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Motivation & Outline
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● AI for science is maturing and can be transformative 

● Cutting-edge requires supercomputing scale

● Enabling scientific AI at scale requires attention in:

○ Deploying systems and software

○ Developing applications

○ Empowering the community



HPC systems can enable cutting-edge AI applications 

● Recent AI wave in DoE Science moving beyond 
proof of concept to maturity
○ Transformative performance will need 

re-framing of problems; large datasets and 
bigger models 

● Role for HPC centers like NERSC
○ Productionized training, optimization, and error 

analysis on large models 
○ Interaction with existing simulation codes and 

data pipelines 
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HPC systems can enable cutting-edge AI applications 

● Work still needed 
○ E.g. model development; methods for 

scaling; software tooling 
○ Fast moving AI field where trends can 

strongly impact computational needs 

● Develop through strong connections between 
HPC and AI applications 
○ Application readiness program; in-depth 

engagements w/ scientists; user support 
& trainings
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NERSC: Mission HPC for DOE Office of Science Research

Large compute and data systems

● Cori: ~12k CPU Nodes
● Perlmutter: ~6k A100 GPUs
● 128PB Community Filesystem ....
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Broad science user base

● 7,000 users, 
● 800 projects, 
● 700 codes

https://www.nersc.gov/users/accounts/

https://www.nersc.gov/users/accounts/


NERSC AI Strategy 
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Systems w/     
Accelerators

EmpowermentDeployment Methods and Applications 

Software Frameworks and Libraries

Automation Interactivity

● Deploy optimized hardware and software systems

● Apply AI for science using cutting-edge methods 

● Empower through seminars, workshops, training and schools



Deployment: 
NERSC AI Systems, Software and 
Workloads



Perlmutter: A Scientific AI Supercomputer 

HPE/Cray Shasta system 

Phase 1 (in early science phase):
● 12 GPU cabinets with 4x NVIDIA Ampere

GPU nodes; Total >6000 GPUs 
● 35 PB of All-Flash storage

Phase 2 (2022):
● 12 AMD CPU-only cabinets
● HPE/Cray Slingshot high performance network

Optimized software stack for AI
Application readiness program (NESAP)
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https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/


See a growing scientific AI workload at NERSC
● We instrument user python imports

○ Users of DL frameworks increased 
more than 6x from 2018 to 2021

● Track ML trends through 2-yearly survey 
○ Targets scientific communities which 

(potentially) use HPC resources 
(NERSC and non-NERSC users)

○ Covers problem type, workload, 
model architectures, framework, 
scaling, hardware, software, and 
usage of NERSC ML stack 
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https://conference.scipy.org/proceedings/scipy2021/rollin_thomas.html


Software for scientific AI
● Observe typical spread over major AI/ML 

frameworks; trends for 2022 will be 
interesting
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Google Search trends:



Need for resources and scale for scientific AI 
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● Scale allows rapid 
prototyping/model 
evaluation 

● Volume of scientific 
datasets can be large 
and complex 

● Data parallelism is 
currently the most 
common strategy in 
practice

● Horovod is the 
leading non-native 
parallelism 
framework. 



Lessons learned from NERSC deployments



Scientists need performant and flexible software installations
Demand for:

○ Performant installations of the most 
popular frameworks and libraries

○ Flexibility for users to customize their 
solutions

On Perlmutter we chose to deploy both:
● Custom-built modules for TensorFlow, PyTorch
● NVIDIA’s NGC containers

○ Container environment optimized for A100s 
and was crucial during deployment

○ Effectively debugged several minor 
deployment issues through close 
engagement with NVIDIA 

https://docs.nersc.gov/machinelearning/ 

https://docs.nersc.gov/machinelearning/known_issues/
https://docs.nersc.gov/machinelearning/


Scientists need productive interfaces for experimentation
JupyterHub service provides a rich,
interactive notebook ecosystem on Perlmutter
● Now over 2000 users at NERSC!
● A favorite way for users to develop ML code

