
CUG 2022, May 2-5, 2022

Harold Longley
CSM User Experience Solutions Architect

CRAY SYSTEM MANAGEMENT
FOR

HPE CRAY EX SYSTEMS

AGENDA

RESOURCES

MANAGING USER ENVIRONMENTS

WHAT IS HAPPENING ON MY SYSTEM?

MANAGEMENT SERVICES

HPE CRAY EX SYSTEM OVERVIEW

CUG 2022 2

HPE CRAY EX SYSTEM OVERVIEW
MANAGEMENT SERVICES
WHAT IS HAPPENING ON MY SYSTEM?
MANAGING USER ENVIRONMENTS
RESOURCES

CUG 2022 3

• CSM Architecture
• HPE Cray EX Hardware
• Networks
• Continuous Operations
• Kubernetes
• Ceph
• Etcd
• Istio Service Mesh and API gateway
• Authentication and Authorization

HPE CRAY EX SYSTEM OVERVIEW

CUG 2022 4

CSM ARCHITECTURE

CUG 2022 5

Resilient, elastic, scalable systems management solution designed using extensible microservices cloud stack

CUG 2022 6

Manage and extend Exascale supercomputer system management capabilities
HPE CRAY SYSTEM MANAGEMENT FOR EXASCALE SUPERCOMPUTERS

Powerful
Comprehensive set of
tools you need to
manage all aspects of
your Cray EX
Supercomputer

Productive
Designed to
maximize productivity
of your HPC system,
automate actions, and
optimize running
costs

Scalable
Manage Exascale
systems with
thousands of nodes

Flexible
Enable cloud-like
secure multitenant
operations with
extensible
microservices APIs

Secure
Support customizable
role-based access
control for systems
management
administration

Proven
Used by customers
globally with large
supercomputing
systems

CLI

Systems Administration & Automation

API

CUG 2022 7

HPE CRAY SYSTEM MANAGEMENT SOLUTION OVERVIEW

Infrastructure Services (Hardware)

Storage Telemetry Slingshot Compute

Managed Compute Nodes

HPE Cray
Operating

System

Management
Services

Node Bootstrap

Configuration
Management

Image
Management

Monitoring

Utility
Storage

Slingshot
Management

Hardware
Inventory

Administrative
Control

Management
APIs

Managed
Services

User Access

Content
Projection

Workload
Management

K
ubernetes

• Slurm Workload Manager
• Altair® PBS Professional®

• User Access Nodes (UAN) for
login, compilation and job
submission; runs HPE Cray
Programming Environment

• Containerized Option - User
Access Instances

• Projects read-only images
using Data Virtualization
Service transport

Manage Exascale Supercomputers to deliver optimal performance for HPC workloads

CUG 2022 8

HPE CRAY SYSTEMS MANAGEMENT COMPONENTS

8

User
User compiles (HPE Cray Programming
Environment) and submits & monitors
jobs using Workload Managers like
SLURM, Altair PBS Pro
User gets results, analyzes & stores

User Access

Visualization Nodes
Data Movers & Gateways

Workload Managers

HPC SlingShot Fabric
Compute Nodes

Pre/Post Data Processing

With CPU, GPU

System Management
Infrastructure

Human and
programmatic

system
administration

Provision HPC resources, monitor & diagnose
health of system, get system monitoring status,
and analyze status, apply updates and upgrades

Master
Nodes

Worker
Nodes

running
microservices

Utility
Storage
Nodes

Node Bootstrap

Configuration Management

Image Management

Monitoring

Backup & Restore

Slingshot Management

Hardware Inventory

Administrative Control

Kubernetes Cluster

Management MicroservicesManaged Infrastructure

Data
Virtualization

Service

System management software designed for Exascale HPC and beyond

CUG 2022 9

HPE CRAY SYSTEM MANAGEMENT UNIQUE ATTRIBUTES

HPE Cray EX Supercomputer &
HPE Cray Supercomputer with HPE Slingshot

Exascale and beyond scalable hardware architecture and infrastructure

Key Capabilities
• Comprehensive monitoring and management of all aspects of the system:

CPU/GPU, network (integrated Cray Slingshot Fabric Manager), power
management and monitoring combined with provisioning for operational
efficiency

• REST APIs & standard systems management protocols enable full
interoperability and extensibility of monitoring, management, and automation
capabilities

• Infrastructure-as-code: Login nodes as dynamic containers (User Access
Instances), workload managers as containerized services

• Built from open-source software components, is open-source software

Unique Attributes
• Kubernetes platform for running system management and sysadmin tooling

enabling infrastructure-as-code & CI/CD for jobs, tenants, and environments
• Declarative and dynamic inventory and state management represents single

source of truth (configurations and artifacts), continuous delivery
• aaS Security with auditable access to all APIs
• Supports scalable deployment with massive system extensibility

CUG 2022 10

HPE CRAY SYSTEM MANAGEMENT IS ELASTIC AND RESILIENT

• Flexible Deployment Options
• Management Kubernetes cluster scales with more

nodes, CPUs, memory, network, and storage
– Proven to scale from small number of nodes to more than 50

worker nodes for very large customer deployments

• Elasticity
• Services are continuously checked and updated to

match state
• When nodes are added or subtracted or the load

suddenly changes, configuration is automatically
modified
– Autoscale Horizontally and Vertically within constraints
– When the system is under-scaled, microservices fail

according to defined priorities

• Resiliency
• Microservices are active/active HA

– Separate gateways and individual load balancers
– Multiple Pods
– Rolling deployments and rollbacks

• Managed nodes running custom app services have HA

Co
Automatic

Redfish
Discovery

Blade and
Cabinet
Control

Power
Control

Logical Node
Grouping

Automatic DNS and
DHCP with Geolocation

Fast System Boot
with PXE and DVS

Boot Parameter
Management

On-system Compute
Image Customization

On-Demand
Interactive Access

Containers

Scalable Configuration
Management

LDAP integration for
User/Group Mapping

Cooperative
Multitenancy / workload

scheduling

Flexible Mapping of Boot
Configuration to Node Groups

SPIFFE for
Attestation

Compute Image
Registry

Interactive Services

Infrastructure Services

Hardware Platform Management

K8s Master
Nodes

K8s Worker
Nodes

Common footprint
• 3 Kubernetes Master nodes for active failover
• 4+ K8s Worker nodes
• 3+ Utility storage nodes for state abstraction

