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Abstract— HPE Slingshot networks are constructed from 
two components, a PCIe Gen4 NIC “Cassini” and a 64-port 
switch “Rosetta”. Their links use standard Ethernet physical 
interfaces operating at 200 Gbps designed to construct either 
dragonfly or fat-tree networks. Rosetta switches operate HPE 
Slingshot specific adaptive routing and congestion management 
protocols on the fabric links that connect them together. Their 
edge ports, including those that connect to Cassini, support both 
optimized HPC and standard Ethernet protocols. The HPE 
Cray EX supercomputer system uses them in a dragonfly 
network as this provides cost effective global bandwidth at scale. 
Clusters of HPE Apollo servers (HPE Inc, 2021) can use either 
dragonfly or fat-tree1. HPE Slingshot networks are designed to 
support 64 to 250,000 or more endpoints. The largest system 
under construction has approximately 85,000 endpoints. 
Support for systems of this scale has a significant bearing on the 
design of the Rosetta and Cassini devices. This paper presents 
the key features and some early results of performance of 
Rosetta and Cassini devices. This paper includes information 
from early papers on the Rosetta ASIC, as well as section of not-
yet published papers on the Cassini NIC. 
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I. INTRODUCTION 
HPE Slingshot is a modern, highly scalable, 

connectionless high-performance RDMA interconnect for 
high-performance computing (HPC) and artificial intelligence 
(AI) clusters that delivers industry leading performance, 
bandwidth, and low latency for HPC, AI/ML, and data 
analytics applications. HPE Slingshot brings together the best 
of HPC optimized fabrics - as pioneered by Cray over eight 
generations of supercomputing interconnect silicon – with the 
ubiquity of standard Ethernet. HPE Slingshot features fine-
grain adaptive routing, advanced congestion control, and 
sophisticated quality-of-service capabilities (QoS). By 
leveraging and building on standard Ethernet technology and 
software, HPE Slingshot delivers cost-effective connectivity 
and interoperability with third-party NICs and switches, and a 
broad eco-system of software. Support for both high-
performance IP traffic and remote memory operations 
broadens the range of applications that perform with high 
performance beyond traditional MPI-based modeling and 
simulation codes. HPE Slingshot delivers a converged 
network infrastructure with great performance on both 
traditional modeling and simulation codes alongside native 
sockets-based applications and direct Ethernet connectivity to 
storage without requiring gateway nodes. 

HPE Slingshot delivers high bandwidth and low latency – 
both average and tail latency - consistently and reliably in real-
world operating conditions, especially under load with diverse 
and contending traffic patterns.  HPE Slingshot moves beyond 
just raw performance capability with a system-level approach 
to ensure actual performance is realized and delivered 
consistently and reliably. This is because it couples leading 
edge enhanced Ethernet technology and bandwidth (200 Gbps 
links using PAM-4 signalling) coupled with advanced features 
including breakthrough fine grain adaptive routing, 
congestion management, and QoS features to deliver 
consistent higher effective application performance at scale. 

High raw performance interconnect technology does not 
guarantee high performance in practice. This is because 
modern HPC systems are complex and simultaneously host a 
range of workloads that present an inconsistent set of 
communications patterns that challenge traditional brute 
bandwidth HPC interconnects because they cannot deal well 
with the unavoidable congestion conflicts. Congestion in turn 
causes the effective latency of operations to spike, causing 
application performance to suffer and vary from run-to-run.  

HPE Slingshot consists of switches built with the HPE-
developed Rosetta ASIC, and NICs built with the HPE- 
developed Cassini ASIC. Rosetta is a 64-port, 200 
Gbps/direction/port HPC Ethernet switch chip that provides 
state-of-the-art small packet routing, an advanced congestion 
management system, and QoS capabilities. The Cassini NIC 
chip provides hardware offload of MPI matching and 
progression, together with one-sided operations and 
collectives. The host interface for Cassini is an enhanced 
version of PCIe Gen4. 

The HPE Slingshot 64 port high switch radix enables the 
deployment using a dragonfly topology of low-diameter 
networks even at very large scale. With HPE Slingshot, a 
system can scale up to 250,000 physical endpoints with only 
a three-hop diameter. Reducing the network diameter reduces 
latency, cost and the power consumed. Low diameter also 
enhances adaptive routing algorithms that improve application 
performance and reliability. HPE Slingshot’s high peak 
performance and low network diameter delivers high-
performance, cost-effective networks with very low latency. 

