
1

Adopting standardized
container runtimes at
NERSC

Aditi Gaur, Shane Canon,
Dan Fulton, Laurie Stephey,

Doug Jacobsen
NERSC/LBNL

Cray User Group 2022
Monterey

2

Outline

• Container environments at NERSC
o Motivations to replace Shifter

• Bringing Podman to NERSC
• Early insights from scaling experiments
• What we have learned

3

Containers at NERSC

4

Key ideas behind HPC runtimes

What do we want from an HPC Container Runtime?
● Security - It needs to work well in a multi-tenant/multi-user

environment (e.g. no special privileges for containers).
● Performance - It needs to leverage capabilities without sacrificing

performance (e.g. GPUs, Interconnect).
● Scalability - It needs to scale to the full system size without significant

impacts.
● Standardization - It should leverage existing standards and integrate

easily with the broader ecosystem.
● Example implementations:

○ Shifter (used at NERSC), CharlieCloud, Singularity

5

What has changed in the past few years

● Improved support for running “root-less” containers
(Docker, Podman)

● Modern kernels support broader set of features needed to
use modern container runtimes (eg. user namespaces)

● More alignment between “industry” and HPC due to
things like AI/ML workloads

● Emergence of Kubernetes and the ecosystem of tools
around it.

6

Why Podman?
● Already has momentum for replacing Docker under the hood in many installations
● Can run fully rootless using user namespaces, uid/gid map, fuse-overlayfs, and other tricks.
● It is a full runtime (e.g. can support local image builds too)
● Open development but with strong Vendor support from IBM/Redhat and others
● Recipes for how to integrate with GPUs and MPI
● Community support and uptake
● Podman leverages OCI runtimes and CRI-O stack.

○ runc/crun OCI runtimes
○ containers/storage library for managing storage
○ containers/image library for managing images

What are the gaps?
● Scalable launch… Images are typically pulled locally and unpacked. Can use

“additionalimagestore” but still requires images to be fully unpacked.
● Integration with Slurm (if needed)

Podman as a potential replacement for Shifter

7

Bringing Podman to NERSC

8

HPC support for Podman

• Podman directly mounts the various layers of the image via
fuse-overlayfs

• “Flattening” the image can result in performance improvements on the
parallel filesystem

• We made modifications to the underlying storage driver to allow it to
mount a squashed image which is created by squashing all the layers of
the image together

• Added option “squashmount” to the overlay driver allowing it to mount
writable/temporary areas over the squashed image.

• This could potentially be used outside of Podman (e.g. Kubernetes
deployments)

9

Podman Setup - A sample storage.conf

[storage]

 driver = "overlay"

 runroot = "/tmp/user/75535"

 graphroot = "/tmp/images"

 [storage.options]

ignore_chown_errors = "true"

mount_program = "/usr/bin/fuse-overlayfs"

additionalimagestores = ["/mscratch/sd/a/agaur/images",]

[storage.options.overlay]

 squashmount = "true"

Driver must be set to “overlay”

The read/write area needed for running
podman is configured to user’s private /tmp
area available on the login/compute nodes.
Any private r/w location is a good fit here.
Shared filesystems do not work for this setting.

10

Podman setup - storage.conf explained

[storage.options]

ignore_chown_errors = "true"

From the man page:
ignore_chown_errors can be set to allow a non privileged user
running with a single UID within a user namespace to run
containers. The user can pull and use any image even those with
multiple uids. Note multiple UIDs will be squashed down to the
default uid in the container. These images will have no
separation between the users in the container. (default: false)

To make our setup work,
this value needs to be set to
“true”

11

Podman setup - Additional Image Stores

additionalimagestores = ["/mscratch/sd/a/agaur/images",]

From the man page:
additionalimagestores=[]

Paths to additional container image stores. Usually these
are read/only and stored on remote network shares.

User created directory on “Scratch”
filesystem or a user owned area on a
shared filesystem

12

Podman setup - Squashmount

[storage.options.overlay]

 squashmount = "true"

`squashmount` is a NERSC customization to Podman’s overlay driver and
is not part of an official release yet.

This option when set to “true” tells podman to look for squashed
image in its storage area and mount it, instead of mounting overlay
layers. This option allows us to mount squashed images from
additionalimagestores which are configured to point to a shared
filesystem.