• In-band (LDMS) and out of band
telemetry

• Access metrics and alerts via GUI,
CLI, REST APIs

• Customize system telemetry and
alerts to best suit your needs

• Set up automatic reactions to
events to prevent failures

WLM – PBS Pro & Slurm
Events and Telemetry

Fabric – Slingshot
Events and Telemetry

HPE Cray EX cabinets
Events and Telemetry

Syslog

Nodes
CPU, Memory, Disk

ClusterStor
Storage and Filesystems

CDU
Events and Telemetry

Power and Heartbeat
Monitoring

HPE Cray Systems management offers fine-grained centralized monitoring and management of your
Exascale HPC systems to keep it performing at its best

CUG 2022 11

SCALABLE MONITORING AND MANAGEMENT

Data
Pipeline

Persistent
Storage

K
a
f
k
a

Grafana

Kibana

CUG 2022 12

HPE CRAY SYSTEM MANAGEMENT DESIGNED FOR AS-A-SERVICE SECURITY

• CSM supports human and non-human IAM (Identity and Access
Management)

• Fully supported custom RBAC (Role Based Access Control)
• No limits to the group or role structure, infinite customization
• Control managed entities with a URL
• Programmatic interface for change control after upgrades, patches,

etc.
• Multiple identity providers
• Credentials management
• Certificate management
• Mesh network encryption (TLS) and access policies
• DNS and external zone transfers
• Non-root users
• User traffic isolation - necessary for multitenancy
• Node attestation

• SPIFFE (Secure Production Identity Framework For Everyone)
provides a secure identity with X.509 certificate to every workload

• SPIRE (SPIFFE Runtime Environment) manages platform and
workload attestation, has API, and handles certificate issuance and
rotation

CUG 2022 13

CRAY SYSTEM MANAGEMENT EXTENSIBILITY FOR SYSTEM OPERATIONS

• Nearly 100% of the systems management functionality is exposed via API
• Machine readable Swagger API definitions are available for all
• Cray CLI– a tool for discovering and implementing the APIs
• System Administration Toolkit (SAT) – a CLI tool covering more common

workflows spanning APIs

API-First Development

• Customers are developing their own APIs to extend functionality
• Customers can pick and choose which HPE provided aspects to use or replace
• Enables granular deployment elasticity

• Not limited because of a monolithic application design
• “[this] functionality should scale and failover in [these] ways”

• Can be updated continuously with high confidence

Loosely-coupled Microservices

HPE Cray System Management

Loosely-coupled Microservices

Extended
Microservices

API-First Development

CLI Access

KUBERNETES IS EVOLUTION FOR MANAGING SCALE

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
CUG 2022 14

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

CUG 2022

MICROSERVICE SECURITY LAYERS

Microservice Mesh
with Istio

Pod

Open Policy Agent
for RBAC

Istio for API Gateway

Pod

Pod

Pod

Pod

BGP Software
Load Balancers

• Pod to Pod Traffic is secured by Istio with mTLS and
Kubernetes Policy

• Ingress and Egress traffic is regulated by Open
Policy Agent (OPA)

• Istio provides API Gateway services to expose
collections of services

• MetalLB allocates Virtual IP addresses that pass
traffic to Istio API Gateways

• Keycloak handles authentication and issues
refreshable bearer tokens, required for API Access

• Keycloak federates with upstream LDAP or Kerberos
for user directories

15

• HELM v3 is a packaging standard for Kubernetes applications
• Loftsman supports a single “manifest” for a collection of Helm applications
• Loftsman manifests are merged at runtime with “sealed secrets” and Kubernetes cluster parameters
• Loftsman manifests are suitable for GitOps Operations

CUG 2022

KUBERNETES PACKAGE MANAGEMENT WITH LOFTSMAN AND HELM

Helm Chart

Helm Chart

Helm Chart

Shared Custom
Config

Loftsman Manifest

16

CUG 2022

DEPENDENCY TRACKING WITH HELM

Chart

Deployment

EtcdCluster VirtualService

SidecarContainer

Simplified Example

• Resources needed by the service are named in the
helm chart

• Every resource is managed by an operator
• Kubernetes supports Pods/Services/Deployments

natively
• Third Party Operators add Resources and manage

them
• EtcdCluster is managed by the etcd-operator
• VirtualService is managed by istio
• LoadBalancer is managed by MetalLB
• The Resource is important
• The operator is incidental

17

CUG 2022

BOOTING IMMUTABLE IMAGES

Image
RecipeImage

RecipeImage
Recipe

IMS

BSS
network boot and cloud-init

Both images and recipes are delivered
as part of the installation media
• BSS: Boot Script Service
• BOS: Boot Orchestration Service
• BOA: Boot Orchestration Agent
• CFS: Configuration Management

Service
• CPS: Content Projection Service
• IMS: Image Management Service

Object Store

Immutable
Squashfs

Image

Kernel &
Initrd

Diskless
HPC Node

CFSConfigure and Build

BOS/BOA HTTPS

CPSHTTPS

DVS

18

ECOSYSTEM COMPONENTS

Node Hardware

Kernel Network Driver Virtualization

Content Projection Lustre

Orchestration

User Access WLM Process
Launch

I/O libs

Compilers

Debugging
Tools

Performance
Tools

OpenMP MPI

Common
Kernel-Level
Services

User-mode Containers RAS
Common
User-Level
Services

Core Specialization

libsci

PGAS

Compute Node
Services

Service Node
Services

Job Launch User Access
Service
Commands and
Tools

Compute Node
Programming
Models and
Libraries

Node Cleanup/
Health Check

libfabric

Gateway P-states

TCP/IP

CUG 2022 19

CUG 2022

USER ACCESS OPTIONS

Power Users
Compile and Run

Standard Users
Run and Monitor

User Access Node

Filesystems

Slingshot Interconnect

Management NCNs

User Access Instances

20

• On-Demand containerized SSH environment
“serverless”

• SSH is the only User-Facing API
• Templated UAI Pods launched and destroyed as-

needed
• User state persisted only in mounted filesystems
• Home, Lustre, SpectrumScale (GPFS), etc.