II. ROSETTA SWITCH ARCHITECTURE 
Rosetta is a 64-port Ethernet switch, implemented as a 

large monolithic (685 mm2) ASIC fabricated in the TSMC 16 
nm FinFet process and housed in a 62.5 mm package. All main 
switching logic utilizes an 850 MHz clock, which results in a 
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typical power dissipation of 160 watts and a maximum of 
around 300 watts. 

A. Ethernet Functionality 
All Rosetta ports support IEEE 802.3 Ethernet standard 

signaling. Each port has 4 lanes operating at 50 Gbps using 
pulse amplitude modulated (PAM-4) signaling or 25 Gbps 
non-return to zero (NRZ) signaling to provide 200 Gbps 
Ethernet (IEEE 802.3bs), 100 Gbps or 50 Gbps (IEEE 
802.3cd), or 100 Gbps (IEEE 802.3-2015). While providing 
an optimized, low latency, high throughput HPC 
infrastructure, Slingshot is fully Ethernet standards compliant 
and interoperable, operating as a converged HPC / Ethernet 
network.  

B. Enhanced Link Functionality 
The Slingshot architecture provides optimizations within 

the network stack designed to improve network efficiency. 
These enhancements, driven by HPC and data analytics 
workloads, bring performance of the data link layer protocol 
on par with, or above, the capabilities of proprietary high-
speed networks. These improvements benefit both HPC and 
Ethernet applications since they enable greater throughput, 
permit a higher transaction rate, and improve reliability. 
Enhancements include reduced inter-packet gap, optimized 
packet headers, credit-based flow control, link-level retry, and 
degraded link operation (i.e. continued operation with two or 
three of the four lanes disabled). Enhanced functionality is 
negotiated between pairs of devices using Link Layer 
Discovery Protocol (LLDP). 

C. Network Protocols 
HPE Slingshot’s data link layer (layer 2) and network 

layer (layer 3), compliant with the Open System 
Interconnection (OSI) model, can switch packets based on an 
L2 endpoint address within a subnet, and can route packets 
based on an L3 destination between subnets (L3 routing is 
currently not yet enabled in software). Like many standards-
based networks, IPv4 and IPv6 routing is implemented as part 
of the control plane. This network management overlay loads 
the appropriate forwarding and routing tables, affecting the 
way packets traverse the high-speed network data plane. Both 
in-band and out-of-band network management paths allow 
standardized routing mechanisms and protocols to 
communicate with the Rosetta devices. Additionally, network 
function virtualization (NFV) enables offload of many 
network services and their supported protocols, providing 
support for resilient, scalable services, sized to match network 
requirements and load. 

D. Physical Structure 
Rosetta uses a tiled physical structure, using two primary 

logic blocks: tile functions (TF) and peripheral functions (PF). 
There are 32 TF blocks, each performing the routing, packet 
forwarding, and congestion management functions for two 
physical ports. The 32 TF blocks are arranged in a 4-row by 
8-column matrix. Interconnect in the row and column 
dimensions creates the all-to-all connections within the 
matrix. The tiled design allows for the crossbars to be 
distributed across tiles, avoiding global arbitration. 
Distributed buffering provides a 4X internal speedup of data 
movement. 

 

There are 32 PF blocks, each also performing its functions 
for two physical ports. PF functions include Ethernet protocol 
functionality along with the physical coding sublayer (PCS) 
and media access control (MAC) layer for each channel. 
These 32 blocks are arranged on the periphery of the die along 
with the eight SerDes required to support the two physical 
ports of each PF block. Each PF is connected to its 
corresponding TF through global channel routing, which 
completes the top-level interconnect scheme. In addition to the 
PF and TF blocks, there is a maintenance block (MB) that 
provides the configuration and control interface into Rosetta 
for system management. 

E. Congestion Management 
Rosetta’s adaptive routing carefully changes a packet’s path 
to avoid mid-fabric congestion, which increases network 
utilization and reduces latency, but adaptive routing cannot 
address endpoint congestion. In this section, we describe a 
novel congestion control mechanism implemented in 
Slingshot that reduces the impact of endpoint congestion. 

Under normal circumstances, the flow mechanism 
in Rosetta rarely needs to stop packets, because the buffering 
requirements for each flow are carefully controlled. The total 
mid-fabric buffer requirements are typically less than the 
capacity of the mid-fabric input buffers. This ensures that 
flows that are not experiencing any congestion have enough 
buffer space to operate at full bandwidth. 

