
Extending Chapel to support fabric-attached
memory

Amitha C
HPC Business Group

Hewlett Packard Enterprise
Bangalore, India

amitha.c@hpe.com

Bradford L. Chamberlain
HPC Business Group

Hewlett Packard Enterprise
Seattle, USA

bradford.chamberlain@hpe.com

Clarete Riana Crasta
HPC Business Group

Hewlett Packard Enterprise
New York, USA

clarete.riana@hpe.com

Sharad Singhal
Hewlett Packard Labs

Hewlett Packard Enterprise
Milpitas, USA

sharad.singhal@hpe.com

Abstract—Fabric-Attached Memory (FAM) is of increasing
interest in HPC clusters because it enables fast access to large
datasets required in High Performance Data Analytics (HPDA)
and Exploratory Data Analytics (EDA). Most approaches to
handling FAM force programmers either to use low-level APIs,
which are difficult to program, or to rely upon abstractions from
file systems or key-value stores, which make accessing FAM less
attractive than other levels in the memory model due to the
overhead they bring. The Chapel language is designed to allow
HPC programmers to use high-level programming constructs that
are easy to use, while delegating the task of managing data and
compute partitioning across the cluster to the Chapel compiler
and runtime. In this paper, we describe an approach to integrate
FAM access within the Chapel language, thereby simplifying the
task of programming and using FAM across distributed Chapel
tasks.

Index Terms—fabric-attached memory, Chapel, FAM dis-
tributed arrays, high performance computing

I. INTRODUCTION

Increasingly, HPC clusters are being used for applications
in high performance data analytics where the working set
is too large to fit in compute node memory. Motivated by
the emergence of storage class memory (SCM), research is
focused on developing programming frameworks that allow
applications to address fabric-attached memory (FAM) [1]. As
shown in Figure 1, FAM architectures support external fabric-
attached memory accessible to all compute nodes over a high-
bandwidth low-latency network. By significantly reducing
the latency to persistence, these architectures allow higher
performance for applications that require large working sets.

Fig. 1. FAM Architecture

Unfortunately, there are few means available to program
FAM within HPC architectures. HPC programmers generally
write code that is aware of low-level details of the underlying
hardware and cluster topology in order to achieve the highest
possible performance. However, this makes programs hard
to write, understand, and maintain over time. Programming
models thus frequently take a “library-based” approach, where
much of the complexity is contained within libraries (e.g., MPI
or SHMEM, or possibly higher-level libraries implemented on
top of them) and abstracted away from the application writer.

The Chapel language [2], [3] takes a different approach—it
is a language designed for programmer productivity targeted
at high performance computing; the programmer simply de-
fines large data sets and uses language constructs to indicate
parallelism in the program. Chapel targets traditional clusters
and supercomputers, in which data is co-located on compute
nodes (or Chapel locales—portions of the target parallel archi-
tecture that have processing and storage capabilities). Chapel
provides high-level abstractions that allow programmers to
exploit locality by controlling the affinity of both data and
tasks to abstract units of processing and storage capabilities.
The Chapel compiler and runtime take care of distributing data
and compute tasks across the cluster, communicating between
them as necessary.

Like most other languages, Chapel was designed at a time
when memory resources were intimately tied to the CPU.
While it handles distribution of data and tasks to the compute
nodes in a cluster, it does not currently support abstractions
for disaggregated memory.

In this paper, we describe extensions to the Chapel language
that enable applications written in Chapel to take advantage
of FAM architectures. We assume that in most applications
FAM-resident data is used as distributed arrays; thus, rather
than providing a general file-system interface to FAM, we
incorporate FAM-resident data directly as distributed arrays
in Chapel.

We start with details of our design in §II and discuss
the high-level architecture of our implementation, followed
by the details of how FAM-resident arrays are exposed to
the programmer. We describe the various operations (array
allocation, lookups, iteration, etc.) available to the programmer
within the language. We discuss approaches we are currently

investigating for supporting multi-dimensional arrays in §III
and finish the paper by briefly mentioning alternative ap-
proaches (§IV), some related work (§V), and a summary
(§VI).

II. DESIGN

Our design adds support for accessing FAM-resident data
to the Chapel libraries, runtime, and compiler with minimal
language changes while ensuring the same level of abstraction
and parallelism that currently exists in the language for data
stored in compute node memory. A guiding philosophy in our
work is to minimize changes within Chapel, while ensuring
existing Chapel programs are not impacted. While there are
a number of ways FAM can be exposed within Chapel (see
§IV), our solution currently focuses on enabling distributed
arrays that are resident in FAM.