• Internal SSH relies only on single-use SSH keys
• Broker consumes a single IP regardless of how many

users
• Multiple brokers can be used to handle different user

types and user groups

CUG 2022

USER ACCESS SERVICE AND BROKER

Management nodes

Containerized
UAIs

User Access
Service

SSH Broker

SSH Key
Management

User SSH
Sessions

Private SSH
Sessions

21

MANAGEMENT NODES

22CUG 2022

• etcd

• Mirrored OS
• Kubernetes Master

• Scratch Space

• Mirrored OS
• Kubernetes Worker

• Ceph OSDs

• Mirrored OS
• Ceph-mon
• Ceph-mds
• Rados-gw (object)

Master Nodes Worker Nodes Utility Storage Nodes

High Speed Network (HSN) 2 per node

Node Management Network
1 per node

Hardware Management Network 1 per node

Storage Network
1 per node

HPE CRAY EX HARDWARE

CUG 2022 23

CUG 2022 24

FLEXIBLE COMPUTE INFRASTRUCTURE

Scaling building blockHPE Cray EX liquid-cooled optimized cabinet (Olympus)

• Up to 64 compute blades, and 512 processors per rack
• Flexible bladed architecture supports multiple generations

of CPUs, GPUs, and interconnect
• Cableless interconnect between switches

and nodes inside chassis
• 100% direct liquid-cooling – no fans
• Up to 400KW capability per rack

• Designed to provide an optimal solution for tens to hundreds
of thousands of nodes, scales to hundreds of cabinets

• CEC (Cabinet Environment Controller)
• CMC (Chassis Management Controller)
• CDU (Coolant Distribution Unit) supports up to 4 cabinets

Choice of blade types for optimal density, efficiency, and cost per compute node

CUG 2022 25

AIR-COOLED CABINETS

• Standard 19” cabinet
• Air-cooled, but with optional liquid-cooled door

• One or more cabinets with Management infrastructure nodes
• One or more cabinets with high-performance and capacity Storage
• One or more cabinets with commodity compute nodes (CPU and GPU)
• PDU
• Management network switches

• Slingshot network switches

HPE Cray standard air-cooled cabinet (River)

Management infrastructure, high-performance parallel filesystem, commodity compute nodes

CUG 2022 26

HPE CRAY COMPONENT NAMES (XNAMES)
Component Xname Scheme Examples Note

Cabinet x# x1000 , x3000 Cabinets don’t have an X-Y grid

CDU d# d0 Up to 4 liquid-cooled cabinets per CDU

Chassis x#c# x1000c3,
x3000c0

Air-cooled cabinets don’t have chassis but for consistency
always use c0 for chassis 0

Compute Blade Slot x#c#s# X1000c3s4,
X3000c0s22

In air-cooled cabinets the slot is the lowest rack U height
occupied by a server

Node card controller x#c#s#b# x1000c3s4b1,
X3000c0s22b2

1st example - Node card 1 of blade 4 in chassis 3
2nd example - BMC in air-cooled 4 node server

Node x#c#s#b#n# x1000c3s4b1n1,
x3000c0s22b2n0

Nodes are dependent on their BMCs. BMCS are always zero-
based

Processor x#c#s#b#n#p# x1000c3s4b1n1p0,
x3000c0s22b2n0p1

Processor sockets are zero-based in xnames

Slingshot Switch x#c#r# X1000c3r7,
x3000c0r42

Air-cooled Slingshot switches use rack “U” height just like
air-cooled servers

Ethernet Switch x#c#w# d0w1, x3000c0w38 Leaf switches in CDUs extend SMNet to the cooling group

• Management
• Customer Access
• Slingshot

NETWORKS

CUG 2022 27

CUG 2022

MANAGEMENT NETWORKING ARCHITECTURE

• Spine switches are mainly for Layer 3 Routing between Subnets
• A pair of switches are used for redundancy - configured as a Layer2 / MLAG pair

• Leaf switches connect directly to nodes and node controllers
• Leaf switches used for physical connection(s) to site networks
• Olympus/Mountain Cabinets have embedded network switches that connect to CDU switches
• Aggregation switches are used on systems with many leaf switches in air-cooled cabinets or many CDU switches

Per Cabinet Subnets
• /22 of private ipv4 space for BMCs
• /22 of private ipv4 space for Node

Management
• VLANs limit broadcast domain to

individual cabinets

Spine SpineSite Network

28

CUG 2022

SMNet LIQUID-COOLED TOPOLOGY

Coolant Distribution Unit (CDU) switch Uplink to
Spine 1

Uplink to
Spine 2

CMM 0

1

Broadcom
switch

Liquid-cooled cabinet

eC eC

Chassis 0

Chassis 4

Chassis 2

Chassis 6

Chassis 1

Chassis 5

Chassis 3

Chassis 7

cC

sCSwitch
Blade
(1 of 8)

Compute Blade (1 of 8)

Node card (1 of 2)

Marvell
switch

Node 1 … Node 4

nC

(Chassis x of 8)

Liquid-cooled cabinet

eC eC

Chassis 0

Chassis 4

Chassis 2

Chassis 6

Chassis 1

Chassis 5

Chassis 3

Chassis 7

Cabinet 0 Cabinet 3

CEC CEC CEC CEC

29

SYSTEM MANAGEMENT NETWORK (SMNET) OVERVIEW

30CUG 2022

• Standard Ethernet fabric directly connected to every node and controller in the system
• Leaf/Spine topology implemented with commodity switches
• Divided into multiple “Virtual Networks”

– Implemented with VLANs and Access Control Lists

Virtual Network Connections

Node Management Network (NMN) • All Non-Compute Nodes (NCNs)
• Air-cooled Compute Nodes
• Liquid-cooled Compute Nodes

Hardware Management Network (HMN) • Air-cooled Nodes (Compute and NCN) BMCs
• All Slingshot Switch Controllers (sC)
• Liquid-cooled Node Controllers (nC)
• Liquid-cooled Chassis Controllers (cC)
• Air-cooled Hardware Controllers (smart PDUs, CMCs, etc)
• SMNet switch management ports

Customer Access Network (CAN) • All NCNs

CUG 2022 31

• The Customer Access Network (CAN) allows users and administrators to access the system
• The CAN is used to:

– Directly login to each of the NCNs or UANs
– Access web-based user interfaces within the system (Kibana, Grafana, etc.)
– Access the API gateway for services using:

– Direct REST API calls from custom applications and scripts
– Cray CLI commands from outside the system

– Login to User Access Instances (UAI)
– Access systems outside of the system (LDAP servers, license servers, etc.)