Congestion often forms around an egress edge port. 
This can occur for several reasons: an application or service 
has directed many streams of packets (flows) to a single 
egress port, a destination node is unable to process new data 
quickly enough and starts to assert pause, or a destination 
edge port is operating at a lower bandwidth than other edge 
ports. 

Congestion can cause network buffers to fill, 
requiring traffic trying to pass through the buffers to be 
stopped to prevent overflow and packet loss. Such back-
pressure can cascade and spread out upstream, a phenomenon 
known as tree saturation. Traffic not even passing through the 
congested bottleneck can be blocked if it shares virtual 
channels with congested traffic on any of the upstream links. 
To avoid this coupling, effective congestion management 
must quickly detect and reduce congestion, preventing 
buffers from filling and blocking unrelated traffic. 

The Datacenter Quantized Congestion Notification 
(DCQCN) protocol [1] is an example of a mechanism to 
detect and control congestion within a network by observing 
buffer occupancy and the rate at which a buffer is filling and 
then sending acknowledgements to reaction points in the 
network to throttle the traffic that is contributing to the 
congestion. DCQCN suffers from several problems, which 
include unfairness in which flows are throttled, and a large 
number of control parameters that make tuning difficult. It is 
possible to optimize the configuration for one pattern of 
traffic and to severely impact other patterns of traffic. For 
these reasons, DCQCN for a high-speed network struggles to 
balance high network utilization and stability while 
responding to congestion. On the other hand, congestion 
schemes like Explicit Congestion Notification (ECN) [2], 
have slow convergence in large networks due to the long 
feedback of ECN markers in the presence of congestion. 
Moreover, these schemes continue to permit inter-job 
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interference while they attempt to adjust the transmission 
rates of congesting flows. 

Rosetta congestion management is designed to 
prevent congestion from growing within the network fabric, 
and to prevent congestion from interfering with unrelated 
traffic. Egress switches measure the degree of endpoint 
congestion and return this indication in congestion acks for 
flows directed to congested egress ports. In upstream 
switches, the bandwidth of each flow is reduced to match the 
available egress bandwidth. Critically, only the flows 
targeting the congested egress port are back-pressured, and 
this flow control is pushed back all the way to the flows’ 
ingress ports. Other traffic can progress unimpeded, even if 
sharing virtual channels with congesting flows on upstream 
links.  

The mechanism strongly controls admission for 
congesting flows. Packets entering the network are forced to 
buffer in a flow queue at the ingress port and are only allowed 
to progress through the fabric as packets from the same flow 
depart downstream switches. This process limits the total 
buffering requirements of a flow within the fabric to an 
amount just large enough to sustain the flow’s fair share of 
bandwidth at the congestion point, leaving the remainder of 
the buffers available to run uncongested flows at full speed. 
The endpoint output queues compute several metrics for each 
traffic class related to degree and rate of congestion and 
number of contributing flows. These are used to feed 
congestion information back via congestion acks. Different 
degrees of endpoint congestion can be reported via different 
types of congestion acks. These congestion acks are used to 
manage the bandwidth of flows and control the number of 
bytes allowed to enter the network. 

To achieve effective flow rate control, Rosetta limits 
the number of bytes a flow of packets can have in the network 
at any point of time. The amount of unacknowledged 
downstream data belonging to a flow is tracked at every 
switch along the flow’s path. As congestion acks are received 
from downstream switches, flows contributing to congestion 
will react by lowering their rates at each hop along the path, 
guided by the congestion ack values. Flows that are not 
contributing to the endpoint congestion are unaffected. This 
action keeps packets away from congestion hot spots, and 
minimizes buffer utilization by stalled packets, ensuring free 
buffer space for unrelated traffic and improving overall 
network throughput. 

F. Performance 
Performance data was measured on two prototype systems: 
Malbec and Shandy. Malbec comprises 485 Intel Xeon-based 
nodes, each with one 100 Gbps Ethernet NIC, connected by 
a 512-port dragonfly network comprising four groups of eight 
switches. Each switch has 16 host links operating at 100 
Gbps, 28 local links operating at 200 Gbps, and six global 
links operating at 200 Gbps. Peak bandwidth of the global 
links is 4.8 TB/s, 79% of injection bandwidth. Shandy 
comprises 1024 AMD Rome-based nodes, each with a pair of 
100 Gbps Ethernet NICs, connected by a 2048-port dragonfly 
network comprising eight groups of 16 switches. Each switch 
has 16 host links operating at 100 Gbps, 30 local links 
operating at 200 Gbps, and seven global links operating at 
200 Gbps. Peak bandwidth of the global links is 11.2 TB/s, 
44% of the injection bandwidth.  