Distributed arrays form an important aspect of large-scale
programming in Chapel. While the programmer treats the
array as a single large sequence of elements, Chapel actually
distributes the elements of the array across nodes. The pro-
grammer can specify array distributions using Chapel language
statements. Array distributions provide a global view of the
array that allows programmers to operate on the array as
if it was a local array, even though its data is distributed
across locales internally. Since array indices are partitioned
and distributed among locales, the operations on the distributed
array are broken down into multiple tasks based on array
partitioning, and are assigned to the respective locales. These
tasks are then executed in parallel providing implicit data
parallelism. This also supports the common case of having
task executions occur close to the data being referenced in the
task.

Chapel array distributions can be defined by users [4], [5].
The Chapel distribution abstracts the low-level implementation
of the data distribution and its access details from the language.
Our design goal is to provide FAM array semantics similar
to other distributions and support common operations even
though the underlying FAM memory is decoupled from the
compute nodes.

A. Architecture

An important aspect of Chapel distributions is that the
compiler does not make any assumptions about how data is
distributed across locales or about how array indices and data
are represented by internal data structures within the distribu-
tion. Our solution takes advantage of this level of abstraction
and flexibility within Chapel to define a new distribution policy
[4] under Chapel external modules as highlighted in Figure 2
for array data resident in FAM.

Figure 3 shows a FAM-resident array with the target nodes
participating in reads/writes to FAM in parallel. Unlike other
distributed arrays in Chapel which reside in DRAM, FAM
arrays can outlive the application. To support this, the FAM
distribution module requires FAM arrays to be named during
array creation. The names enable the array to be accessed
by other applications, or across different run instances of the

Fig. 2. Chapel Components

same application through an array name lookup. The FAM
distribution module converts these high-level array operations
into FAM-specific accesses underneath. When a FAM array
is created, the complete array of the desired size is allocated
on FAM by the current locale. Each locale is then assigned
a partition of the array upon which to operate. Parallel array
operations such as forall, reduce or scan are internally
divided into multiple tasks based on the partitioning, and
executed in parallel by the target nodes. This design ensures
that the semantics of a FAM array is as close as possible to
that of an existing Chapel array as possible.

Fig. 3. DRAM and FAM Distributed Arrays

B. FAM distribution details

The FAM distribution is implemented using a separate
Chapel distribution module as shown in Figure 2. The distribu-
tion module internally calls the OpenFAM library [6], [7] for
access to FAM, although other libraries can also be plugged in.
The module thus abstracts the details of how FAM is accessed
away from the user.

Additionally, because FAM data can outlive the application,
the module supports only named FAM array allocations.
This enables the application to lookup and use an existing
FAM array by specifying its name. Similar to other array
distributions provided in Chapel, FAM arrays also support par-
allelism through domain partitioning, i.e. assigning the index

ownership to participating nodes. Note that this “ownership”
is purely for ease of partitioning the array, because the data
in FAM is external to all nodes. However, the partitioning
enables compute tasks to be distributed across the locales
based on the ownership of the indices. Parallel array operations
such as forall, reduce or scan are internally divided
into multiple tasks based on the partitioning and executed in
parallel by the target nodes.

The FAM distribution uses the same domain partitioning
policy as the Chapel Block distribution [4]. When a FAM array
is created, the complete array of the desired size is allocated
on FAM by the current locale. Like other distributions, a
FAM distribution is defined using a set of global descriptors
(Chapel classes) to hold the information about the distribution
instance such as index set, list of target nodes, and array
names. Additionally, the FAM distribution also defines per-
locale descriptors which store the locale-specific information
required for FAM access.

User defined distributions support a feature called privati-
zation that is used to avoid communication overheads when
a node accesses distribution-specific information stored on
a different node from where the array was declared. With
privatization, every locale makes a local copy of global de-
scriptors which hold metadata associated with the distribution
instance. If any of the private copies are updated, a “re-
privatization” is triggered to synchronize the local copies.
The FAM distribution takes advantage of privatization to
store immutable array names and locale-specific OpenFAM
descriptors at all locales to reduce access overhead.

