
May 02, 2022
Steve Abbott, Kostas Makrides, & Trey White

DEBUGGING AND PERFORMANCE PROFILING ON
HPE CRAY SUPERCOMPUTERS WITH AMD GPUS

2

INTRODUCTION

• Part 1 – Debugging
• Entomology – what kind of bug do you have?
• Tools to find your bug
• Using runtime logging to understand your bug
• Active debugging

• Part 2 – Profiling
• Profiling with Perftools
• Visualizing performance with Apprentice2
• Rocprof, the other tracing tool
• Bonus topic: Assembly!

• 3D grid of spectral elements
• That share faces that must be summed
• Partitioned across MPI tasks
• With contiguous buffers for MPI

3

FACES: SPECTRAL-ELEMENT MICROBENCHMARK

https://upload.wikimedia.org/wikipedia/commons/c/ce/USDA-ARS_Guinea_Pig.jpg

https://upload.wikimedia.org/wikipedia/commons/c/ce/USDA-ARS_Guinea_Pig.jpg

• 3D grid of spectral elements
• That share faces that must be summed
• Partitioned across MPI tasks
• With contiguous buffers for MPI

4

FACES: SPECTRAL-ELEMENT MICROBENCHMARK

• 3D grid of spectral elements
• That share faces that must be summed
• Partitioned across MPI tasks
• With contiguous buffers for MPI

5

FACES: SPECTRAL-ELEMENT MICROBENCHMARK

• 3D grid of spectral elements
• That share faces that must be summed
• Partitioned across MPI tasks
• With contiguous buffers for MPI

6

FACES: SPECTRAL-ELEMENT MICROBENCHMARK

• 3D grid of spectral elements
• That share faces that must be summed
• Partitioned across MPI tasks
• With contiguous buffers for MPI

FACES: SPECTRAL-ELEMENT MICROBENCHMARK

May 02, 2022
Steve Abbott

PART 1:
DEBUGGING ON HPE CRAY SUPERCOMPUTERS
WITH AMD GPUS

ENTOMOLOGY
WHAT KIND OF BUG IS THAT?

9

10

• Crashing bugs
• One or more processes in your application terminate
• The most common kind
• Generally (but not always) the easiest kind to solve

• Hangs
• Deadlocks – everyone is stuck waiting for something that never happens
• Livelocks – everyone is playing hot potato, calling different functions but not progressing

• Race conditions
• One or more actors accessing the same data at the same time in a nondeterministic way
• Shows up as changing results or sometimes crashes

THE MAJOR TYPES OF BUGS

11

• Most crashing bugs will generate a signal
• "man 7 signal" can act as a cheat sheet

CRASHING BUGS ON THE CPU

Signal Abbreviation (Number) Signal Name What it means

SIGSEGV (11) Segmentation Fault, AKA Seg Fault You attempted to access memory that
technically exists on the machine but is
outside the virtual address space the
kernel gave you

SIGBUS (10,7) Bus error You attempted to access memory that
cannot possibly be accessed

SIGABT (6) Abort Your application, or a library it uses,
realized something was wrong and
crashed intentionally

SIGFPE (8) Floating Point Exception You did some dangerous floating point
math and asked to be notified about it

CRASHING BUGS ON THE AMD GPU

12

What you’ll see* Signal What it means

Memory access fault by GPU node-5 (Agent handle: 0x528e80) on address
0x7f223b7ad000. Reason: Page not present or supervisor privilege.

SIGSEGV You tried to access memory that the GPU
could access but isn’t allowed to

HSA_STATUS_ERROR_MEMORY_FAULT: Agent attempted to access an
inaccessible address. code: 0x2b

SIGSEGV You tried to access memory that the GPU
can’t access

HSA_STATUS_ERROR_MEMORY_APERTURE_VIOLATION: The agent
attempted to access memory beyond the largest legal address. code: 0x29

SIGBUS You tried to access memory that the GPU
cannot possibly access

HSA_STATUS_ERROR_EXCEPTION: An HSAIL operation resulted in a
hardware exception. code: 0x1016

SIGABT The code realized something was wrong
and bailed out

• Most crashing bugs will raise an exception on the CPU
• The runtime will map the exception to the analogous signal and raise it

* HSA errors will be prefaced by something like:
:0:rocdevice.cpp :2589: 109972314012 us: Device::callbackQueue aborting with error :

13

• Debugging MPI bugs could be another full talk, so just a few notes

• When MPI detects an error, it will invoke its own error handler and use that
• For the most part, MPI doesn’t care if the buffers are GPU's or CPU's
• Out of bounds memory accesses will be hit with CPU like signals, even if they land in GPU memory

• The failure mode of crashing bugs is determined by WHO does the accessing, not where the accessing is

• MPI calls return instructive error codes!
• Most codes don’t bother checking these, since most MPI’s default to abort on error

• You can always set MPICH_ABORT_ON_ERROR=0 and actually do some error checking

MPI ERRORS

14

• A “Heisenbug” is a bug that disappears when you go looking for it

Why do bugs move around?
• Rebuilding with different optimization levels might pad memory differently, causing a bad access to land

in benign memory instead of segfault
• Running in a debugger might add additional synchronization

In all cases, think about what the bug moving is telling you!