13

Podman User Workflow - Pull

1. Pull the image on a login node.

agaur@muller:login01:~> podman pull ubuntu:latest
Trying to pull docker.io/library/ubuntu:latest...
Getting image source signatures
Copying blob 125a6e411906 done
Copying config d2e4e1f511 done
Writing manifest to image destination
Storing signatures
D2e4e1f511320dfb2d0baff2468fcf0526998b73fe10c8890b4684bb7ef8290f
agaur@muller:login01:~> podman images
REPOSITORY TAG IMAGE ID CREATED SIZE R/O
docker.io/library/ubuntu latest d2e4e1f51132 2 days ago 80.3 MB false

14

Podman User Workflow - Squash the image

2. Squash and migrate it to an additional image store
agaur@muller:login01:~> echo $SQUASH_DIR
/mscratch/sd/a/agaur/images
agaur@muller:login01:~/container/bin> ./migrate2scratch.py mig
docker.io/library/ubuntu:latest $SQUASH_DIR
Generating squash file
Created squash image
agaur@muller:login01:~/container/bin> podman images
REPOSITORY TAG IMAGE ID CREATED SIZE R/O
docker.io/library/ubuntu latest d2e4e1f51132 2 days ago 80.3 MB false
docker.io/library/ubuntu latest d2e4e1f51132 2 days ago 80.3 MB true

Read-only additional
image store

15

Podman User Workflow - Access it via slurm

3. Submit a slurm job to access the image.
agaur@muller:login01:~/container/bin> salloc -N 1 -C gpu --userns -A
nstaff_g
salloc: Granted job allocation 45515
salloc: Waiting for resource configuration
salloc: Nodes nid001033 are ready for job
agaur@nid001033:~/container/bin> podman images
REPOSITORY TAG IMAGE ID CREATED SIZE R/O
docker.io/library/ubuntu latest d2e4e1f51132 2 days ago 80.3 MB true

Only additionalImageStore
is accessible on the compute
node.

16

Early insights from Scaling

17

Execution Models

● We will be comparing four different modes: Bare Metal, Shifter, Podman, Podman
“Shared”

● Podman modes:
○ Regular: A podman container per MPI rank/task
○ Shared: A podman container per node (shared by ranks on a node)

● All Podman results use the modified squash supported version

1 2 N…

Podman Regular (per Node)

1 2 N…

Podman Shared (per Node)

18

Example Batch Script - Non-shared
srun -N 2 -n 128 \
 podman run --rm \
 --network=host \
 --ipc=host \
 --pid=host \
 --privileged \
 -e PALS_APID \
 -e PALS_APINFO \
 -e PALS_NODEID \
 -e PALS_RANKID \
 -e PALS_SPOOL_DIR \
 -e PMI_CONTROL_PORT \
 -e SLURM_CPU_BIND \
 -e SLURM_CPU_BIND_LIST \
 -e SLURM_CPU_BIND_TYPE \
 -e SLURM_CPU_BIND_VERBOSE \
 -e SLURM_DISTRIBUTION \
 -e SLURM_NPROCS \
 -e SLURM_NTASKS \
 -e SLURM_STEP_RESV_PORTS \
 -e SLURM_UMASK \

-v /dev/xpmem:/dev/xpmem \
-v /dev/shm:/dev/shm \
-v /dev/infiniband:/dev/infiniband \
-v /var/spool/slurmd:/var/spool/slurmd \
-v /etc/libibverbs.d:/etc/libibverbs.d \
-v
/usr/lib/shifter/mpich-1.1/:/opt/udiImage/modules/
mpich \
-e
LD_LIBRARY_PATH=/opt/udiImage/modules/mpich:/opt/u
diImage/modules/mpich/dep \
 scanon/pynamic:2.6a1 \
 /pynamic/pynamic-pyMPI-2.6a1/pyMPI
/pynamic/pynamic-pyMPI-2.6a1/pynamic_driver.py

Needed for MPI to use the
host high speed network.

Pull in MPI libraries

19

Scaling limitations

The scaling results presented here were limited by a few
bottlenecks:
• Podman/slurm cgroups interaction

o Slurm being unable to delete podman created cgroups, resulted
in many nodes getting “kill task failed”

o Cgroupv2 might help prevent some of the cgroup related issues.
o Slurm in many cases is unable to kill podman processes if the

user job times out or fails (due to any other reasons). High
amount of node drains prevented big scaling runs.

o Problem being addressed by SchedMD, and Red Hat.

20

Security considerations

● 3 CVE’s in 2022 so far requiring
mitigations to disable user
namespaces

● Running user namespaces
safely and securely is
necessary for running rootless
containers.

● Disabling user namespaces can
be extremely disruptive.