The FAM distribution in Chapel introduces a programmer
productive way to store and retrieve data from FAM. The
application need not understand the low-level programming
API semantics required in OpenFAM. Listing 1 shows how
an application can copy a large array from DRAM to FAM
in parallel. The programmer only declares and allocates the
array in FAM. On assigning the local array to the FAM
array, the Chapel runtime creates tasks necessary to copy the
contents from local array to FAM array. The number of parallel
operations depend on the number of locales.

const Space = {1..1_000_000};
// Declare FAM distributed domain
const FamDomain = Space dmapped Fam();

var localArray: [Space] int;

// allocate new FAM distributed array
var FamArr: [FamDomain] int;
FamArr.allocate(name="records",
auto_destroy=false);

// Copy a DRAM array to FAM.
FamArr = localArray;

Listing 1. Example of using FAM arrays in Chapel

As a comparison, Listing 2 shows the same copy from a
local array to FAM, where the programmer has to invoke
OpenFAM APIs [7]. There is no parallelism in this piece of
code as these are APIs invoked directly from the application. In

addition, the programmer explicitly has to handle exceptions
that may occur in low-level access and deal with all of the
detail required by the low-level API.

const Space = {1..1_000_000};
var localArray: [Space] int;

var fam_inst = new unmanaged fam();

try!{
var fam_opts: fam_options =
fam_inst.fam_set_options();
fam_inst.fam_initialize

("CHPL", fam_opts);

// allocate data on FAM
const mode = 0o777;
var regdes:fam_region_desc;
var FamDesc: fam_desc;
var size =
Space.sizeAs(uint)*c_sizeof(int);

regdes = fam_inst.fam_create_region(
"MyRegion",size*2:size_t,mode:mode_t,1);
FamDesc = fam_inst.fam_allocate(
"MyArray",size:size_t,mode:mode_t,regdes);
fam_inst.fam_put_blocking(
localArray[Space.low],FamDesc,0,size);

} catch e: FamException {
writeln(
"OpenFAM error:",e.err:int,":",e.details);
exit(1);
}

Listing 2. Example of accessing FAM using OpenFAM API

C. Array Operations
In this section, we describe some of the common operations

that have been implemented for FAM arrays. Our goal is to
provide a user experience similar to that of other existing
distributions in Chapel. However, due to current limitations in
Chapel’s distribution interfaces and compiler to support FAM
locations, there are some differences in the semantics of FAM
array access, which we highlight in the discussion below.

1) Array allocation: New FAM array creation requires
three Chapel statements: First, the Chapel “dmapped” keyword
is used to define the distribution policy of the FAM domain and
its index set. Next, the FAM array is declared with a data type
specified for the array using the FAM domain. Unlike other
distributed arrays, space on FAM is not allocated at the time of
declaration. The array declaration only creates and sets up the
necessary distribution descriptors. The corresponding space on
FAM is allocated using an explicit allocate method called
on the array object. The allocate() method requires a
mandatory name and an optional flag to indicate whether FAM
needs to be deallocated as part of the variable’s deinitialization
when the array goes out of the scope or the program exits. The
default value for the auto_destroy flag is false.
const Space = {1..1_000_000};
const FamDomain = Space dmapped Fam();
// allocate new FAM distributed array
var FamArr: [FamDomain] int;
FamArr.allocate(name="records",

auto_destroy=false);

2) Array lookup: Because FAM arrays can outlive the
application, access to an existing array is supported using
a find() method on the FAM array object as shown
below. The find() method takes the array name as an
argument. The internal metadata (e.g., global descriptors) is
re-constituted upon a successful lookup.
const FamDomain = Space dmapped Fam();
var FamArr: [FamDomain] int;
FamArr.find(name="records");

3) Array destroy: The FAM array is either destroyed au-
tomatically as part of clean-up or by explicitly calling the
destroy() method on the array object in the program. Au-
tomatic deallocation is controlled by the auto_destroy flag
when the array variable goes out of scope. If auto_destroy
is set to false, then only the internal distribution descriptors
that hold FAM data references are deleted during the clean-up,
and FAM memory is only released using an explicit request
through destroy() method as shown below.
FamArr.allocate(name="records",

auto_destroy=false);
...
FamArr.destroy();

4) Iteration: The FAM distribution supports both serial
and parallel loops with zippering. Internally, the array iterator
methods read the data from FAM to local DRAM and iterate
over the local copy. After the iteration completes, if the array
data is modified by the loop, then updated data is written back
to FAM.
//Serial Loop on FAM Array
// assign 1 to array elements
for fa in FamArr do

fa = 1;
// Update the array data in parallel
forall fa in FamArr do

fa = fa *2;
// Copy elements from Block to FAM array
forall (fa,ba) in zip(FamArr,BlockArr) do

fa = ba;

