

Status on Design, Deployment, Acceptance, and Operation

Presented to the Cray Users Group Meeting (CUG'22) - May 2022

SAND No: SAND2022-4432 C LA-UR: 22-23479 UNCLASSIFIED

me = 1.635 ns

Crossroads Supercomputer

- 3rd Advanced Technology System (ATS-3) in the Advanced Simulation and Computing (ASC) Program
- Supports:
 - National Nuclear Security Administration's (NNSA) Stockpile Stewardship Program (SSP)
 - Current and planned Stockpile Life Extension Programs activities
- The primary users of ASC platforms are designers, analysts and computational scientists
 - Los Alamos National Laboratory (LANL)
 - Lawrence Livermore National Laboratory (LLNL)
 - Sandia National Laboratories (SNL)

Overview of Presentation

- Design of Crossroads
- Programming Environments
- Operations
- Deployment
- Acceptance
- Performance Acceptance
- Closing & Questions

Design

- HPE-Cray Shasta EX Supercomputer
 - Follow-on to Trinity, ACES current Advanced Technology System
- Intel Sapphire Rapids processors
- Cray Slingshot Next-Gen Fabric
- Final configuration is High Bandwidth Memory
- DDR-5 for early deliveries
- HPE Cray "Shasta" Cabinets
 - Mountain
 - High density Cray blades
 - 64 compute blades per cabinet
 - 2/4/8/16 NICs per blade
 - River
 - Flexible support for arbitrary nodes

"Rack"

Programming Environment

Programming Environments on Crossroads

• Software Environment

- CPE Cray Programming Environment Support
 - Cray Supplied Software Environment
 - GCC/Cray/Intel Compilers
 - Cray MPICH2 tuned to SlingShot interconnect
 - Libraries, tools, and utilities supporting HPC workloads
- Trilab Computing Environment (TCE)
 - Spack supplied software stack
 - NNSA Tri-lab collaboration
- Development Environment
 - Container Support
 - DevOps Support (remote via RCE)
 - Code Development Tools
- Filesystems and Scheduling Interfaces
- Data Science/Analysis Support
 - Visualization Support

Programming Environment Working Group

Programming Environment Software

Administrative Management System

- Cray System Management (CSM)
 - Cray Operating System (COS)
 - User Access Nodes (UAN)
 - Image Management
- Networks
 - Hardware Management Network (Service)
 - Node Management Network (NMN)
 - High Speed Network (HSN)
 - Customer Access Network (CAN)

User Environment Administration

- Cray Programming Environment (CPE)
 - Content Projection Service (CPS)
 - PE Image Orchestration
 - Environment Modulefiles (LMOD/TMOD)
- SchedMD Slurm Workload Manager
 - Allocates access to compute resources to users for some duration of time so they can perform work
 - Framework for starting, executing, and monitoring work
 - Arbitrates contention for resources by managing a queue of pending work

0 1. loyment

Deployment Timeline

Acceptance Testing

Acceptance Testing Phases

- System Requirements Testing
 - Scalability
 - System Software & Runtime
 - Software Tools and Programming Environment
 - Parallel Storage System
 - Application Performance Requirements
 - Resilience, Reliability & Availability
 - System Operations

System Procurement Cycle

- Implement tests in Pavilion abstractions
 - Eases porting
 - Iterates over software dependencies
 - Permutes inputs
 - Extracts key outputs
 - Feeds analysis tools
 - Enforces uniformity

DAAP – Data Analytics Application Profiling

- Application Monitoring
- Acceptance Test Monitoring
- Machine Performance Regression

Pavilion Configuration DAAP Instrumentation Containerized Implementation Dashboard Panel for Results Performance Baseline & System Metrics

- Application progress monitoring
- CPU usage per host
- MEM usage per host
- Infiniband (IB) usage per host
- IB errors per host
- Reliability data collection, analysis, and reporting

Performance Acceptance

Performance Acceptance Subgroup Roster

• The **current** roster (alphabetical by lab) for the subgroup is:

Los Alamos National Laboratory (LANL)

- Christopher DeJager
- Charles Ferenbaugh
- Paul Ferrell
- Timothy Goetsch
- Adam Good
- Jennifer Green
- Hugh Greenberg
- Francine Lapid
- Alex Long

- Daniel Magee
- William Nystrom
- Jordan Ogas
- Howard Pritchard
- Charles Shereda
- Kevin Sheridan
- David Shrader
- Nicholas Sly
- Alfred Torrez

Sandia National Laboratories (SNL)

- Omar Aaziz
- Anthony Agelastos
- Sam Browne
- Simon Hammond
- Erik Illescas

- Douglas Pase
- Joel Stevenson
- Vanessa Surjadidjaja
- Courtenay Vaughan

This is a team effort!