Users can run their deep learning workloads
● on dedicated Perlmutter GPU nodes
● using our pre-installed DL software kernels
● or using their own custom kernels

https://docs.nersc.gov/services/jupyter/#conda-environments-as-kernels


Scientific DL also needs HPC-enabled optimization tools

● Model selection/tuning is still critical for getting 
the most out of deep learning

● Computationally expensive: need for HPC 
● Many methods and libraries exist for tuning 

model hyper-parameters
○ Enable users to use whatever tools work 

best for them
● Tools can need adaption to work well on HPC

Multi-node RayTune HPO on Graph Neural Network models 
for catalysis applications (B. Wood et al.) 

https://medium.com/distributed-computing-with-ray/ray-tune-at-nersc-fa63bc350925
https://medium.com/distributed-computing-with-ray/ray-tune-at-nersc-fa63bc350925


AI compute performance requires benchmarking and tuning
MLPerfTM is the industry standard benchmark for ML performance
NERSC played active role to develop MLPerf HPC benchmark suite
● Built with scientific applications that push on HPC systems in 

important ways. Currently including:
○ CosmoFlow - 3D CNN predicting cosmological parameters
○ DeepCAM - segmentation of phenomena in climate sims
○ OpenCatalyst - GNN modeling atomic catalyst systems

● MLPerf HPC v1.0  release at SC21 conference:
○ Time-to-train and “Weak-scaling” throughput metrics
○ 31 submissions from 8 submitters on 9 diverse HPC systems
○ Best benchmark results improved by 4-7x from v0.7 round
○ Strong-scaling submission scale up to 2,048 GPUs
○ “Weak-scaling” submission up to 5,120 GPUs (Perlmutter) and 

82,944 CPUs (Fugaku)
● Deeper analysis paper on v0.7 round at the SC21 MLHPC workshop 

16

https://mlcommons.org/en/training-hpc-10/
https://arxiv.org/abs/2110.11466


MLPerf HPC v1.0 - NERSC highlights and analysis
● Ran early in Perlmutter deployment

○ Very valuable to shake out system
● Leading time-to-train result for 

OpenCatalyst, second place results
for CosmoFlow and DeepCAM

● Largest scale GPU throughput
measurement (5120 GPUs)

● Subsequently performed in-depth 
profiling comparison with Selene

● Dominant bottleneck from network 
(allreduce at 64 nodes ~3x slower)

○ Phase 2 of Perlmutter bringing  
slingshot 11 network upgrade! 

● Smaller 1 node difference from some 
unoptimized kernels and memory 
bandwidth on 40 vs 80G A100s
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Submitter System GPUs
Benchmark results (minutes)

CosmoFlow DeepCAM OpenCatalyst

LBNL Perlmutter Phase 1 512 111.86

LBNL Perlmutter Phase 1 1024 8.5

LBNL Perlmutter Phase 1 2048 2.51

Perlmutter time-to-train results



Applications and Empowerment: 
Powered By Perlmutter



         Extract                          Enhance                      Explore

Accelerating science with AI

Pathak et al. 2022  arXiv:2202.11214Hayat et al. 2021  arXiv:2012.13083 Chanussot et al. 2021  arXiv:2010.09990

Parallels with industry applications but current approaches increasingly 
incorporate science-specific structures

https://arxiv.org/abs/2202.11214
https://arxiv.org/abs/2012.13083
https://arxiv.org/abs/2010.09990


Extract: Self-supervised sky surveys
● Sky surveys image billions of galaxies that need to be understood
● Limited “labels”, so can learn in semi-supervised way
● Pre-training on entire dataset on HPC, downstream task can be on laptop/edge
● Recently used to find > 1000 previously undiscovered strong-lens candidates
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Detect & 
discover rare 
objects

Initial approach: Hayat et. al. (2020)  
arXiv:2012.13083
Strong-lens analysis: Stein et. al. (2021)  
arXiv:2110.00023

https://arxiv.org/abs/2110.00023
https://arxiv.org/abs/2012.13083
https://arxiv.org/abs/2110.00023