CUSTOMER ACCESS NETWORK (CAN)

CUG 2022 32

Dragonfly Topology
• Provides All-to-All connectivity across the fabric
• Reduces costs of network hardware
• Efficient and consistent connectivity

Link Types
• Edge

– Nodes are connected directly to Switches
–These are called “Edge” or “L0” Links

• Local
– Groups of Switches connected all-to-all
–All switches within a group have links between them
–These are called “Local” , “Group” or “L1” Links

• Global
– Links connect different groups together
– These are called “Global” or ”L2” Links

SLINGSHOT DRAGONFLY TOPOLOGY

Edge
“L0”

Local
“L1”

Global
“L2”

CUG 2022 33

CLASSES OF SLINGSHOT DRAGONFLY TOPOLOGY

Network
Class

L0 Links
(Host)

L1 Links
(Local)

L2 Links
(Global)

Switches
per Group

Max Edge
Devices

0 64 0 0 n/a 64

1 32 0 32 1 528

2 16 24 24 4 3,136

3 16 28 20 8 10,368

4 16 30 18 16 73,984

5 16 31* 15* 32 262,656

Class 0 and class 1 are used in Manufacturing

*A Class 5 Slingshot network is theoretical and would require bifurcated
cables for L1 and L2 links

HPE Cray EX Slingshot Dragonfly Topology Classes
Global Links (L2)

other switch groups

Host Links (L0)
nodes and edge devices

Group Links
(L1)

switches in the
same group

CUG 2022 34

3-HOP DRAGONFLY TOPOLOGY – CLASS 2 EXAMPLE – AIR-COOLED

Group 0

S0 S1

S2 S3

96 global links per group

24 local links
per switch
all-to-all

within group

16 host
links per

switch

Group 48

S0 S1

S2 S3

96 global links per group

24 local links
per switch
all-to-all

within group

16 host
links per

switch

Example of a class 2 Slingshot Dragonfly network
commonly used in air-cooled compute cabinets

Global links can be fully populated to provide additional bandwidth on non maximal networks
A Class 2 network with nine cabinets (9 groups) could use 12 global links from each group to every other group

CUG 2022 35

3-HOP DRAGONFLY TOPOLOGY – CLASS 4 EXAMPLE – LIQUID-COOLED

…

16 NICs

1 2

3
…

…

256 NICs 256 NICs 256 NICs

Up to 100s
of cabinets

Opti
cs

Connectors

1
Copper

CUG 2022 36

SLINGSHOT DRAGONFLY TOPOLOGY - NODE LOCALITY

Single Injection per node
16 switches per cabinet (2 per chassis)

Dual Injection per node
32 switches per cabinet (4 per chassis)

• All nodes on a compute blade are not connected to the same switch
• For example, x1000c0s7b0n1 is closer to x1000c0s4b0n0 than to x1000c0s7b1n1

• Nodes on an individual node card are connected to the same switch
• Each node is connected to a distinct switch port

• Management service resiliency
• Rolling reboot of management nodes
• Rolling rebuild of management nodes
• Rolling upgrade of compute nodes

CONTINUOUS OPERATIONS

CUG 2022 37

RESILIENCY WITH KUBERNETES – SERVICES RUNNING

38CUG 2022

Comput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e Node

Kubernetes
Worker Node Comput

e NodeComput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e NodeCompute

Node

Kubernetes Cluster

Kubernetes
Worker Node

Kubernetes
Worker Node

Kubernetes
Worker Node

Kubernetes
Worker Node

Kubernetes
Worker Node

DNS DNS

DNS API
Gateway

API
Gateway

DB
Keycloak

DBKeycloak
Keycloak

API
Gateway

DB

NODE GOES DOWN

39CUG 2022

Comput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e Node

Kubernetes
Worker Node Comput

e NodeComput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e Node

Kubernetes
Worker Node

Kubernetes
Worker Node

Kubernetes
Worker Node

Kubernetes
Worker Node

Kubernetes
Worker Node

DNS DNS

DNS

DBAPI
Gateway

API
Gateway

API
Gateway

DB
Keycloak

Kubernetes Cluster

Keycloak
DBKeycloak

NODE AND SERVICES STOP RESPONDING

40CUG 2022

Comput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e Node

Kubernetes
Worker Node Comput

e NodeComput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e NodeCompute

Node

Kubernetes
Worker Node

Kubernetes
Worker Node

Kubernetes
Worker Node

Kubernetes
Worker Node

Kubernetes
Worker Node

DNS DNS

DNS

DBAPI
Gateway

API
Gateway

API
Gateway

DB
Keycloak

Kubernetes Cluster

Keycloak
DBKeycloak

KUBERNETES SELECTS NEW NODES FOR PODS

41CUG 2022

Comput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e Node

Kubernetes
Worker Node Comput

e NodeComput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e NodeCompute

Node

Kubernetes
Worker Node

Kubernetes
Worker Node

Kubernetes
Worker Node

Kubernetes
Worker Node

Kubernetes
Worker Node

DNS

DNS

DBAPI
Gateway

API
Gateway

Kubernetes
Worker Node

DNS

API
Gateway

DB
Keycloak

Kubernetes Cluster

Keycloak
DBKeycloak

OLD PODS TERMINATE, NEW PODS SPIN UP

42CUG 2022

Comput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e Node

Kubernetes
Worker Node Comput

e NodeComput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e Node

Kubernetes
Worker Node

Kubernetes
Worker Node

Kubernetes
Worker Node

Kubernetes
Worker Node

Kubernetes
Worker Node

DNS DNS

DNS

DBAPI
Gateway

API
Gateway

API
Gateway

DB
Keycloak

DB
Keycloak

API
Gateway

DNS

Kubernetes Cluster

Keycloak
DBKeycloak

NODE REMOVED FROM KUBERNETES CLUSTER

43CUG 2022

Comput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e Node

Kubernetes
Worker Node Comput

e NodeComput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e NodeCompute

Node

Kubernetes
Worker Node

Kubernetes
Worker Node

Kubernetes
Worker Node

Kubernetes
Worker Node

DNS

DNS

DBAPI
Gateway

API
Gateway

DB
Keycloak

API
Gateway

DNS

Kubernetes Cluster

Keycloak
DBKeycloak

CUG 2022 44

• Rolling process will remove one or more nodes from service while the rest
still support management services needed by the compute nodes and
application nodes