5) Reduce and Scan: Reduce is an operator that combines
a set of values, where the operation is performed in parallel
to produce a single result. The scan operation is similar to
reduce, but it creates an array of results showing the partial
results of the operation as applied to all elements up to that
point.
// Calculate the average
var eltAvg =

(+ reduce FamArr) / size**2;
// Calculate min and max valuea
var (maxVal,maxLoc) =
maxloc reduce zip(FamArr,FamArr.domain);

var (minVal,minLoc) =
minloc reduce zip(FamArr,FamArr.domain);

// Scan operation
writeln("Scan: Sum of all elements

= ", (+ scan FamArr));

6) Array slicing and re-indexing: Chapel programmers can
access just a subset of an array using a “slice” and perform
operations on that sub-array. The FAM distribution supports
applying common operations on FAM array slices as well as
reindexing the FAM array with a new domain as shown below:

const Space = {1..10};
const Dfam = Space dmapped Fam();
var FamArr: [Dfam] int;
...
//Update elements with index 2 to 4
FamArr[2..4] = 500;

//Re-index the array with new domain D
const D = {6..15};
ref reA = FamArr.reindex(D);
reA[6] = 600; // updates FamArr[1]

writeln("reA[10..15] = ",reA[10..15]);

7) Random indexed access: Random element access for
an array is implemented using a DSI method called
dsiAccess() in Chapel modules. When an individual in-
dexed element is accessed in a Chapel program, the compiler
in turn generates a call to the dsiAccess() method. The
Chapel compiler expects the dsiAccess() interface to
return a reference to the array element, which is later used for
either load/store or communication get/put calls to access the
array data in the runtime. Since dsiAccess() is designed
to return the reference to DRAM-based memory, there are
significant challenges in implementing the method for FAM
access without making changes in the Chapel compiler.

To overcome the challenges, we have used an approach
which represents the FAM access using a class wrapper object
that is returned by dsiAccess(). In this approach, we create
an instance of this class for every dsiAccess() request.
The corresponding class object instance stores the required
information for the FAM access and also overloads operators
“this” and “=”, which are called when an index element is
accessed for read and write respectively.

Since Chapel currently supports “this” method with paren-
theses, indexed access to FAM-resident arrays require extra
parentheses at the end as shown below. However the write
semantics does not change for the FAM array element. Once
Chapel adds support for user-defined implicit conversions, we
expect these extra parenthesis to be unnecessary, as our class
wrapper would then convert to the correct element type.
//Indexed element access
//write a value to 100th element
FamArr[100] = 100;
// read the value from 50th element
var x = FamArr[50]();

8) Bulk transfer: Bulk transfer refers to the array-to-
array copy using a simple assignment operation. Typically
the distributions implement bulk-transfer of the data using
a parallel loop. As shown below, the FAM distribution also
supports bulk-transfer to and from FAM and non-FAM arrays
in parallel.
FamArr1.find(name="MyArray1");
FamArr2.allocate(name="MyArray2",

auto_destroy=false);
...
// Bulk transfer
// FAM to FAM copy
FamArr2 = FamArr1;
// FAM <-> Block array
BlockArr = FamArr1;
...

FamArr2 = BlockArr;

Figure 4 shows preliminary results when a 25 GiB array
is copied from FAM to a DRAM distributed array using the
bulk transfer operation versus when it is directly copied using
OpenFAM APIs in a manner similar to that shown in Listing 2.
It can be seen that with bulk transfer, the throughput increases
as the number of locales increase due to task parallelism.
However, because the direct API is not parallelized, throughput
drops as the number of locales is increased as a result of the
communication overhead between locales.

Fig. 4. Bulk transfer results

III. MULTI-DIMENSIONAL ARRAYS

Similar to single dimensional arrays, multi-dimensional
arrays are internally represented as a single contiguous array
on FAM. But to support parallelism and task distribution, the
multi-dimensional indices are partitioned and assigned to the
participating compute locales. In the current design of the
FAM distribution, the arrays are divided into blocks similar to
Chapel’s Block distribution [5]. For a multi-dimensional array,
the block partition may result in non-contiguous elements per
locale. This may lead to performance degradation when a
locale tries to access its multi-dimensional block. To overcome
this, we explored another approach for partitioning the multi-
dimensional arrays, i.e., row partitioning. In the following
sections we will discuss both block and row partitioning
approaches, along with their advantages and disadvantages.