Tests were run using Cray MPI – derived from 
Argonne National Laboratory MPICH [3] – implementing the 
MPI-3.1 standard. Measurements were made with the OSU 
benchmark suite Error! Reference source not found.. 
Programming model libraries use the TCP/IP stack or the 
libfabric interface [4]. Libfabric is a core component of the 
OpenFabric Interface (OFI) framework. It is an abstraction 
layer that provides user applications with access to the 
network. The libfabric API was designed for high-bandwidth, 
low-latency NICs, with a goal to scale to tens of thousands of 
endpoints. The libfabric provider for Slingshot supports the 
reliable datagram (RDM) endpoint type. An RDM endpoint 
provides reliable, unconnected data-transfer semantics, 
supporting remote memory access, atomic memory 
operations (AMOs) and tagged-messaging operations. RMA 
operations are used to transfer data directly between local and 
remote data buffers. The Ethernet NICs generate RoCEv2 
traffic. The network is presented with UDP packets 
containing up to 4K of payload data. All traffic is ordered. 

Measurements show quiet network MPI latencies in 
the 1.5-1.8 µs range depending on the CPU type. Each switch 
hop adds approximately 300ns to the latency (including FEC 
on the cable between switches). Full bandwidth is achieved 
on a wide range of packet sizes.  

Fig. 3 reports all-to-all bandwidth measured on 
Shandy using the MPI_Alltoall collective. Performance 
scales well with the number of nodes. Note the change in 
bandwidth at 256-512 bytes. MPICH uses Bruck’s index 
algorithm [5] at small sizes, switching to a permutation as the 
message size increases. On this system 1/8th of the all-to-all 
traffic remains local to each group and 7/8 uses the global 
links. Peak all-to-all bandwidth of the system is 12.8 TB/s. 
The highest bandwidth measured was 11.4 TB/s, 89% of 
peak. Tests show that all-to-all bandwidth is maintained in 
the presence of congestion. Performance counters collected 
during the run show high numbers of reroutes as the network 
load-balances ordered flows. No packets were dropped 
during this test. It is worth underlining that these results were 
for Ethernet traffic generated by standard RoCE NICs. 

 

 
Figure 3 

Measurements of Ethernet throughput and latency 
were performed using an IXIA tester operating at 200 Gbps 
in accordance with IEEE RFC 2544 [6]. The measured rate 
for 64B frames was 297,619,047 frames per second (FPS). 
No packets were dropped. Latency for Ethernet packets was 
measured at 308-327 ns depending on the combination of 
ports used. Measurements of the frame rate for smaller (40 
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byte) frames were performed using Rosetta’s built-in frame 
generator. The frame rate measured was 521 M FPS.  
 

III. DRAGONFLY TOPOLOGY 
Dragonfly topology-based networks offer rich bandwidth for 
nearest neighbor / local communications intensive 
applications and scalable cost-effective global bandwidth for 
very large applications with long reach communications 
patterns. HPE Slingshot’s advanced congestion management, 
adaptive routing and QoS features maximize the 
effectiveness of the optimized dragonfly topology and 
minimizes job placement issues. 
 

 
  

Figure 4. HPE Slingshot Extreme Scale and Performance with 
Dragonfly Topology 

 
The dragonfly network topology is a low diameter “direct” 
network, avoiding the need for any external fat tree type “top” 
switches and reducing the number of costly optical links 
required for a given global bandwidth for large systems. The 
dragonfly topology design builds on earlier work showing the 
value of low-diameter networks constructed from high radix 
routers. Ideally, a router would have enough ports to connect 
to all the other routers in the system — the network would 
have diameter one. However, this topology is not practical for 
large systems. If a group of routers — acting in concert as a 
single, very high radix virtual router pooled their links, then 
the group could have enough links to directly connect to all 
the other groups in the system. This is the key idea behind the 
dragonfly network. Low-cost electrical links are typically 
used to connect the NICs in each node to their local router 
and the routers in a group – (L0 links). 

Each router provides both “intra-group” links (L1 
links) that connect the router to other routers in its group and 
“inter-group” links (also known as global or L2 links) that 

connect to other groups. The routers in a group pool their 
inter-group links, enabling each group to be directly 
connected to all the other groups. Optical links are used for 
the long links between groups.  