Performance Benchmarking Applications

Micro-Benchmarks

- **1. DGEMM**: Measures the floating-point capabilities of a single node.
- 2. IOR: Measures parallel file system performance.
- 3. mdtest: Measures the metadata performance of a file system.
- 4. **STREAM**: Measures memory bandwidth.
- 5. MPI Benchmarks: Measures MPI and high-speed network (HSN) performance.

Production Applications

- PARTISN (LANL): Provides neutron transport solutions on orthogonal meshes in 1, 2, and 3 dimensions using a multi-group energy treatment w/ the Sn angular approximation.
- 2. Mercury (LLNL): Tests performance of Monte Carlo Particle Transport methods.
- 3. SPARC (SNL): SPARC (Sandia Parallel Aerodynamics and Reentry Code) simulates the aerodynamic environment for atmospheric flight vehicles from subsonic to hypersonic speeds.

SSI Apps (Mini and Production)

- 1. **SNAP**: A proxy for modern discrete ordinates neutral particle transport.
- 2. HPCG: A conjugate gradient benchmark.
- **3. PENNANT**: A proxy for 2D, unstructured, finite element mesh (FEM) w/ arbitrary polygons.
- 4. MiniPIC: A particle-in-cell (PIC) proxy that solves the discrete Boltzman equation in an electrostatic field within an arbitrary domain w/ reflective walls.
- 5. UMT: A proxy that performs 3D, nonlinear, radiation transport calculations using deterministic (Sn) methods.
- 6. VPIC: A 3D, relativistic, electromagnetic PIC plasma simulation code.
- Branson: A proxy for the Implicit Monte Carlo method to model the exchange of radiation w/ material at high temperatures.

lanl.gov/projects/crossroads/benchmarks-performance-analysis.php

Performance Benchmarking Assessment

- SOW for Crossroads Phase 1 and Phase 2 is still being finalized; the actual requirements will not be discussed until this occurs.
- Improvements are relative to ATS-1/Trinity Phase 1 (Intel Haswell).
- **Micro-Benchmarks**: The improvements are are application-specific.
- **SSI Apps**: The improvement(s) with these mini- and production-applications are handled as the Scalable System Improvement (SSI) benchmarking metric (see next).
- **Production Apps**: The improvement(s) with these have historically been handled in aggregate, e.g., with an arithmetic mean of improvement over the baseline.

Scalable System Improvement (SSI) Metric

$$SSI = \left(\prod_{i=1}^{M} (c_i U_i S_i)^{w_i}\right)^{\frac{1}{\sum_{i=1}^{M} w_i}}$$

- M: total # of applications
- c: capability scaling factor
- U: utilization factor = $\frac{n_{\text{ref}}}{n} \times \frac{N}{N_{\text{ref}}}$
 - *n*: total number of nodes used for the application
 - *N*: total number of nodes in the respective platform
 - *ref* : refers to the reference (i.e., baseline) system
- S: application speedup = $\frac{t_{ref}}{t}$ or $\frac{FOM}{FOM_{ref}}$
- w: weighting factor

Programming Environment (PE) Focus

- For each of these, the goals are to:
 - Port application to latest version of PE
 - Challenge: Application snapshots are quite old
 - **Challenge**: Intel oneAPI is quite new and some of its components (e.g., Fortran) are not quite ready to replace Intel Classic in all cases
 - Communicate issues/successes to upstream vendors
- The order of preference above stems from generalized NNSA Tri-labs application teams' focus for Crossroads system
 - All PEs will, ultimately, be used by various teams on Crossroads
 - If performance goals are met and time remains, work will still commence until all of these PEs have been investigated

Teaming with vendors enables a healthy ecosystem

Looking to the Future: Testing

- As the applications are ported and test cases are developed, researchers are integrating them into Pavilion
- This will assist with downstream testing activities extending beyond Acceptance (e.g., platform update testing)
- This will also assist with easy transitioning of test cases from the developers to the testers (team member load balancing)

Porting Status

Good early progress

Conclusions/Future Work

- Finalized SOW will drive adjustments
- Test development and integration efforts underway
- Functional & Integration testing working with Performance Testing results
 - Feeds production support teams for operation
- Operational test comparisons against baselines
 - Monitor health of the machine
 - Informs next procurement design choices

Questions?

administration

performance-analysis.php

https://hpc.sandia.gov/aces/

https://pavilion2.readthedocs.io/

Email: xrds-acceptance-testing@lanl.gov

https://www.lanl.gov/projects/crossroads/benchmarks-

https://www.energy.gov/nnsa/national-nuclear-security-

•*•