A. Block partitioning

Figure 5 shows an example of a 2D array, i.e. a 6 X 6 matrix
which is partitioned into blocks across 4 different locales.
Each block is a 2D array of 3 rows and 3 columns. When
certain parallel operations like forall, reduce etc. are
performed on the array, the operation is divided into multiple
parallel tasks based on the ownership of the indices. Each
node accesses only the indices/block that it owns and does
the local computations on them. In this approach, all elements
in a given partition are not contiguous for a multi-dimensional
array. However, the data may be stored on FAM contiguously
as shown in Figure 6. Hence to access a given block, multiple
data access requests are involved. This means there are as

many read/write requests as the number of rows in a partition
from each locale. In this example, every locale has to perform
3 data access calls to access its elements from FAM. As the
number of rows increases, the number of calls required by
block partitioning also increases per locale, possibly leading
to performance degradation when accessing data from FAM.

Fig. 5. 6x6 matrix block partitioned over four locales

Fig. 6. Block partitioned data layout in FAM

B. Row partitioning

In this approach, a given 2D array is divided based on
the number of rows and locales. For arrays greater than two
dimensions, only the first dimension is partitioned based on the
number of participating nodes. Figure 7 shows an example of
a 2D array, i.e. a 6 X 6 matrix distributed across 4 nodes using
row-partitioning. In this approach, each node gets a partition
where all of its indices are contiguous. Since the data is also
stored on FAM by row-major order as shown in Figure 8,
a locale will need to perform only a single OpenFAM data
access call to access its data elements. Hence the FAM data
access in this approach has an advantage over the block access
which requires multiple I/O requests. Since the partitioning
is based on the number of rows and the number of locales,
it can result in unused locales if the number of locales is
more than the number of rows in a given array. However this
scenario is highly unlikely to occur in real-world applications
which mainly use FAM to store very large arrays. We are
currently evaluating these options again with larger arrays
and considering the most appropriate use case for the FAM
distributed array in real-world chapel applications to decide
on the right solution for data partitioning.

Fig. 7. 6x6 matrix row partitioned over four locales

Fig. 8. 6x6 matrix row partitioned over four locales

IV. DISCUSSION

In this paper, we described our approach to exposing FAM-
resident data as distributed arrays within Chapel. However,
the language provides many other ways in which FAM could
be exposed to the programmer. We enumerate some of these
approaches and discuss benefits (and limitations) associated
with them.

A. Alternate approaches to presenting FAM in Chapel

We have also investigated a few other approaches for
enabling FAM access from the Chapel runtime as discussed
next.

1) FAM as a locale: This approach would add FAM as
new top-level locality in the Chapel execution environment.
The Chapel programming environment makes available the
Locales[] array, which provides an abstraction of all the
localities available in the current execution environment. Com-
bined with the on statement, this presents a strong tool to the
application to transfer control to a specific locality either to
execute a task, or to have memory allocated from that locality.
In all locality models currently supported by Chapel, memory
is part of the top-level locales themselves. Unlike the currently
supported top-level localities, FAM can be considered as a
remote locality visible to the other compute localities on the
network. Defining a new locality model that adds a new top-
level virtual locality as the last locale in the Locales[] array
allows the on statement to be re-written as shown below.
// last locale-id assigned to FAM
const FAM_INDEX: int = numLocales;
class C {

var x: int;
}
var num: owned C?;
on Locales(FAM_INDEX) {
// memory for num comes from FAM
num = new C();

}

num!.x = 100;

While this model is intuitive, the Chapel locality model
assumes homogeneous localities at the top-level. If FAM
is conceptualized as top-level locality, then it would differ
semantically from other localities, since it is a memory-only
locality. This breaks fundamental assumptions in the Chapel
runtime, and presents compatibility challenges and unknowns,
making this approach unattractive.