• System health check of management nodes and services
• Only quiesce node(s) if passing

• One or a few nodes may be quiesced from service
• Master nodes

– One at a time to ensure quorum for Kubernetes and etcd is maintained
• Worker nodes

– One (or a few) at a time to ensure remaining worker nodes are not overloaded
• Utility Storage nodes

– One at a time to ensure data consistency for Ceph storage which has 3-way
replication

• Perform action on quiesced node(s)
• Node returns to service after the action

• System health check of management nodes and services
• Only continue rolling to next node(s) if passing

ROLLING NCN MAINTENANCE

Health check

Quiesce node(s)

Action

Health check

CUG 2022 45

• Rolling reboot
• Local disk on management node is not wiped before rebooting the node from the on-disk operating system
• Kubernetes (k8s) master and worker nodes are drained from workload, removed from k8s, and then rejoin k8s

after reboot
• Might be used during upgrade of software products like COS when a change is needed for kernel modules (Lnet,

Lustre, DVS) on worker nodes that support CPS or UAI
• Rolling rebuild

• Local disk on management node is wiped before booting from new operating system image
• Kubernetes (k8s) master and worker nodes are drained from workload, removed from k8s, and then rejoin k8s

after rebuild
• Might be used during an upgrade of CSM software which might include new images for management nodes

• Other actions could be done while the node is quiesced, such as firmware update or hardware
component replacement
• Replacing a disk in the node requires the rebuild procedure, not the reboot procedure

• Documentation and improving automation of procedures with every CSM release

ROLLING REBOOT/REBUILD FOR MANAGEMENT NODES

CUG 2022 46

• New image and configuration should be prepared or
staged in advance

• Compute Rolling Upgrade Service (CRUS) handles the
following steps by calls to WLM, Boot Orchestration
Service (BOS), and Hardware State Manager (HSM)
• Admin selects a group of nodes to be changed
• Identify the individual Boot Artifacts for the new

software
• Identify the desired configuration
• Quiesce each node before taking the node out of service
• Reboot the node into the upgraded state
• Return the node to service within its respective WLM

• Without CRUS
• Set the desired boot artifacts in Boot Script Service (BSS)

and desired configuration in Configuration Framework
Service (CFS)
– Identify the individual Boot Artifacts for the new software
– Identify the desired configuration

– Update the nodes in BSS with the new Boot Artifacts
– Ensure that the 'enable' attribute is set to 'False' for each

node, so that CFS will only configure them upon reboot
– Update the nodes in CFS with the new configuration

• Configure WLM to call something to do power
shepherding on the nodes
– CAPMC doesn't have a single call to guarantee shutdown (off)

and boot (on)
– Nothing in CSM 1.0 has this BOS logic to power shepherd the

node (Coming soon)
– Try graceful power off
– Check power state
– If graceful power off failed, do force power off
– Check power state
– If node still on, report error
– Power on node

• Command so WLM (Slurm) starts reboot when current
job is done on the node
scontrol reboot ASAP nextstate=resume
reason="reboot message”

ROLLING UPGRADE OF COMPUTE NODES

KUBERNETES

CUG 2022 47

CUG 2022 48

• Kubernetes (k8s)
• Portable and extensible platform for managing containerized workloads and services

– Application deployment
– Scaling
– Management

• Resiliency feature
– Desired number of deployments of a microservice are always running on one or more nodes
– If one node becomes unresponsive, microservices are recreated on another node

• Each microservice is
• Modular
• Resilient
• Fine-grained
• Uses lightweight protocols
• Can be updated independently

WHAT IS KUBERNETES?

How can this set of physical nodes fulfill the requested
allocation of resources to ensure that all the desired
resources are healthy and available?

• There is a controller for each resource type that uses
the scheduler to iteratively solve resource allocation in
a constantly changing environment

• Pods
• Services
• ConfigMaps
• Secrets
• Volumes

• VirtualServices
• etcdClusters
• KafkaTopics

CUG 2022

KUBERNETES RESOURCE ORCHESTRATION

Compare
desired

state with
observed

Identify
needed
changes

Update
desired
state for

peers

Activate
own

changes

Update
observed

state

49

CUG 2022 50

MASTER NODES

• The Kubernetes master nodes are grouped into a highly available cluster
called the Kubernetes Control Plane, which manages the worker nodes and
the pods in the Kubernetes cluster

• Systems will always have at least three Kubernetes master nodes called
ncn-m001, ncn-m002 and ncn-m003

• Master node components:
• API server

– Serves the Kubernetes API and acts as the gateway to the Kubernetes cluster
– Not to be confused with the System Management Services API Gateway

• Cluster state store (etcd)
– All persistent cluster state information is stored in a distributed storage system
– On HPE Cray EX this is an instance of etcd

• Controller-Manager
– Performs many cluster-level functions including namespace creation, terminated

pod garbage collection & scaling of pods controlled by a ‘ReplicaSet‘
• Scheduler

– Watches for unscheduled pods and binds them to worker nodes

ncn-m003

Scheduler

API Server

Controller
Manager

ncn-m002

Scheduler

API Server

Controller
Manager

etcd

ncn-m001

Scheduler

API Server

Controller
Manager

Control Plane

Worker Nodes

CUG 2022 51

WORKER NODES

• A worker node is a physical or virtual server that has the services necessary
to run application containers and be managed from the master node(s)

• Worker node components
• Kubelet

– The Kubelet is the most important controller in Kubernetes
– It is the primary implementer of the pod and node APIs

• Pod
– Runs on a node and is the smallest unit of replication on a Kubernetes cluster
– One or more containers run logically in a Pod

• Container Runtime
– Responsible for downloading images and running containers
– containerd is the container runtime used for system management

– Docker is still being used in some pods, but development is moving to containerd

• Kube-proxy
– Provides a HA load-balancing solution for groups of replicated pods by creating

a virtual IP accessible by clients and transparently proxied to the pods in a Service

Worker Nodes

Control Plane

ncn-w001

Kube-proxy

Kubelet

Pod
(containerd
or Docker
Runtime)

