
1CUG 2022

2022

Open Approaches to Heterogeneous
Programming are Key for Surviving the New

Golden Age of Computer Architecture

James Reinders, engineer
May 2022

3CUG 2022

Heterogeneous Systems – Programming them

My talk today:

1. Heterogeneous Systems are here to stay
and will be ubiquitous (like parallelism)

2. Standardizing support is HARD, and we keep getting it WRONG

3. Look at the essentials of SYCL (this is just for C++)

4. We need
open, multivendor, multiarchitecture support
that spans programming languages

5. This is OUR problem – let’s solve it together

4CUG 2022

2022: 25th Anniversary ASCI Red supercomputer takes #1 spot

#1 system for seven Top 500 lists (still a record) - from June 1997 through June 2000

• First TeraFLOP/s computer in the world.

• 7264 processors (cores) of Intel Pentium Pro processors @200MHz for 1.45 TeraFLOP/s. Later upgraded to
9632 Pentium II Over-Drive processors @333MHz for 3.21 TeraFLOP/s.

• Parallel programming focused on distributed parallelism (message passing)

What has happened in the 25 years since ?

• “nodes” have become much fatter

• Multicore, multisocket, and heterogeneous compute

• nodes require parallel programming of all kinds – distributed, share memory, offload

5CUG 2022

2022: 25th Anniversary ASCI Red supercomputer takes #1 spot

#1 system for eight Top 500 lists (still a record) - from June 1997 through June 2000

• First TeraFLOP/s computer in the world.

• 7264 processors (cores) of Intel Pentium Pro processors @200MHz for 1.45 TeraFLOP/s. Later upgraded to
9632 Pentium II Over-Drive processors @333MHz for 3.21 TeraFLOP/s.

• Parallel programming focused on distributed parallelism (message passing)

What has happened in the 25 years since ?

• “nodes” have become much fatter

• Multicore, multisocket, and heterogeneous compute

• nodes require parallel programming of all kinds – distributed, share memory, offload

6CUG 2022

Heterogeneous Systems – Programming them

My talk today:

1. Heterogeneous Systems are here to stay
and will be ubiquitous (like parallelism)

2. Standardizing support is HARD, and we keep getting it WRONG

3. Look at the essentials of SYCL (this is just for C++)

4. We need
open, multivendor, multiarchitecture support
that spans programming languages

5. This is OUR problem – let’s solve it together

7CUG 2022

Our quest for more performance is eternal;
how we obtain it adapts to the times

Source: tinyurl.com/karlruppdata (CC BY 4.0 license)

https://tinyurl.com/karlruppdata

8CUG 2022

Our quest for more performance is eternal;
how we obtain it adapts to the times

Source: tinyurl.com/karlruppdata (CC BY 4.0 license)

https://tinyurl.com/karlruppdata

9CUG 2022 Source: tinyurl.com/karlruppdata (CC BY 4.0 license)

Our quest for more performance is eternal;
how we obtain it adapts to the times

https://tinyurl.com/karlruppdata

10CUG 2022

Computer trends: Parallel and Heterogeneous

Why Parallel?
Desire to get more work done, by having more workers.

Why Heterogeneous?
Desire to get more work done, by having different types of workers.
And… well planned specialization can be more power efficient.

Workers = compute units, devices, processing units, etc.
(e.g., CPU, GPU, FPGA, ASIC, AI chip)

11CUG 2022

Computer trends: Parallel and Heterogeneous

Why Parallel?
Desire to get more work done, by having more workers.

Why Heterogeneous?
Desire to get more work done, by having different types of workers.
And… well planned specialization can be more power efficient.

Workers = compute units, devices, processing units, etc.
(e.g., CPU, GPU, FPGA, ASIC, AI chip)

12CUG 2022

Computer trends: Parallel and Heterogeneous

Why Parallel?
Desire to get more work done, by having more workers.

Why Heterogeneous?
Desire to get more work done, by having different types of workers.
And… well planned specialization can be more power efficient.