HEISENBUGS

TOOLS FOR FINDING YOUR BUG

15

16

• If library authors went to the trouble of returning error codes, you should check them!
• A drop in macro you can use:

STEP 0: CHECK YOUR ERROR CODES!!

#define HIP_RC(hipCall) { \
hipError_t e = hipCall; \
if (e != hipSuccess) { \
e = hipGetLastError(); \
fprintf(stdout, "%s:%d -- %s returned %d:%s\n ", \

__FILE__, __LINE__, #hipCall , e, hipGetErrorString(e)); abort();}}

• Gives nice errors on failure:

simple_hmm.c:21 -- hipMalloc(&device, -1 * sizeof(int) * 1024) returned
2:hipErrorOutOfMemory

17

• Most crashing signals will drop a core containing the process memory when hit
• See "man 7 signal" for tables

• Your user limits need to allow it

CORE FILES FOR POST-MORTEM ANALYSIS

18

LOADING A CORE FROM A CPU CRASH

19

LOADING A CORE FROM A GPU CRASH

20

LOADING A CORE FROM A GPU CRASH

AMD GPU memory state is not currently part of the core dump!

21

• Are the size of the process’s occupied CPU memory
• Depending on system will either:

• Only dump one core file -> maybe not enough information
• Dump one core file for every failing process -> takes up a lot of space and is slow

• Don’t contain AMD GPU memory state
• Are only postmortem

LIMITATIONS OF CORE DUMPS

• To use:
• module load atp
• Rebuild or just relink against libAtpSigHandler
• The workload manager does need to be configured by admins to invoke ATP

Useful for crashes and sometimes hangs
ABNORMAL TERMINATION PROCESSING (ATP)

22

• What’s on my command line?
• HSA_XNACK – change an AMD GPU page fault setting (this just changes the type of error I get)
• ATP_CORE_FILE_DIRECTORY – If ATP identifies useful core files, where should it put them?
• ATP_GDB_BINARY – ATP will autodetect which gdb flavor it needs to load, but you can be explicit
• ATP_ENABLED – Have ATP handle your signals

23

My crash isn’t subtle and hits all the nodes, so in the gasp of 64 dying ranks we see:

WHEN ATP IS INVOKED

Then:

* I’m not sure why ATP couldn’t dump my core files. I’m investigating

24

VIEWING THE TRACE

25

GPU KERNEL POSITIONS

• atpMergedBT_line.dot –
includes line numbers, and can
cause unhelpfully complicated
graphs for large applications

• atpMergedBT.dot – function
names only, makes a cleaner
graph

• Nothing special required, just
module load cray-stat

Useful for hangs
THE STACK TRACE ANALYSIS TOOL (STAT)

26

Use VNC if you can!

27

ATTACHING WITH STAT-GUI

Select the top
job launcher
process here

Then click here!

STAT_GDB=/opt/rocm-4.5.2/bin/rocgdb
stat-gui -G -w –i

What’s on my command line?
• STAT_GDB – Pick which gdb stat should use
• stat-gui – The stat command that launches an

interactive window
• -G – Use the gdb backend to attach and trace
• -w – Trace threads, including GPU threads
• -i – Sample line numbers (use with caution)

All the above can be configured through the
“Sample Options” and “Advanced” tabs too!

28

STAT TRACES

29

ZOOMING IN TO THE GPU THREAD

Yes, that is the real
“bug” location

30

SOME OTHER THINGS YOU CAN DO

Un-pause
but stay
attached

Take another
sample

(maybe with
different
options)

Take some time
sliced samples

SIPPING FROM THE FIREHOSE:
USING RUNTIME DEBUG
INFORMATION

31

32

• The Cray OpenMP and OpenACC runtimes will print debug information to stderr on demand
• CRAY_ACC_DEBUG=1

• Concise, a good way to tell your offload regions are running
• Probably not useful for more complex debugging

• CRAY_ACC_DEBUG=2
• Designed to be user friendly and where you should start
• Shows what the runtime is doing but not nitty gritty details