2) FAM as a sub-locale: To retain top-level localities as
homogeneous, it is also possible to introduce FAM as a
virtual sub-locale beneath each top-level locale. The approach
is inspired by the KNL [11] locality model (now obsolete)
supported by Chapel that was implemented to support Intel’s
Xeon Phi [12] processors with high-bandwidth on-package
memory (HBM). In the Chapel KNL locality model, the
HBM is a sub-locale within the top-level processor locale
and is made available to the Chapel programming environ-
ment as on Locales(1).highBandwidthMemory().
Based on this, it is possible to present FAM as a vir-
tual sub-locale underneath each top-level locale. Like the
support for HBM on KNL, new helper methods can be
implemented for this FAM sub-locale, thus allowing appli-
cations to request memory from FAM via something like
on Locales(0).fabricAttachedMemory(). Though
from a programming environment, these sub-locales may
appear as distinct sub-locales within the top-level locales, they
would actually point to the same remote FAM. Unfortunately,
although conceptually possible, implementation as a sublo-
cale requires significant compiler changes to support external
memory over the network (without load/store support) with
compiler generated code.

3) FAM as an object: The idea here is to define a new
class in the Chapel modules that represent FAM objects. The
definition would be sufficiently generic so that it could hold
whatever datatype that the user wants. The goal would be to
abstract the FAM access semantics within this FAM class and
allow the user to operate on FAM-resident data just like any
other object. With this approach, helper methods implemented
within the FAM class would handle all FAM access details
through the communication layer. Allocating FAM data using
this approach would appear as shown in the code below.

class C { } // user-defined class
var myFAMC = new FAM(C);
on Locales(FAM_INDEX) {
// memory for num comes from FAM

num = new C();
}
num!.x = 100;

Here, myFAMC is an object that is allocated in local memory,
which represents the actual data item residing on FAM. The
initializer of FAM class would take care of allocating space on
FAM corresponding to the user class C, and store the corre-
sponding FAM address within myFAMC object. The definition
of the FAM class would be generic enough to support any
operation that is allowed for the user-defined class, so that
any such operations can be forwarded to FAM.

We are currently exploring these approaches and working
through the different cases necessary in preparation for iden-
tifying all compiler and runtime changes required in Chapel.
While compiler support or changes to existing Chapel internal
modules are needed in multiple places for our implementation,
we have used alternate approaches to enable early adopters to
experiment with FAM using Chapel. These approaches require
changes in the semantics of array access when performing cer-
tain operations on FAM arrays. For example, extra parentheses
are required to read an individual indexed array element from
FAM, and allocation of FAM arrays is not implicit as it is for
DRAM based arrays.

In addition, in existing distribution models, DRAM is
allocated on the participating node. However, a FAM array
resides outside all locales. Hence data on FAM arrays is always
accessed over a network. Since every FAM array data access
request involves a network call, the performance of FAM-
based array access is not expected to be comparable to that of
a DRAM-based array. However FAM arrays provide a low la-
tency replacement for persistent secondary storage. Persistent
FAM therefore offers the potential to significantly reduce the
latency to persistence, thus allowing higher performance for
applications that require large working sets.

Additional work involves supporting multi-dimensional ar-
rays, enabling support for FAM from the Chapel runtime
and compiler, and folding our changes back to the Chapel
language. We also want to explore FAM usage in Arkouda
[9], [10] and test the performance benefits to Arkouda or other
Chapel applications that can take advantage of FAM.

V. RELATED WORK

Other competitive approaches to disaggregation represent
data in FAM using file-system [8] or key-value store [13]
abstractions. Academic research literature also has published
efforts supporting transparent paging to fabric-attached mem-
ory [14]. While attractive from a programming perspective,
these approaches often require kernel modules and introduce
large paging overheads. FAM access to Chapel applications
cluster-wide can also be enabled at the application level
through external libraries such as OpenFAM, or DAOS [15],
but application writers would be required to understand the
APIs provided by those libraries, manage FAM and data
distributions in FAM, and handle errors explicitly.

All of these approaches involve programming overhead,
which contrasts with Chapel’s philosophy of programmer
productivity. Our solution currently leverages the OpenFAM
library, but can be modified to leverage other libraries that
provide access to FAM, while making FAM operations trans-
parent to the programmer.

VI. SUMMARY

There is increasing interest in using fabric-attached memory
in HPC clusters, especially for high performance data analytics
or exploratory data analytics workloads. The Chapel language

provides an attractive way of writing high-performance com-
puting applications, while hiding much of the complexity in-
herent in using lower-level HPC libraries. This paper describes
an approach where FAM-resident data can be managed similar
to the way Chapel treats DRAM-resident distributed arrays.