Workers = compute units, devices, processing units, etc.
(e.g., CPU, GPU, FPGA, ASIC, AI chip)

13CUG 2022

A New Golden Age for Computer Architecture
“The next decade will see a Cambrian explosion of novel
computer architectures, meaning exciting times for
computer architects in academia and industry.”
ACM Turing Award laureates
John Hennessy and David Patterson (CACM, Feb 2019, Vol 62, No 2, pp 48-60)

https://tinyurl.com/HPcambrian <<< HIGHLY RECOMMENDED READING

https://tinyurl.com/HPcambrian

14CUG 2022

A New Golden Age for Computer Architecture
“The next decade will see a Cambrian explosion of novel
computer architectures, meaning exciting times for
computer architects in academia and industry.”
ACM Turing Award laureates
John Hennessy and David Patterson (CACM, Feb 2019, Vol 62, No 2, pp 48-60)

https://tinyurl.com/HPcambrian

GPU/Data Parallel
Spatial/

Dataflow
Deep Learning

Optimized Blockchain Neuromorphic Graph Analytics
and More…

____________________Products____________________ _____Research_____

Novel On-Die
Accelerators

Mix & Match
Nearly Endless
Combinations

https://tinyurl.com/HPcambrian

15CUG 2022

the future must be

open, multivendor, multiarchitecture, multilanguage

16CUG 2022

the future must be

open, multivendor, multiarchitecture, multilanguage

common code base
in language of choice

executes on device
of choice

any vendor or architecture

scales across
available

resources (devices)

PhD in parallel
computing

not required
(still nice to have)

17CUG 2022

Observation

• When a computer was homogeneous – we could program it with
any tool, even if it was unique or proprietary.

• When a computer is heterogeneous – we need tools to work
together.

18CUG 2022

Before heterogeneous systems

My application compiler
(libraries & tools too) CPU

I didn’t care if
the compiler, etc.,

was proprietary or not –
since the target system was

single vendor, single architecture.

Portability was
a function

of the
language used.

C, C++, Fortran, Java, Python

19CUG 2022

Observation

• When a computer was homogeneous – we could program it with
any tool, even if it was unique or proprietary.

• When a computer is heterogeneous – we need tools to work
together.

20CUG 2022

Now, with heterogeneous systems

My application compiler
(libraries & tools too)

XPUopen, multivendor, multiarchitecture
vs.

walled-garden

matters like it never has

The more XPUs (devices)
the world gets,

the more this matters.

Portability was
a function

of the
language used.

C, C++, Fortran, Java, Python

CPU

XPU

(device)

(device)

21CUG 2022

Can we survive the diversity?

Do we have a choice?

make it much easier with
“open, multivendor, multiarchitecture”

22CUG 2022

A List of the…
Effective Programming of Heterogeneous Systems needs:
• be open, multivendor, and multiarchitecture – always

• Pass three tests:
1. Freedom to use any device (regardless of vendor or architecture)
2. Ability to access maximum performance
3. A future for my investments in coding

• support across many programming languages
• performance portability
• commonality for developers
• commonality under the covers

23CUG 2022

Heterogeneous Systems – Programming them

My talk today:

1. Heterogeneous Systems are here to stay
and will be ubiquitous (like parallelism)

2. Standardizing support is HARD, and we keep getting it WRONG

3. Look at the essentials of SYCL (this is just for C++)

4. We need
open, multivendor, multiarchitecture support
that spans programming languages

5. This is OUR problem – let’s solve it together

24CUG 2022

C++ p2300r4 – section 1.1

Let me illustrate how hard this is… by drawing from the C++ experience.

My only point: it is really hard.

std::async/std::future/std::promise, C++11’s intended exposure for asynchrony, is inefficient, hard to use correctly, and

severely lacking in genericity, making it unusable in many contexts.

We introduced parallel algorithms to the C++ Standard Library in C++17, and while they are an excellent start, they are

all inherently synchronous and not composable.

This paper proposes a Standard C++ model for asynchrony, based around three key abstractions: schedulers,

senders, and receivers, and a set of customizable asynchronous algorithms.