• CRAY_ACC_DEBUG=3
• Very verbose, not designed for everyday users but very powerful in expert hands
• If you need to look at memory addresses, this is your level

THE CRAY OPENMP TARGET RUNTIME

33

faces-tests> MPICH_GPU_SUPPORT_ENABLED=1 CRAY_ACC_DEBUG=0 srun -u -n 1 -N 1 -c 1 --
pty --exclusive ./faces-mi200 < opt.in &

&testfaces lx=1,ly=1,lz=1,mx=15,my=14,mz=13,n=12,niface=1,niel=10,nshare=100 /

3*1 tasks
15, 14, 13 local elements of size 12
1 face inits x 10 element inits x 100 shares
0 with node rank 0 using device 0 (8 devices per node)
Initialized mugs: 15 x 14 x 13 elements of order 11 on 1 x 1 x 1 tasks
Initialized faces: 15 x 14 x 13 elements of order 11 on 1 x 1 x 1 tasks
0 FAIL 1., 12, 5*1, 10101.010112, 1.28045515244161363E+34
time 3.6951122709999922 avg 3.6951122709999922 min 3.6951122709999922 max

What went wrong?

THREE VIEWS OF AN EXPLOSION

34

WITH CRAY_ACC_DEBUG=1

35

WITH CRAY_ACC_DEBUG=2

36

WITH CRAY_ACC_DEBUG=3

We should probably copy back that state vector...

37

• Builds and contributes to LLVM OpenMP Target runtime
• Uses the mechanisms at https://openmp.llvm.org/design/Runtimes.html#libomptarget-info
• Compile with “-g” to get sensible name
• Set LIBOMPTARGET_INFO to control what is printed, but not how much

• This is a bitfield
• See the link above for fine grained details
• Set to -1 to get it all

• There is a separate “debug”, but that’s for library developers!
• If you really need it, there’s a build in ${ROCM_PATH}/llvm/lib-debug

THE AMD OPENMP TARGET RUNTIME

https://openmp.llvm.org/design/Runtimes.html

38

WITH LIBOMPTARGET_DEBUG

39

• If the OpenMP runtimes are firehoses, the HIP runtime is an Ocean
• AMD_LOG_LEVEL environment variable (higher is inclusive of lower)

• 0 – off
• 1 – print errors
• 2 – print warnings
• 3 – print info
• 4 - print detailed debugging information

• You can further fine tune what gets logged with AMD_LOG_MASK
• See https://docs.amd.com/bundle/AMD_HIP_Programming_Guide/page/Programming_with_HIP.html if you need

to do this

AMD HIP AND HSA RUNTIMES

https://docs.amd.com/bundle/AMD_HIP_Programming_Guide/page/Programming_with_HIP.html

40

AN EXAMPLE WHERE AMD_LOG_LEVEL HELPS A LOT

41

TURN UP THE FIREHOSE WITH CAUTION!

• Most AMD flags are bitfields
• AMD_SERIALIZE_KERNEL

• 1 = Synchronize before launches (i.e. make sure everything is done on the GPU)
• 2 = Synchronize after launches (i.e. wait for kernel to finish before moving on)
• 3 = Do both 1 and 2

• AMD_SERIALIZE_COPY
• 1 = Synchronize before copies (i.e. make sure everything is done on the GPU)
• 2 = Synchronize after copies (i.e. wait for copy to finish before moving on)
• 3 = Do both 1 and 2

• For a writeup and other tips see debugging sections of:
• https://docs.amd.com/bundle/AMD_HIP_Programming_Guide/page/Programming_with_HIP.html

• For raw flags, which may or may not do what you want:
• https://github.com/ROCm-Developer-Tools/ROCclr/blob/develop/utils/flags.hpp

Good for race conditions, and when you need to slow things down
OTHER USEFUL ENVIRONMENT VARIABLES

42

43

DIAGNOSING A SYNCHRONIZATION ERROR

We’re running to completion but getting wrong results.
Can we figure out why by using environment variables?

44

CHECK FOR GPU AND CPU SYNCHRONIZATION ISSUES

This is correct, so we probably have some race involving the GPU.
I know faces doesn’t do many Host<->Device copies, so can I rule that out?

45

CHECK JUST KERNEL SYNCHRONIZATION

We are probably missing a synch between two kernels or
between the host and a kernel.

Can we learn more?

46

SYNCHRONIZE BEFORE KERNEL LAUNCHES

This still fails.
We are probably not having two kernels racing.

47

SYNCHRONIZE AFTERKERNEL LAUNCHES

This works!
We probably have the CPU consuming data before the GPU is done.

Why did we comment that out again?