Pod
(containerd
or Docker
Runtime)

VIEWING & CHANGING RESOURCES WITH kubectl

Command Description and Options

kubectl get RESOURCE_TYPE List instances of the specified resource type. Common resource types include pods, nodes, namespaces (ns), jobs,
ReplicaSets (rs), deployments (deploy), PersistentVolumeClaims (pvc) & events

kubectl get RESOURCE_TYPE -n NAMESPACE List resources of the given type in the specified namespace

kubectl get RESOURCE_TYPE -A List resources of the given type for all namespaces

kubectl get RESOURCE_TYPE -o wide List resources with wide output which typically provides extra information

kubectl get pod –o yaml POD List very detailed information about a pod

kubectl describe RESOURCE_TYPE NAME Show detailed information about the specified instance

kubectl logs POD_NAME Show logs from the named pod (and any containers inside the pod with –c containername)

kubectl logs --since TIME POD_NAME Show all logs from the named pod in the last specified time. Time is specified in terms of a number of time units
e.g. 2h == two hours 10m == ten minutes

kubectl delete pods NAME Delete the specified pod. This will generally result in restarting (recreating) the pod

kubectl exec –it POD_NAME -- COMMAND Run the specified command interactively on the specified pod

kubectl apply –f FILE Apply the specified file to create or update the item specified in the file. Files are typically YAML

kubectl scale –-replicas=NUM_OF_REPS APP Scale the application (deployment, ReplicaSet, etc.) to the specified number of reps

CUG 2022 52

CUG 2022 53

• ReplicaSet (kubectl get rs)
• A ReplicaSet is used to maintain a stable set of replica pods running at any given time

• Deployment (kubectl get deploy)
• A deployment provides declarative updates for pods and ReplicaSets
• Deployments are used to create, modify, and remove ReplicaSets and, by extension, pods

• Services (kubectl get svc)
• A service is an abstraction which defines a logical set of pods and a policy by which to access them
• A service is used to expose a pod’s IP address outside of the Kubernetes cluster

• Jobs (kubectl get jobs)
• A job in Kubernetes is a supervisor for pods carrying out batch processes

–A process that runs for a certain time to completion
• CustomResourceDefinitions (kubectl get crd)

• A CustomResourceDefinition is used to create a new custom resource which is an extension of the
Kubenetes API

• Custom Resources are used in CFS as well as for security and monitoring

OTHER NOTABLE ELEMENTS OF KUBERNETES ON CRAY EX

• velero
• etcD operator
• postgres operator
• istio-operator
• cert-manager
• metallb
• spire
• hashicorp vault
• ceph storage classes
• Keycloak w/Keycloak Gatekeeper
• strimzi kafka
• Grafana and Prometheus

Operators and Platform Integrations
• Keycloak provides JWT which is checked at

Gateway
• All Gateways have TLS managed by cert-

manager and published through external-dns
• Open Policy Agent applies unique policy for

each gateway
• Services do not provide their own security
• OpenAPI 2.0 standards allow automatic

documentation and CLI generation
• Loftsman manifests for templated helm

installation

Conventions and Standards

CUG 2022

THE UNDERCLOUD – KUBERNETES SERVICES

54

CUG 2022

CSM KUBERNETES PLATFORM SERVICES

velero backups ceph
cert-

manager
istio

gatekeeper loftsman metallb opa nexus

pki spire operators
sysmgmt-

health
vault

Namespaces

• Platform services are deployed in dedicated namespaces
• Per-namespace security and resource limits
• Service accounts required for any cross-namespace communication
• Plans to template namespace permissions with Hierarchical Namespace Controller

• Collections of services are deployed
together with loftsman

• Loftsman offers GitOps-style
management of collections with history

• CSM services use platform services for
infrastructure

55

VIEWING NAMESPACES

CUG 2022

ncn# kubectl get namespaces
NAME STATUS AGE
backups Active 90d
ceph-cephfs Active 90d
ceph-rbd Active 90d
ceph-rgw Active 90d
cert-manager Active 90d
cert-manager-init Active 90d
default Active 90d
gatekeeper-system Active 90d
ims Active 90d
istio-operator Active 90d
istio-system Active 90d
kube-node-lease Active 90d
kube-public Active 90d
kube-system Active 90d
loftsman Active 90d
metallb-system Active 90d
nexus Active 90d
opa Active 90d
operators Active 90d
pki-operator Active 90d
services Active 90d
sma Active 90d
spire Active 90d
sysmgmt-health Active 90d
uas Active 90d
user Active 90d
vault Active 90d
velero Active 90d

ncn# for NS in $(kubectl get namespaces --no-headers | awk '{print $1}’); \
do echo $NS "has" $(kubectl get pods -n $NS --no-headers 2>/dev/null |wc -l) "pods" ; done
backups has 0 pods
ceph-cephfs has 0 pods
ceph-rbd has 0 pods
ceph-rgw has 0 pods
cert-manager has 9 pods
cert-manager-init has 0 pods
default has 12 pods
gatekeeper-system has 5 pods
ims has 13 pods
istio-operator has 1 pods
istio-system has 13 pods
kube-node-lease has 0 pods
kube-public has 0 pods
kube-system has 38 pods
loftsman has 0 pods
metallb-system has 4 pods
nexus has 4 pods
opa has 3 pods
operators has 10 pods
pki-operator has 3 pods
services has 239 pods
sma has 53 pods
spire has 21 pods
sysmgmt-health has 11 pods
uas has 0 pods
user has 3 pods
vault has 5 pods
velero has 4 pods

A namespace is a way to subdivide
Kubernetes clusters into virtual sub
clusters

The namespaces used and the number
of pods in each is subject to change

When listing resources with
kubectl, the –n NAMESPACE
tag is needed for resources not in the
default namespace

56

CUG 2022 57

• A pod is the basic execution unit of a Kubernetes application
• The smallest and simplest unit in the Kubernetes object model that can be created or deployed
• A pod encapsulates an application’s container(s), storage resources, a unique network IP, and options that

govern how the container(s) should run

VIEWING POD CHARACTERISTICS 1 OF 5

ncn# kubectl get pods -A |grep slingshot
services slingshot-fabric-manager-599979fd6c-w9wbj 2/2 Running 0 60d
ncn# kubectl describe pod -n services slingshot-fabric-manager-599979fd6c-w9wbj
Name: slingshot-fabric-manager-599979fd6c-w9wbj
Namespace: services
Priority: 0
Node: ncn-w001/10.252.1.12
Start Time: Fri, 05 Nov 2021 15:15:57 +0000
Labels: app.kubernetes.io/instance=slingshot-fabric-manager

app.kubernetes.io/name=slingshot-fabric-manager
<< snip >>
Annotations: k8s.v1.cni.cncf.io/networks-status:

[{
"name": "weave",
"ips": [

"10.44.0.53"
],
"default": true,
"dns": {}

}]

Name:The unique name of the pod.