Pynamic Import Times Non-cached
Single node varying Tasks-per-Node

21

Pynamic - 128 Nodes

● Pynamic emulates complex
Python application loading

● Measures Import and Visit
Times

● Measured at 128 Nodes, 64
Tasks per Node on Perlmutter

● Podman + Squash is
performing well even with the
squashfuse overhead

22

ML GPU Scaling

• MLPerf DeepCAM training
with reduced size dataset.

• Using podman-exec
execution model.

• Comparable runtime
performance between
podman and shifter.

• No obvious scaling
concerns on GPUs.

23

Scaling with EXAALT (MPI + GPU)
• ECP app EXAALT uses

LAMMPS
• GPU app with CUDA-aware

MPI
• Podman runs up to 512

nodes with performance
close to Shifter and
baremetal

• Podman data collected only
at large scale due to node
crashes

24

Squashfs Performance and Scaling

● Squash-fuse driver and kernel
driver can be a bottleneck

● Some advantages to running
a separate container per task
(e.g. non-shared)

● There could be other impacts
of running this way that offset
this advantage.

● Podman and Shifter
out-perform bare-metal for
imports. Pynamic Import Times Non-cached

Single node varying Tasks-per-Node

25

What we have learned

26

User Experience

• Sites ought to have a plan for subuids/subgid’s early on.
o Once subuid’s and subgid’s are set for a given user, changing them may

make the files created with those subuid’s unusable.
o Additionally shared filesystems (like Lustre) still require a single user ID

owning files. Does not understand subuid/subgid’s.
o At NERSC, we are hoping to provide a constant subuid/subgid mapping

via LDAP. And for shared filesystems - `ignore_chown_errors` flag
helps us avoid chown errors.

• Desirable to have podman pull step also convert the images
to squashed format and migrate it to additional stores.

27

Future Work

● Production
○ After security fixes: expand access to NERSC early users
○ Develop documentation, trainings, and improve sharp edges

● Improve and tweak OCI hooks
○ Develop hook for MPI/CUDA-aware MPI
○ Develop hooks for filesystem mounts like CVMFS

● Explore Slurm integration
○ Cleanup, cgroups

● Work with community to merge squashfs support into main branches

28

Cut for Time

There is much more to discuss, some things we’ve skipped:
• OCI hooks to use GPU’s and MPI inside containers
• Leveraging Podman to support unprivileged kubernetes to

enable complex workflows. (e.g. usernetes)
• Plans around using Podman to support local builds on

login nodes. (or UAN’s in Cray Shasta systems)
• Podman + NFS/GPFS/Lustre issues

29

Conclusions

● Podman appears to be a feasible container solution with some enhancements.
● Early benchmarks demonstrate that it can perform well (but further testing is

needed).
● Giving users ability to build and run with Podman will greatly improve

containers workflow and usability at NERSC
● Using a standard container framework means we can engage with the larger

OCI community

30

Acknowledgements

31

Thanks

We would like to thank
● Andrew Younge for leading bi-weekly engagement with Red Hat
● Red Hat Developers for helping us with many questions we had during development
● Rahul Gayatri, for his help in adapting the EXAALT benchmark
● Steve Farrell, for his help in adapting the MLPerf benchmark
● Gabor Torok for implementing subuid/subgid support in our LDAP database
● Rebecca Hartman Baker for giving us system time to do scale testing
● Chris Samuel for helping us debug and understand slurm cgroup interactions
● DOE Exascale Computing Project

32

Thank You

33

Appendix Slides

34

Containers at NERSC

• NERSC was an earlier (perhaps one of the earliest) adopters of
containers for HPC

• Attractive approach to allow users to create tailored
environments and provide greater flexibility

• Well-suited for complex software stacks like NVIDIA-provided
PyTorch

• Imperative that users could still obtain native performance
applications could scale well.

• Initially explored wrappers around Docker then developed Shifter
in 2015.

• Adoption and usage modes have expanded (Complex
Workflows, Jupyter kernels, Spin services)

•

35

Brief overview of Shifter

● Reused the most popular container format and tool chains (Docker)
● Replaced the run-time with something that was

○ Secure (Didn’t give users any extra privs)
○ Scalable (used a novel pre-squashed format)
○ Integrated (Integrated with the batch system and MPI)
○ Incorporated many familiar Docker capabilities and syntax (like volume

mounting)
● Current limitations:

○ Users must build containers elsewhere
○ Due to squashed image, container is read-only
○ Some Shifter functionality is NERSC-specific (for example, our Cray

MPICH modules)

-