THE ART OF ACTIVE DEBUGGING

48

49

• AMD has made significant enhancements to gdb for debugging on their GPUs
• Each wavefront is represented as a single thread
• Non-stop mode works across both CPU and GPU
• Newest rocgdb+driver+compilers allow symbolic debugging and per-lane inspection
• Documentation available in ${ROCM_PATH}/share/doc/rocgdb/

• It has some shortcomings:
• It’s not multiprocess (or not more than gdb is)
• The debugger version requires the driver version match for GPU debugging
• The native thread representation can get a bit overwhelming

ROCGDB

REMEMBER: to use gdb or rocgdb from slurm you need to srun --pty to get a pseudoterminal!

50

A ROCGDB EXAMPLE

51

VIEWING THREADS IN ROCGDB

Regular gdb goodness
works!

• info threads
• thread <number>
• backtrace
• break
• watch
• layout

52

LAYOUT ASM IN ROCGDB ON A GPU THREAD

53

• A parallel harness and aggregator around gdb/rocgdb/cuda-gdb
• Load the gdb4hpc module to have gdb4hpc in your path and the man pages available
•man gdb4hpc
• You can also find help at the gdb4hpc command line by utilizing the help command

– help will give you a list of all the commands, and you can get more help about a particular
command by augmenting the help command with the command of interest.

–Ex. >$ help info threads will display information on the info threads command.
• You can still debug your application at non-zero optimization levels although you might not be

getting all of the information that you desire when debugging.
• gdb4hpc supports both launching and attaching

• I mostly launch so that’s what we’ll do here
• See the man pages for attach info, or for how to integrate into you batch script

GDB4HPC

54

launch $a{16}

--gpu

--env="MPICH_GPU_SUPPORT_ENABLED=1"

-g "-N 2 –p <partition> --cpu-bind=<masks>"

-i opt.in

./faces

LAUNCHING WITH GDB4HPC

Launch process set “a” with 16 ranks

We want to use a GPU debugger

gdb4hpc will use your environment,
but set any additional values here

Pass job launcher arguments

An input file to hand to stdin

The binary to debug

Remember to use help launch in gdb4hpc for more info!

55

dbg all> help launch

Summary: Launch an application.
Usage: launch <app_handle> <application>

[--args="<args>" OR -a "<args>"]
[--launcher="<launcher_name>" OR -l "<launcher_name>"]
[--launcher-args="<launcher_args>" OR -g "<launcher_args>"]
[--launcher-input=<path_to_file> OR -i <path_to_file>]
[--workdir=<path> OR -d<path>]
[--env="<name=value>"]
[--qsub=<batch_template> OR -q <batch_template>]
[--sbatch=<batch_template> OR -s <batch_template>]
[--gpu]
[--gdb=<gdb_app>]
[--non-mpi]
[--debug]

GDB4HPC> HELP LAUNCH

56

AN EXAMPLE GDB4HPC LAUNCH

57

THREAD AGGREGATION IN GDB4HPC

We’re in non-stop mode by default, so some threads
halting doesn’t necessarily stop everything

gdb4hpc tries its best to aggregate information

(but sometimes aggregation does break down)

• The gdb4hpc focus command lets you zoom into what you care about

Focus on what matters
TECHNIQUE #1

58

Focus to ranges or comma separated lists of processes

And unfocus when you’re done

In non-stop mode you can halt it all
TECHNIQUE #2

59

We’re in non-stop mode by default, so some threads
halting doesn’t necessarily stop everything

You can halt individual threads or processes, or
just stop it all with -a

Sometimes you just need gdbmode
TECHNIQUE #3

60

gdb4hpc doesn’t have commands for everything
gdb can do

We can drop to “gdbmode” to get raw access to
the backends

Make sure to end gdbmode before moving on!

You can do mini-gdbmode inline for some things
TECHNIQUE #4

61

Quotation marks evaluate the
expression in GDB mode

You don’t have to focus to focus
TECHNIQUE #5

62

Use ”::” operator to specify a process set
as part of an expression

63

• Debugging is easy when you’re introducing synthetic bugs to show off tools
• Understand what your bug could be before you go looking for it
• Understand what tools are at your disposal and what they can be used for
• Try to remember that every debugging session is a learning experience

• If you knew what the bug was, you wouldn’t need to debug
• GPUs are quickly becoming first class citizens in the debugging world
• There are tools we didn’t talk about here

• Address sanitizers (CPU and GPU)
• Thread sanitizers
• Visualizers

DEBUGGING TAKEAWAYS

Steve Abbott
stephen.abbott@hpe.com

THANK YOU

mailto:stephen.abbott@hpe.com