25CUG 2022

C++ p2300r4 – section 1.1

While the C++ Standard Library has a rich set of concurrency primitives (std::atomic, std::mutex,

std::counting_semaphore, etc) and lower level building blocks (std::thread, etc), we lack a Standard vocabulary and

framework for asynchrony and parallelism that C++ programmers desperately need.

std::async/std::future/std::promise, C++11’s intended exposure for asynchrony, is inefficient, hard to use correctly, and

severely lacking in genericity, making it unusable in many contexts.

We introduced parallel algorithms to the C++ Standard Library in C++17, and while they are an excellent start, they are

all inherently synchronous and not composable.

This paper proposes a Standard C++ model for asynchrony, based around three key abstractions: schedulers,

senders, and receivers, and a set of customizable asynchronous algorithms.

26CUG 2022

C++ p2300r4 – section 1.1

While the C++ Standard Library has a rich set of concurrency primitives (std::atomic, std::mutex,

std::counting_semaphore, etc) and lower level building blocks (std::thread, etc), we lack a Standard vocabulary and

framework for asynchrony and parallelism that C++ programmers desperately need.

std::async/std::future/std::promise, C++11’s intended exposure for asynchrony, is inefficient, hard to use correctly, and

severely lacking in genericity, making it unusable in many contexts.

We introduced parallel algorithms to the C++ Standard Library in C++17, and while they are an excellent start, they are

all inherently synchronous and not composable.

This paper proposes a Standard C++ model for asynchrony, based around three key abstractions: schedulers,

senders, and receivers, and a set of customizable asynchronous algorithms.

27CUG 2022

C++ p2300r4 – section 1.1

While the C++ Standard Library has a rich set of concurrency primitives (std::atomic, std::mutex,

std::counting_semaphore, etc) and lower level building blocks (std::thread, etc), we lack a Standard vocabulary and

framework for asynchrony and parallelism that C++ programmers desperately need.

std::async/std::future/std::promise, C++11’s intended exposure for asynchrony, is inefficient, hard to use correctly, and

severely lacking in genericity, making it unusable in many contexts.

We introduced parallel algorithms to the C++ Standard Library in C++17, and while they are an excellent start, they are

all inherently synchronous and not composable.

This paper proposes a Standard C++ model for asynchrony, based around three key abstractions: schedulers,

senders, and receivers, and a set of customizable asynchronous algorithms.

28CUG 2022

C++ p2300r4 – section 1.1

While the C++ Standard Library has a rich set of concurrency primitives (std::atomic, std::mutex,

std::counting_semaphore, etc) and lower level building blocks (std::thread, etc), we lack a Standard vocabulary and

framework for asynchrony and parallelism that C++ programmers desperately need.

std::async/std::future/std::promise, C++11’s intended exposure for asynchrony, is inefficient, hard to use correctly, and

severely lacking in genericity, making it unusable in many contexts.

We introduced parallel algorithms to the C++ Standard Library in C++17, and while they are an excellent start, they are

all inherently synchronous and not composable.

This paper proposes a Standard C++ model for asynchrony, based around three key abstractions: schedulers,

senders, and receivers, and a set of customizable asynchronous algorithms.

29CUG 2022

C++ p2300r4 – section 1.1

While the C++ Standard Library has a rich set of concurrency primitives (std::atomic, std::mutex,

std::counting_semaphore, etc) and lower level building blocks (std::thread, etc), we lack a Standard vocabulary and

framework for asynchrony and parallelism that C++ programmers desperately need.

std::async/std::future/std::promise, C++11’s intended exposure for asynchrony, is inefficient, hard to use correctly, and

severely lacking in genericity, making it unusable in many contexts.

We introduced parallel algorithms to the C++ Standard Library in C++17, and while they are an excellent start, they are

all inherently synchronous and not composable.

This paper proposes a Standard C++ model for asynchrony, based around three key abstractions: schedulers,

senders, and receivers, and a set of customizable asynchronous algorithms.

My point:

It’s hard.

Be CAREFUL what you standardize.