Namespace:The namespace of which the pod is a member.

Node:The Kubernetes node on which the pod is scheduled

Labels:Key/value pairs identify attributes of the pod
that are meaningful to users.

Annotations: Key/value pairs used to attach non-
identifying attributes to a pod. Annotations are available to
clients of the pod. For example, an annotation could be used as a
pointer to a logging repository

CUG 2022

VIEWING POD CHARACTERISTICS 2 OF 5

Status: Running
IP: 10.44.0.53
IPs:

IP: 10.44.0.53
Controlled By: ReplicaSet/slingshot-fabric-manager-599979fd6c
Init Containers:

istio-init:
Container ID: containerd://075af9f171157c63f22e133d3eb9a79b3ad4d8c9b04a4fdbbebb003639bcc082
Image: dtr.dev.cray.com/cray/istio/proxyv2:1.7.8-cray2-distroless
Image ID:

dtr.dev.cray.com/cray/istio/proxyv2@sha256:3aa788734a525077bba128f140b2871a53b4c13245618932dc04be6a70ca2a2f
...<snip>...
State: Terminated

Reason: Completed
Exit Code: 0
Started: Fri, 05 Nov 2021 15:16:16 +0000
Finished: Fri, 05 Nov 2021 15:16:16 +0000

Ready: True
Restart Count: 0
Limits:

cpu: 2
memory: 1Gi

Requests:
cpu: 10m
memory: 10Mi

Status: Summary of where the pod is in its lifecycle. Possible values
include “Pending”, “Running”, “Succeeded”, “Failed”, and “Unknown”

IP: IP address assigned to the pod from CIDR range of its host node

Controlled By: Controller responsible for creating & managing the pod.
Common controllers include DaemonSets, ReplicaSets, deployments, and jobs

Init Containers: Specialized containers that run before app containers in a
pod. Init containers can contain utilities or setup scripts not present in an app image

State: The state of the container(s) inside the pod.

waiting, running, terminated

Limits & Requests: Control resource utilization
and limit how much of a resource the container is allowed to
use. Requests are also used by the scheduler to determine
which node would be best suited to place the pod

58

CUG 2022

VIEWING POD CHARACTERISTICS 3 OF 5
Containers:

slingshot-fabric-manager:
Container ID: containerd://9ff6a5fa182cc6d757886e0ccbefc1b814dddf312043c96972414bb75b0c73df
Image: dtr.dev.cray.com/cray/slingshot-fabric-manager:1.6.0-2153-20211104145551_298bfa3
Image ID: dtr.dev.cray.com/cray/slingshot-fabric-

manager@sha256:8b5a38eb5944cfc017fcf7daf6290abe050dfd47647b061ea6d649cba4e193b5
Port: 8000/TCP
Host Port: 0/TCP
State: Running

Started: Fri, 05 Nov 2021 15:17:17 +0000
Ready: True

...<snip>...

Mounts:
/opt/cray from data (rw,path="cray-data")
/opt/slingshot/config from data (rw,path="fmn-config")
/opt/slingshot/data from data (rw,path="fmn-data")
/var/run/configmap/ca-public-key from ca-public-key (rw)
/var/run/secrets/kubernetes.io/serviceaccount from default-token-sbbhv (ro)
/var/run/secrets/kubernetes.io/serviceaccount/admin-client-auth from admin-client-auth (rw)

...<snip>...

Conditions:
Type Status
Initialized True
Ready True
ContainersReady True
PodScheduled True

Mounts: Containers’ mounted filesystems

Conditions: An array of pod conditions (or states) through which the pod has or has not passed
“PodScheduled”, “Ready”, “Initialized”, “ContainersReady”, and “Unschedulable”

Containers: Kubernetes pods exist to encapsulate application containers. Most HPE Cray EX
containers are containerd or Docker containers but that is not a strict requirement

59

CUG 2022

VIEWING POD CHARACTERISTICS 4 OF 5

Volumes:
admin-client-auth:
Type: Secret (a volume populated by a Secret)
SecretName: admin-client-auth
Optional: false

ca-public-key:
Type: ConfigMap (a volume populated by a ConfigMap)
Name: cray-configmap-ca-public-key
Optional: false

data:
Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)
ClaimName: slingshot-fabric-manager-data-claim
ReadOnly: false

Volumes: Shared storage available to all containers within the pod. There are many different types of volumes including

PersistentVolumeClaim, configMap, secret & emptyDir as well as local for local volumes.
Once a volume is identified it can be described with: kubectl describe VOLUME_TYPE VOLUME_NAME

PersistentVolume(pv): A Persistent Volume is a chunk of storage in the Kubernetes cluster. PVs are volume plugins like volumes but have a lifecycle
independent of any individual pod that uses the PV

ConfigMap:see upcoming slide

PersistentVolumeClaims(pvc): A Persistent Volume Claim (PVC) is a request for storage (PersistentVolume resources) by a user. Claims can
request specific size and access modes (e.g., RW, RO)

60

CUG 2022

VIEWING POD CHARACTERISTICS 5 OF 5

default-token-sbbhv:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-sbbhv
Optional: false

...<snip>...