Our solution can be introduced into Chapel using an external
module, and provides a programmer-productive way to store
and retrieve data from FAM because it is directly built into
the Chapel language. The application need not understand the
low-level interfaces necessary to access FAM data, nor the
distinct API semantics required by library-based approaches.
Our design:

• Honors Chapel’s programming philosophy of task paral-
lelism.

• Abstracts FAM data allocation and accesses from the
application.

• Keeps FAM array semantics close to that of existing
Chapel distributions.

We have implemented our design in a proof-of-concept
implementation and have identified a number of changes in
the Chapel compiler and runtime that are necessary to support
native access to FAM. We are discussing how to introduce our
changes back to the Chapel community.

ACKNOWLEDGMENT

We would like to thank Sanish Suresh, Greg Titus, Elliot
Ronaghan, Michael Ferguson, Shome Porno, Chinmay Ghosh
and Dave Emberson for their contributions to this project.

REFERENCES

[1] I. Peng, R. Pearce, and M. Gokhale, “On the Memory Underutilization:
Exploring Disaggregated Memory on HPC Systems,” in 2020 IEEE
32nd International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), Sep. 2020, pp. 183–190. doi:
10.1109/SBAC-PAD49847.2020.00034.

[2] “Chapel: Productive Parallel Programming.” https://chapel-lang.org/ (ac-
cessed Apr. 01, 2022).

[3] Bradford L. Chamberlain. “Chapel”. In: Programming Models for Par-
allel Computing. Ed. by Pavan Balaji. MIT Press, 2015. Chap. 6, pp.
129–159.

[4] B. L. Chamberlain, S. J. Deitz, D. Iten, and S.-E. Choi, “User-defined
distributions and layouts in chapel: philosophy and framework,” in
Proceedings of the 2nd USENIX conference on Hot topics in parallelism,
USA, Jun. 2010, p. 12.

[5] B. L. Chamberlain, S. Choi, S. J. Deitz, D. Iten, and V. Litvinov,
“Authoring user-defined domain maps in chapel,” 2011.

[6] K. Keeton, S. Singhal, and M. Raymond, “The OpenFAM API: A
Programming Model for Disaggregated Persistent Memory,” in OpenSH-
MEM and Related Technologies. OpenSHMEM in the Era of Extreme
Heterogeneity, Cham, 2019, pp. 70–89. doi: 10.1007/978-3-030-04918-
8 5.

[7] “OpenFAM: A library for programming Fabric-Attached Memory.”
https://openfam.github.io/index.html (accessed Aug. 29, 2021).

[8] “DAOS and Intel® OptaneTM Technology for High-Performance
Storage,” Intel. https://www.intel.com/content/www/us/en/high-
performance-computing/daos-high-performance-storage-brief.html
(accessed Apr. 01, 2022).

[9] Arkouda: NumPy-like arrays at massive scale backed by Chapel.
Bears-R-Us, 2021. Accessed: Aug. 29, 2021. [Online]. Available:
https://github.com/Bears-R-Us/arkouda

[10] M. Merrill, W. Reus, and T. Neumann, “Arkouda: interactive data
exploration backed by Chapel,” in Proceedings of the ACM SIGPLAN
6th on Chapel Implementers and Users Workshop, New York, NY, USA,
Jun. 2019, p. 28. doi: 10.1145/3329722.3330148.

[11] “Locale Models — Chapel Documentation 1.16.” https://chapel-
lang.org/docs/1.16/technotes/localeModels.html (accessed Apr. 01,
2022).

[12] A. Sodani, “Knights landing (KNL): 2nd Generation Intel® Xeon Phi
processor,” in 2015 IEEE Hot Chips 27 Symposium (HCS), Aug. 2015,
pp. 1–24. doi: 10.1109/HOTCHIPS.2015.7477467.

[13] Y. Shan, S.-Y. Tsai, and Y. Zhang, “Distributed shared persis-
tent memory,” in Proceedings of the 2017 Symposium on Cloud
Computing, New York, NY, USA, Sep. 2017, pp. 323–337. doi:
10.1145/3127479.3128610.

[14] “Rethinking software runtimes for disaggregated memory,” Penn State.
https://pennstate.pure.elsevier.com/en/publications/rethinking-software-
runtimes-for-disaggregated-memory/fingerprints/ (accessed Apr. 01,
2022).

[15] daos-stack/daos. DAOS Storage Stack, 2020. Accessed: Aug. 27, 2020.
[Online]. Available: https://github.com/daos-stack/daos