There are several possible group sizes with the 
Slingshot dragonfly topology depending on several factors. 
These include the desired maximum scale of the system, the 
desired scalable unit of compute capacity to add at a time, and 
the optimal cost point driven by the trade-offs of cable cost 
and switch count depending on the rack density and physical 
layout. 

Each dragonfly group has a fixed number of routers 
and provides a fixed maximum number of global ports. 
Sufficient global ports are provided to allow connections to a 
large number of other groups while network cost scales 
linearly with the system size. The number of inter-group links 
used can be adjusted to tailor the global bandwidth of the 
system. 

The global bandwidth of a dragonfly network is 
given by:  

 
𝐺𝑙𝑜𝑏𝑎𝑙 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = 𝑙𝑖𝑛𝑘 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ × 𝑔𝑙𝑜𝑏𝑎𝑙 𝑙𝑖𝑛𝑘𝑠 𝑝𝑒𝑟 
𝑔𝑟𝑜𝑢𝑝 × 𝑔𝑟𝑜𝑢𝑝𝑠  
 

For a large system, the global bandwidth is twice the 
bisection bandwidth as each group has an equal number of 
connections to each of the other groups. Global bandwidth 
grows linearly with system size. In all but the largest systems, 
each group has many more global links than there are groups, 
thus multiple connections can be made between every pair of 
groups. Where full global bandwidth is not required, the 
number of global links can be reduced to minimize cost. 
Notably absent in dragonfly topologies are the discontinuities 
in cost that characterize fat tree networks as they are scaled 
up. 

In a dragonfly network, the shortest path between 
any two nodes is known as the “minimal” path. It may be 
within one group or between groups. A minimal path between 
groups may require hops in the source and destination groups 
plus an optical hop between groups. Intra-group bandwidth is 
over provisioned to allow for the higher loading on the intra-
group links. 

Where traffic from each group to each of the other 
groups is balanced — as it is for all-to-all or uniform random 
communication — the links are equally loaded on minimally 
routed traffic. However, if all nodes in one group were to 
communicate with nodes in one other group, there are 
insufficient links to achieve full bandwidth with minimal 
routing. To achieve high bandwidth on this type of traffic, it 
is necessary to select “non-minimal” paths in which packets 
are adaptively routed intermediary groups. (HPE Slingshot 
supports adaptive routing of both ordered and un-ordered 
traffic effectively.) Non-minimal routing increases the 
aggregate network load but balances the traffic over all the 
available links and delivers scalable effective performance. 

The scope of the advantage a dragonfly network has 
over a fat tree can be understood by the extent to which 
packets are minimally routed. With 100 percent minimal 
routing, dragonfly has a 2:1 network hop advantage — each 
packet takes one global hop at most, as opposed to two in a 
three-layer fat tree. If all traffic is non-minimally routed, then 
load on the global links is equal to that in a full bandwidth fat 

 
Figure 2. Trace packet latency with congesting background 
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tree. Traffic patterns generating high volumes of global 
traffic are well suited to minimal routing given good diversity 
in the range of destinations to which each node is 
communicating at any given point in time. Application traffic 
patterns with low path diversity require a higher proportion 
of non-minimal traffic. However, if the traffic is local, a high 
proportion of it is contained within a dragonfly group, then 
the load on the global links will be low. The large dragonfly 
group size with high-bandwidth optical network connections 
between groups ensures that systems are well suited to a wide 
range of HPC applications. Where high global bandwidth is 
not required, the optical network can be scaled back to reduce 
cost. 

IV. CASSINI NIC 
HPE Slingshot networks are designed to support 250,000 or 
more endpoints1.  The largest system under construction has 
approximately 85,000.  Support for systems of this scale has 
a significant bearing on the design of the NIC. 
 

Cassini is a 200 Gbps HPC NIC ASIC chip developed by 
HPE. The host interface is PCIe Gen4 with support for 
extended speed mode (where supported by the CPU or GPU). 
The network link port conforms to the 200 Gbps (4×50 Gbps 
PAM 4) and 100 Gbps (4×50 Gbps NRZ) Ethernet standards. 

Each node in a system is connected to the network by one 
or more Cassini NICs.  In EX systems with multiple NICs per 
node all the NICs are attached to a single network slice.  This 
network design, referred to as multi-port, allows each NIC to 
communicate with any other NIC in the system. It is used in 
preference to a multi-slice network (where device d on node 
n connects to port n of slice d). This implementation choice 
allows processes bound to a socket that is local to their NIC 
to send and receive using that NIC, improving performance.   