History suggests we standardize too soon.

We need more proposals, criticism, failures, and
refinement.

30CUG 2022

Portability is not enough in a heterogeneous world.
Performance Portability- Definition and Metric:

Yes/No answer for “is it PP?”
Captures “average” performance in 𝐻𝐻
Architectural and Application Efficiency
Recommended reading:

Navigating Performance, Portability and Productivity
https:// tinyurl.com / NavigatePerf

“A measurement of an application’s performance efficiency for a
given problem that can be executed correctly on all platforms in a
given set.”

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A B C D E F

P
er

fo
rm

an
ce

 E
ff

ic
ie

nc
y

Platform

Example Application
PP(a,p,H) = 23.30%

Efficiency PP

S. J. Pennycook, J. D. Sewall and V. W. Lee, “A Metric for Performance Portability”, PMBS 2017

Anything portable is “performance portable”.
The question becomes: “How performance portable is it?”

31CUG 2022

Heterogeneous Systems – Programming them

My talk today:

1. Heterogeneous Systems are here to stay
and will be ubiquitous (like parallelism)

2. Standardizing support is HARD, and we keep getting it WRONG

3. Look at the essentials of SYCL (this is just for C++)

4. We need
open, multivendor, multiarchitecture support
that spans programming languages

5. This is OUR problem – let’s solve it together

32CUG 2022

#include <CL/sycl.hpp>
#include <iostream>

int main() {

sycl::queue Q;
std::cout << "Running on: " << Q.get_device().get_info<sycl::info::device::name>() << std::endl;

int sum;
std::vector<int> data{1, 1, 1, 1, 1, 1, 1, 1};

sycl::buffer<int> sum_buf(&sum, 1);
sycl::buffer<int> data_buf(data);

Q.submit([&](sycl::handler& h)
{

sycl::accessor buf_acc{data_buf, h, read_only};

h.parallel_for(sycl::range<1>{8},
sycl::reduction(sum_buf, h, std::plus<>()),
[=](sycl::id<1> idx, auto& sum)

{
sum += buf_acc[idx];

});
});

sycl::host_accessor result{sum_buf, read_only};
std::cout << "Sum equals " << result[0] << std::endl;

return 0;
}

33CUG 2022

#include <CL/sycl.hpp>
#include <iostream>

int main() {

sycl::queue Q;
std::cout << "Running on: " << Q.get_device().get_info<sycl::info::device::name>() << std::endl;

int sum;
std::vector<int> data{1, 1, 1, 1, 1, 1, 1, 1};

sycl::buffer<int> sum_buf(&sum, 1);
sycl::buffer<int> data_buf(data);

Q.submit([&](sycl::handler& h)
{

sycl::accessor buf_acc{data_buf, h, read_only};

h.parallel_for(sycl::range<1>{8},
sycl::reduction(sum_buf, h, std::plus<>()),
[=](sycl::id<1> idx, auto& sum)

{
sum += buf_acc[idx];

});
});

sycl::host_accessor result{sum_buf, read_only};
std::cout << "Sum equals " << result[0] << std::endl;

return 0;
}

34CUG 2022

#include <CL/sycl.hpp>
#include <iostream>

int main() {

sycl::queue Q;
std::cout << "Running on: " << Q.get_device().get_info<sycl::info::device::name>() << std::endl;

int sum;
std::vector<int> data{1, 1, 1, 1, 1, 1, 1, 1};

sycl::buffer<int> sum_buf(&sum, 1);
sycl::buffer<int> data_buf(data);

Q.submit([&](sycl::handler& h)
{

sycl::accessor buf_acc{data_buf, h, read_only};

h.parallel_for(sycl::range<1>{8},
sycl::reduction(sum_buf, h, std::plus<>()),
[=](sycl::id<1> idx, auto& sum)

{
sum += buf_acc[idx];

