. It is also available in HPE Apollo clusters.

REFERENCES
[1] Zhu, Y., Eran, H., Firestone, D., Guo, C., Lipshteyn, M., Liron, Y.,

Padhye, J., Raindel, S., Yahia, M.H. and Zhang, M., 2015. Congestion
control for large-scale RDMA deployments. ACM SIGCOMM
Computer Communication Review, 45(4), pp.523-536.

[2] Ramakrishnan, K., Floyd, S. and Black, D., 2001. RFC3168: The
addition of explicit congestion notification (ECN) to IP.

[3] MPICH - High-Performance Portable MPI. https://www.mpich.org/.
[4] Grun, P., Hefty, S., Sur, S., Goodell, D., Russell, R.D., Pritchard, H.

and Squyres, J.M., 2015, August. A brief introduction to the
openfabrics interfaces-a new network api for maximizing high
performance application efficiency. In 2015 IEEE 23rd Annual
Symposium on High-Performance Interconnects (pp. 34-39). IEEE.

[5] Bruck, J., Ho, C.T., Kipnis, S., Upfal, E. and Weathersby, D., 1997.
Efficient algorithms for all-to-all communications in multiport
message-passing systems. IEEE Transactions on parallel and
distributed systems, 8(11), pp.1143-1156.

[6] Ginsberg, E., Alston, V., Wild III, A.A., Sheth, A., Liu, W. and
Periakaruppan, R., Ixia, 2009. Generating traffic for testing a system
under test. U.S. Patent 7,516,216.

[7] https://www.top500.org/