A. Supporting HPC on Ethernet 
As link speeds increase and the cost of developing new 
physical interfaces increases, high-speed networks are 
converging on the same set of physical standards.  However, 
Ethernet was designed for local and wide area networks 
rather than the system but work within a supercomputer. 
Packet overheads are large and packet switching rates have 
been relatively low by the standards of HPC systems.  
Ethernet relies on being able to drop packets when there is 
network congestion. Transport protocols such as TCP/IP 
have developed in this environment.  Remote direct memory 
access (RDMA) protocols used in HPC and storage 
applications perform badly under these conditions.  

The ubiquity of Ethernet physical standards makes 
it attractive for an HPC vendor to develop networks that 
combine Ethernet interoperability with HPC functionality 
and performance. Cray took this direction with Slingshot and 
it is being continued at HPE.  

HPE Slingshot devices negotiate a set of 
enhancements to Ethernet protocols using link layer discover 
protocol (LLDP).   The minimum packet size is are reduced 
to 32 bytes and inter-packet gaps are removed. Header sizes 
are reduced. Packet rates are increased.  Link reliability is 

 
1 The largest dragonfly network that can be constructed has 
511 groups of 512 nodes.  

greatly increased through use of link level retry (LLR) and 
reduced lane operation. Packet drops are avoided in almost 
all error and congestion cases.  An efficient transport layer 
protocol has been developed for message passing and remote 
memory access (RMA).   While some of these enhancements 
are specific to the fabric links connecting Rosetta switches, 
others can be widely adopted:  The low latency forward error 
correction FEC2, RS(272,257+1,7,10) is being used by the 
25-Gigabit Consortium and flow based congestion 
management is an active area of research. 

This new functionality is fully interoperable with 
standard Ethernet protocols. The link between a Cassini NIC 
and a Rosetta switch can carry Ethernet frames, v4 and v6 IP 
traffic, MPI messages, one-sided operations, low latency 
barrier operations, and RoCE storage traffic simultaneously. 
Traffic is assigned to quality of service (QoS) classes using 
the DiffServ model (IETF Network Working Group, 1998).  

B. Reliability 
Cassini provides upper layers of software with a reliable 
RMA and messaging transport.  Where a packet is lost, or 
resources are exhausted the transport will take the actions 
required to complete the operation. A fatal error is only 
returned when endpoints remain disconnected for some 
period. 

Support for LLR on links between HPE Slingshot 
devices and use of ECC within those devices ensures that 
packets are not dropped as a result of soft errors, but they can 
be dropped when a device or cable fails.  End-to-end retry is 
required for these cases.  

Some network operations are idempotent, they can 
be replayed. Examples of this include one-sided Put and Get 
operations. Other operations must be executed once and once 
only.  AMOs are one well-known example, but there are other 
widely used operations that cannot be replayed. MPI message 
matching and setting a target side completion event are 
important cases.  

Cassini provides two reliability models: a simplified 
or “restricted” model for idempotent operations and an 
“unrestricted” model for operations that manipulate target 
state.  The restricted model is connectionless. The 
unrestricted model uses dynamically allocated connections 
that persist while in use.  It stores the result of an operation, 
checking its store for the result before executing a retry, and 
releasing the result as the operation completes.  

Consider execution of a fetching AMO.  In normal 
operation the AMO request is executed and the result is 
stored.  Storage space is released when the operation 
completes.   If the original request is dropped a retried request 
will find the result store empty. The AMO can be executed 
safely. If it was the response that was dropped, a retried 
request will find and return the original result rather than 
execute the operation.  

Maintaining the state necessary to perform a retry is 
expensive – it can be more expensive than performing the 
operation itself.  Cassini takes away this burden, maintaining 
the state required for retry in hardware. Use of LLR reduces 
the rate of packet loss and hence the rate of end-to-end retry. 

2 Ethernet standards mandate use of FEC at speeds of 100 
Gbps or higher so as to retain a bit error rate (BER) of 10-12 
or better. 
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This allows policy on when to retry to be implemented in 
software.   

C. Ordering and Completion 
MPI requires point-to-point ordering of message matching.  
If a given sender sends two messages to the same destination 
and both can be matched by a single receive, the receive must 
match the one that was sent first. Similarly, if a receiver posts 
two receives and both match the same message, the message 
must be matched to the first receive.  These semantics have a 
significant bearing on the design of offload NICs. 