});
});

sycl::host_accessor result{sum_buf, read_only};
std::cout << "Sum equals " << result[0] << std::endl;

return 0;
}

35CUG 2022

#include <CL/sycl.hpp>
#include <iostream>

int main() {

sycl::queue Q;
std::cout << "Running on: " << Q.get_device().get_info<sycl::info::device::name>() << std::endl;

int sum;
std::vector<int> data{1, 1, 1, 1, 1, 1, 1, 1};

sycl::buffer<int> sum_buf(&sum, 1);
sycl::buffer<int> data_buf(data);

Q.submit([&](sycl::handler& h)
{

sycl::accessor buf_acc{data_buf, h, read_only};

h.parallel_for(sycl::range<1>{8},
sycl::reduction(sum_buf, h, std::plus<>()),
[=](sycl::id<1> idx, auto& sum)

{
sum += buf_acc[idx];

});
});

sycl::host_accessor result{sum_buf, read_only};
std::cout << "Sum equals " << result[0] << std::endl;

return 0;
}

36CUG 2022

SYCL is expressive &
exposes control

• Device queries
• Queue & context control
• OpenCL-like buffers and unified shared memory
• Optional asynchrony & task DAG
• Generic groups & group algorithms
• SPMD-to-SIMD interoperability (InvokeSIMD)
• JIT & Specialization Constants
• Interoperability with OpenMP

COMMON
NEEDS FOR

PROGRAMMERS

37CUG 2022

SYCL is expressive &
exposes control

• Device queries
• Queue & context control
• OpenCL-like buffers and unified shared memory
• Optional asynchrony & task DAG
• Generic groups & group algorithms
• SPMD-to-SIMD interoperability (InvokeSIMD)
• JIT & Specialization Constants
• Interoperability with OpenMP

Book (PDF) Download
tinyurl.com/DataParallelCpp

38CUG 2022
https://www.iwocl.org/wp-content/uploads/k04-iwocl-syclcon-2021-wong-slide

39CUG 2022

Heterogeneous Systems – Programming them

My talk today:

1. Heterogeneous Systems are here to stay
and will be ubiquitous (like parallelism)

2. Standardizing support is HARD, and we keep getting it WRONG

3. Look at the essentials of SYCL (this is just for C++)

4. We need
open, multivendor, multiarchitecture support
that spans programming languages

5. This is OUR problem – let’s solve it together

40CUG 2022

C++ programming is just one piece

• LIBRARIES are KEY

• Supporting MANY languages is IMPORTANT
e.g., Python, Fortran, C, Julia, …

41CUG 2022

 Open industry specification

 Open-source repo and development

 Community driven

 Multivendor implementations

• Standard C++ with SYCL
• Standardized interfaces for common libraries
• Standardized hardware interface

 Intel’s implementation

 Toolkits optimized for Intel HW

 Free to download and use

API-Based ProgrammingDirect Programming

Low-Level Hardware Interface (Level Zero)

Math Threading Parallel STL

Analytics/
ML DNN ML Comm

Video
Processing

Libraries

Data Parallel C++

oneAPI Industry Specification

Standard C++
with

SYCL
Image

Processing
Signal

Processing

Ray Tracing

Volumetric
Rendering

Image
Denoise

oneAPI: One Name, Two Distinct Objectives

41

42CUG 2022

An open specification and initiative to
standardize programming of accelerated

processing units (XPUs)

oneapi.io

Intel’s product implementation of
the oneAPI specification

free

software.intel.com/oneAPI

43CUG 2022

Fortran (+OMP)

Python (+Numba)

C/C++ (+OMP)

Media Foundation

AI Comm Library

Data Analytics Library

Math library

AI Library

Crypto / Sig. Proc. Lib

Level Zero

Fortran (+OpenMP)

Python (+Numba)

C/C++ (+OpenMP)

oneVPL

oneCCL

oneDAL

oneMKL

oneDNN

Intel Performance Primitives

oneDPL

Threading Library oneTBB

Data Parallel Language C++ with SYCL

CPU AIGPU FPGA

FOUNDATIONAL
LIBRARIES

Future

Future

Future

Future

Future

Future

Future

Future

Future

Future

Future

Future

LANGUAGE

Compatibility Layer

CPU

oneAPI 1.0
Spec Elements

Parallel STL

Future FutureHARDWARE
ABSTRACTION

Industry
Standards

Intel Vertical
Libraries

Amazing already, and
Lots of interesting work and research remain

44CUG 2022

Common “under the covers” - lots of work to do!