● Data-driven modeling of atmospheric flows using 
a state-of-the-art transformer-based FourCastNet 

● Collaboration with NVIDIA, Caltech and others 
● Forecasts global weather at 0.25◦ resolution

○ Order of magnitude greater resolution 
than state-of-the-art deep learning models

○ Forecasts wind speeds, precipitation and 
water vapor close to the skill of numerical 
weather prediction models up to 8 days

○ Produces a 24hr 100-member ensemble 
forecast in 7 seconds on a Perlmutter GPU 
node

○ Traditional NWP: 5 mins on thousands of 
CPU nodes for equivalent ensemble Data-driven forecast of an atmospheric river

Jaideep Pathak
former NERSC 

Postdoc now NVIDIA

Enhance: Data-driven atmospheric modeling
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Shashank 
Subramanian
NERSC Postdoc 

 

Peter Harrington
NERSC ML 
Engineer 

 

Pathak et al. 2022  
arXiv:2202.11214

https://arxiv.org/abs/2202.11214


● GraphNNs to accelerate catalyst discovery for 
energy storage and climate change mitigation

● Collaboration with CMU and Facebook/Meta 
● Created the largest catalysis dataset to date (OC20) 

○ Challenge also in NeurIPS 2021 Competition  
● Larger models achieve best performance on these 

large datasets - pushing to scale on Perlmutter  
●

Explore: Automated catalyst discovery

Performance comparison of Perlmutter (PM) with Cori CPU and GPU nodes. 
Optimizations carried out in collaboration with NVIDIA DevTechs 

Brandon Wood 
NERSC Postdoc now 

Meta AI 
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https://opencatalystproject.org/
https://neurips.cc/Conferences/2021/CompetitionTrack


Empowerment and training resources
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The Deep Learning for Science School at Berkeley Lab https://dl4sci-school.lbl.gov/
● Lectures, demos, hands-on sessions, posters: 2019 in person (videos, slides, code) 
● 2020 summer webinar series. Recorded talks: https://dl4sci-school.lbl.gov/agenda

The Deep Learning at Scale Tutorial
● Since 2018, and with NVIDIA in 2020/21
● 2021 was first training event to use Perlmutter Phase 1 

with hands-on material for distributed training 
● See the full SC21 material here and videos 

NVIDIA AI for Science Bootcamp - Aug 25-26, 2022
Upcoming training for scientists interested in deploying DL 
No experience required! Planning on using Perlmutter GPUs

https://dl4sci-school.lbl.gov/
https://sites.google.com/lbl.gov/dl4sci2019
https://dl4sci-school.lbl.gov/agenda
https://github.com/NERSC/sc21-dl-tutorial
https://drive.google.com/drive/folders/1TGV6N2Dpj6IZ_sYiSQxlQXCbrmqPkMBZ?usp=sharing


Conclusions
● AI for science requires supercomputing-scale capabilities: 

○ Hardware and software, application engagement and training 
○ NERSC delivering this with Perlmutter 

● Usage of AI frameworks is growing. Need to:
○ Provide optimized scalable software as well as flexibility for users
○ Allow for interactivity as well as automation
○ Utilize benchmarking for detailed performance tuning 

● Science AI projects reaching maturity and offer transformative potential
○ Trend towards sophisticated science-specific architectures and scale
○ Examples running now on Perlmutter - much more to come

● Future HPC systems: integrate AI into scientific workflows 
○ Optimizing for this will influence hardware design, system software, etc.
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Thanks to all our staff and 
collaborators!

Steve Farrell, Wahid Bhimji, Mustafa Mustafa, Shashank 
Subramanian, Brandon Wood, …and many more from 

NERSC & Berkeley Lab.

Thorsten Kurth, Josh Romero, Jaideep Pathak (NVIDIA)



Questions?
Collaboration? Want to help?

Peter Harrington
pharrington@lbl.gov

Deep-learning@NERSC: 
https://docs.nersc.gov/machinelearning/

https://docs.nersc.gov/machinelearning/