PGAS programming models require address 
ordering. Where a write to an address is followed by either a 
read (raw) or a second write (waw) the second operation 
cannot start until the result of the first is globally visible.  
Implementing address ordering in software is expensive. A 
process or thread must block until it has received 
confirmation that the first operation has completed.  
Offloading this step to the NIC is desirable. Cassini does this 
through use of a fence command. It ensures that operations 
ahead of the fence have completed before those behind the 
fence are issued. The progression is in hardware.   

Where there is one path between initiator and target, 
a response can be returned, releasing a fence, when the target 
write has reached a point of global ordering in the target NIC. 
For Cassini, this point is on the NIC side of the host interface. 
Where there are multiple paths between nodes, a response 
must be delayed until the first operation has reached a point 
of ordering within the target node. This point is within the 
target node’s PCIe root complex. Cassini provides to the 
option to specify which behaviour is required on an 
operation-by-operation basis (in libfabric terms, selecting 
between the FI_TRANSMIT_COMPLETE and 
FI_DELIVERY_COMPLETE options). 

Completion of an operation is notified by generating 
events at the initiator and (optionally) at the target. 
Completion events (and other events indicating errors) are 
written to an event queue in user memory.  MPI point-to-
point messaging and most RDMA protocols require 
individual completion events in the sending and receiving 
processes, with details of the transfer that has completed.  
Other APIs use bulk completion, with notification being 
provided when a set of operations have completed 
successfully or at least one has failed.  This lighter-weight 
model is known as counting events. It was first provided by 
Quadrics (Beecroft, et al., 2005) and has been adopted by 
Portals and libfabric. A counter is incremented as each 
operation completes. A completion action is triggered when 
the counter reaches a threshold. This action may be a full 
completion event or a new triggered operation.  

 

D. Software APIs 
Libfabric (OpenFabric Working Group, 2018) provides a set 
of APIs that match the needs of HPC programming models. 
They can be implemented in software over hardware 
interfaces such as verbs or the hardware can implement up to 
the software interface.  Cassini does the latter, providing 
direct hardware support for many of the libfabric interfaces.  
The Cray programming environment layers over libfabric 
providing MPI, OpenSHMEM, UPC, Chapel and a wide 
range of tools. This environment is now portable across Cray 

and HPE systems implementing libfabric.  Other MPI 
implementations including MPICH (Argonne National 
Laboratory, 2021) from which Cray and Intel MPI are derived 
and OpenMPI (Open MPI Project, 2020) also support 
libfabric.   

The Portals API (Barrett, et al., 2014) provides a set 
of interfaces designed for scalability and performance. 
Portals was traditionally focussed on message passing, but 
version four adds support for one-sided remote memory 
access.  Cassini adopts Portals ideas relating to message 
matching, completion and triggered operations, but it does 
not attempt to offload the whole API.  

Cassini provides direct support for Ethernet APIs 
used in a modern Linux stack, the generic send offload (GSO) 
and generic receive offload (GRO) in particular. Hardware 
support includes calculation of checksums (including RoCE 
CRCs), controlling how incoming Ethernet packets are 
distributed over endpoints (referred to as receive side scaling 
or RSS), and placement of data into target memory.  Ethernet 
packets can be created by user processes (where permitted) 
or driver threads. 

 

V. EARLY PERFORMANCE RESULTS 
This section provides preliminary data on Cassini 
performance measured on the Shadow system. Tests use up 
to 64 MPI ranks per NIC, 128 ranks per dual socket node.  
Figure 5 plots MPI point-to-point bandwidth using one NIC 
or two. The OSU benchmark test (Ohio State University, 
2021) used 16 processes per node.  Where the system has 
multiple NICs, the MPI implementation divides the ranks 
over the NICs. The receive queue for that rank is offloaded it 
its NIC. All other ranks send messages for that process to its 
NIC. 
 

Figure 5: MPI point-to-point bandwidth 

 
Figure 6 illustrates RMA bandwidth as a function of message 
size for increasing numbers of processes per NIC. 
Measurements were made on a single NIC using a SHMEM 
performance test. Half peak bandwidth of 12.5 GB/s is 
achieved for transfer sizes of approximately 128 bytes using 
16 or more PEs per NIC. Asymptotic bandwidth is achieved 
on transfer sizes of between 1K and 2K depending on the 
number of active PEs. 
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Figure 6: RMA bandwidth as a function of Message Size 

Figure 7 illustrates MPI latency for Intel Xeon and AMD 
Rome CPUs.  Latency is measured with the OSU benchmark 
test using nodes connected by a NIC-switch-NIC path.  This 
measurement includes the full prototype software stack, two 
NIC crossings, the FEC latency on both links, and one switch 
crossing.  Latency is the same for messages of between 0 and 
96 bytes, all of which are issued using a write to the NIC.  For 
payload sizes above 96 bytes the command and any inline 
data is read by the NIC. Latency increases by the DMA read 
latency of the CPU. 
 