Composability It’s important.

Heterogeneous is leading to mix-and-match like nothing

before, therefore… composibility matters even more.

45CUG 2022

Heterogeneous Systems – Programming them

My talk today:

1. Heterogeneous Systems are here to stay
and will be ubiquitous (like parallelism)

2. Standardizing support is HARD, and we keep getting it WRONG

3. Look at the essentials of SYCL (this is just for C++)

4. We need
open, multivendor, multiarchitecture support
that spans programming languages

5. This is OUR problem – let’s solve it together

46CUG 2022

oneAPI is not alone

P
yt

ho
n

FORTRAN Kokkos

DOE-led efforts

DSLs

47CUG 2022

oneAPI is not alone

We do STRESS our belief in the need to bring us all together to create an

open, multivendor, multiarchitecture, multilanguage

future

48CUG 2022

A List of the…
Effective Programming of Heterogeneous Systems needs:
• be open, multivendor, and multiarchitecture – always

• Pass three tests:
1. Freedom to use any device (regardless of vendor or architecture)
2. Ability to access maximum performance
3. A future for my investments in coding

• support across many programming languages
• performance portability
• commonality for developers
• commonality under the covers

49CUG 2022

It’s a Journey

We started oneAPI with a good idea

We knew enough to propose initial specifications

We are rapidly iterating and refining through community feedback

oneAPI has evolved

Much work remains – join us in creating an
open, multivendor, multiarchitecture, multilanguage future

50CUG 2022

It’s a Journey

We started oneAPI with a good idea

We knew enough to propose initial specifications

We are rapidly iterating and refining through community feedback

oneAPI has evolved

Much work remains – join us in creating an
open, multivendor, multiarchitecture, multilanguage future

https:// oneapi.io
https:// software.intel.com/oneAPI

51CUG 2022

Thank you Have a GREAT conference!

We started oneAPI with a good idea

We knew enough to propose initial specifications

We are rapidly iterating and refining through community feedback

oneAPI has evolved

Much work remains – join us in creating an
open, multivendor, multiarchitecture, multilanguage future

https:// oneapi.io
https:// software.intel.com/oneAPI

52CUG 2022

Disclaimers & Notices

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more complete information visit www.intel.com/benchmarks.

Intel technologies' features and benefits depend on system
configuration and may require enabled hardware, software or
service activation. Performance varies depending on system
configuration. No product or component can be absolutely
secure. Check with your system manufacturer or retailer or
learn more at intel.com.

Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.
© Intel Corporation

Khronos® is a registered trademark and SYCL™ and SPIR™
are trademarks of The Khronos Group Inc. OpenCL™ is a
trademark of Apple Inc. used by permission by Khronos.

http://www.intel.com/benchmarks

	Slide Number 1
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Our quest for more performance is eternal;�how we obtain it adapts to the times
	Our quest for more performance is eternal;�how we obtain it adapts to the times
	Our quest for more performance is eternal;�how we obtain it adapts to the times
	Computer trends: Parallel and Heterogeneous
	Computer trends: Parallel and Heterogeneous
	Computer trends: Parallel and Heterogeneous
	A New Golden Age for Computer Architecture
	A New Golden Age for Computer Architecture
	Slide Number 15
	Slide Number 16
	Observation
	Before heterogeneous systems
	Observation
	Now, with heterogeneous systems
	Can we survive the diversity? ���Do we have a choice?
	A List of the…
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Portability is not enough in a heterogeneous world.�Performance Portability- Definition and Metric:
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	SYCL is expressive &�exposes control
	SYCL is expressive &�exposes control
	Slide Number 38
	Slide Number 39
	C++ programming is just one piece
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	oneAPI is not alone
	oneAPI is not alone
	A List of the…
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52