Figure 7: MPI Latency 

Figure 8 plots MPI message matching rates for increasing 
numbers of processes per node. The OSU message rate test 
was modified to include a number of failed match attempts 
for each message. This allows the dependency of matching 
rates on list length to be determined.  The results demonstrate 
that Cassini meets its target of an average of 64 match 
attempts per message without degrading the message rate.  
  

 
Figure 8: MPI matching rates as a function of match attempts per 

message 

The Sandia message rate test (Sandia National Laboratory, 
2021) measures performance under conditions that are more 
representative of an application: the cache is invalidated 
before sending messages, messages are sent and received at 
the same time, and each process communicates with a number 
of peers.  There are four tests: 
 

• The single direction test is similar to a traditional 
message rate test except that the cache is invalidated 
mimicking the application using the cache between 
communication phases, 

• In the pair-based test, each process exchanges 
messages with a number of peers 

• In the pre-posted test, each process pre-posts 
receives before cache invalidation. 

• The all-start test mimics an application which 
finished a computation phase, issues all of its 
communication calls and then wait for them all to 
complete.   

 
Aggregate rates for processes using one NIC are shown in 
Figure 9 to compare with those from the simple micro-
benchmark.  The pair-based test reaches the message rate 
seen in the best-case test but requires more processes to do 
so. The CPU is limiting performance on the other three tests. 
 

 
Figure 9: Aggregate message rates measured with the Sandia test. 
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VI. HPE SLINGSHOT DEPLOYMENT STATUS 
HPE Slingshot fabrics have been deployed since 2020. As of 
the publishing date of this paper, all production deployments 
are based on the Rosetta switch, along with the NVIDIA CX5 
NIC. Deployments with Cassini started in fall of 2021, all of 
which are currently in a pre-production state. 
 HPE Slingshot is represented by 8 top 500 [7] 
entries on the November 2021 list, with the NERSC 
Perlmutter system topping the HPE Slingshot entries at 
number 5. It is expected that additional HPE Slingshot based 
entries will be submitted for the summer 2022 top 500 list. 

A. Early Cassini Deployment Observations 
As mentioned above, several Cassini based deployments are 
under construction. Early performance data indicates that the 
in-house results presented in previous sections hold true in 
larger (pre) production environments. HPE is limited in what 
can be shared in terms of deployment types, size and 
performance results as all of such data is owned by the end 
customer. We fully expect some of these customers to publish 
some of their results in due time. 

VII. CONCLUSIONS 
HPE Slingshot brings the performance and functionality of 
supercomputer networks to Ethernet. Significant new 
functionality is added in the areas of congestion management 
and adaptive routing.  The design overcomes many of the 
obstacles to adoption of standards-based networks in HPC: 
latencies and packet overheads are low, performance 
variability is minimized, links are hardware-protected, and 
scalability is sustained.  The results demonstrate that an 
Ethernet network can deliver excellent performance on HPC 
workloads. 

Rosetta implements a novel, flow-based congestion 
control mechanism that minimizes switch buffer utilization 
and provides freedom from head-of-line blocking across the 
entire fabric, greatly reducing tail latency and performance 
variability.  GPCNeT results demonstrate that the mechanism 
almost completely eliminates interference from congesting 
applications, and significantly reduces interference from 

bandwidth-intensive applications sharing a network with 
tapered global bandwidth. 

Measured results from early Rosetta-based systems 
validate the system simulation results. They demonstrate that 
systems with up to 2048 ports achieve high bandwidth, low 
latency, high packet rates, and excellent tail latencies, even in 
the presence of congesting traffic. Systems with tens of 
thousands of network of endpoints are being deployed in 
2022. 
 The Cassini NIC provides high performance for 
MPI messaging, RMA access in PGAS programming models 
and Ethernet.  Matching is offloaded to the NIC, minimizing 
use of CPU resources and freeing up memory bandwidth for 
the application.  
 

The HPE Slingshot network, comprising Cassini 
NICs and Rosetta switches, is being used in HPE Cray EX 
supercomputer systems including all three of the US Exascale 
systems.  It is also available in HPE Apollo clusters.  
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