Node-Selectors: <none>

Tolerations: node.kubernetes.io/not-ready:NoExecute op=Exists for 300s
node.kubernetes.io/unreachable:NoExecute op=Exists for 300s

Events: <none>

Node-Selectors: Limits pod to run only on a specific node whose label matches the

nodeselector label specified, e.g., only run on a node with SSD attached to it

Tolerations: Tolerations allow a pod to be scheduled on a node with a particular taint. Taints are assigned
to nodes and tolerations are assigned to pods. Both taints and tolerations are assigned in terms of key/value pairs

Events: Kubernetes events are automatically created when other resources have state changes, errors, or other
messages that should be broadcast to the system

Secrets :see upcoming slide

61

CUG 2022 62

• A secret is an object that contains sensitive data such as a password, a token, or a key
• The contents of a secret could be put in a pod specification or in an image as opposed to a secret

• Using a secret allows for more control over how the sensitive data is presented and consumed
• Example of retrieving and decoding a secret

SECRETS

ncn# kubectl get secret admin-client-auth
NAME TYPE DATA AGE
admin-client-auth Opaque 3 47d
ncn# kubectl get secret admin-client-auth -o yaml | head -6
apiVersion: v1
data:
client-id: YWRtaW4tY2xpZW50
client-secret: Y2U5N2UyODYtYjIyNy00MjY5LTljODYtNzYzOGJhOWJlNDRj
endpoint:

aHR0cHM6Ly9hcGktZ3ctc2VydmljZS1ubW4ubG9jYWwva2V5Y2xvYWsvcmVhbG1zL3NoYXN0YS9wcm90b2NvbC9vcGVuaWQtY29ubmVjdC90
b2tlbg==
kind: Secret
ncn# kubectl get secrets admin-client-auth -ojsonpath='{.data.client-secret}'
Y2U5N2UyODYtYjIyNy00MjY5LTljODYtNzYzOGJhOWJlNDRj
ncn# echo "$(kubectl get secrets admin-client-auth -ojsonpath='{.data.client-secret}' | base64 -d)"
ce97e286-b226-4269-9c86-7638ba9be44c

ncn# kubectl describe configmap slurm-map
Name: slurm-map
Namespace: default
Labels: <none>
Annotations: <none>
Data
====
cgroup.conf:
…
gres.conf:
…
plugstack.conf:
…
slurm.conf:
slurm.conf file generated by configurator easy.html.
Put this file on all nodes of your cluster.
See the slurm.conf man page for more information.
#
SlurmctldHost=slurm-host(10.252.2.4)
#
#LaunchParameters=enable_nss_slurm
#MailProg=/bin/mail
MpiDefault=cray_shasta
MpiParams=ports=20000-32767
…

• A ConfigMap holds key-value pairs of
configuration data that can be consumed in pods

• ConfigMaps, unlike secrets, are designed to
support working with strings that do not contain
sensitive information (ConfigMaps don’t provide
secrecy or encryption)

Example: Several Slurm configuration files are
available via a ConfigMap:

CONFIGMAPS

63CUG 2022

CEPH

CUG 2022 64

CUG 2022 65

• Ceph is the utility storage platform used with the System Management Services (SMS)
• Used in conjunction with Kubernetes and etcd to run the SMS

• Used only for the SMS-supported services
• Not intended to be storage (/home) for system users

• Enables pods to store persistent data and provides block, object, and file storage to the SMS
• Data in use by a Kubernetes node that goes down is still accessible to other nodes
• Used only for supported services such as pod log files, repositories, and images

– Ceph does not store “user” level files (like applications and datasets)
• Stores large amounts of telemetry and log data
• Runs as an external process native on the utility storage nodes

• The Storage nodes and Ceph filesystem are started prior to bringing up the Kubernetes pods
• The Kubernetes pods require the storage provided by Ceph

• Administrative commands
• ceph
• cephadm

CEPH UTILITY STORAGE

CUG 2022 66

• Replicas – Objects are replicated to protect against data loss
• Pools – Logical partitions of the Ceph cluster for storing objects

• Replicated pools –All objects in a pool are replicated on multiple OSDs (like RAID1)
• Erasure Coded (EC) pools – Objects are not replicated but can tolerate the loss of an OSD (like RAID5 or RAID6)

• Placement Group (PG) – An internal implementation detail of how Ceph distributes data
• RADOS Block Device (RBD) – The block storage component of Ceph
• CephFS – The POSIX file system components of Ceph
• RADOS Gateway (RGW) – The S3/Swift gateway component of Ceph

• Simple Storage Service (S3) is HTTP REST API to get, put, post, and delete data
– HPE Cray EX system is not using AWS (Amazon Web Services) S3

• CephX – The Ceph authentication protocol, it operates like Kerberos, but it has no single point of failure
• BlueStore – Ceph-specific backing for OSDs that improves performance 2-3 times over the previous

FileStore implementation used

CEPH CONCEPTS AND COMPONENTS

CUG 2022 67

• Object storage daemon (ceph-osd)
• The OSD is both the block device (disk) and the daemon on top of it
• Every disk is an OSD and there is no limit to how many OSDs are supported

• Monitors (ceph-mon)
• Maintains maps of the Ceph cluster state, including: MONs, OSDs, Managers, and the CRUSH (Controlled

Replication Under Scalable Hashing) map
• Manages authentication (using CephX) between Ceph daemons and clients

• Managers (ceph-mgr)
• Tracks runtime metrics (e.g., storage utilization, system load)
• Hosts modules for the Ceph Dashboard and the Ceph REST API

• Metadata servers (ceph-mds)
• Stores metadata for the Ceph file system to support POSIX file system commands (e.g., ls, find)

• Crash module (ceph-crash)
• Collects information about daemon crash dumps and stores it in the Ceph cluster for later analysis
• Dumps are stored in /var/lib/ceph/crash by default

CEPH DAEMONS

CUG 2022 68

• Ceph status shows health, expected and running services, storage information
ncn-s# ceph -s
cluster:
id: b1781806-9370-43af-96aa-61447a4d9411
health: HEALTH_OK

services:
mon: 3 daemons, quorum ncn-s003,ncn-s002,ncn-s001 (age 6w)
mgr: ncn-s001(active, since 6w), standbys: ncn-s003, ncn-s002
mds: cephfs:1 {0=ncn-s001=up:active} 2 up:standby
osd: 24 osds: 24 up (since 6w), 24 in (since 6w)
rgw: 3 daemons active (ncn-s001.rgw0, ncn-s002.rgw0, ncn-s003.rgw0)

data:
pools: 11 pools, 816 pgs
objects: 357.05k objects, 786 GiB
usage: 1.2 TiB used, 41 TiB / 42 TiB avail
pgs: 816 active+clean

io:
client: 75 KiB/s rd, 10 MiB/s wr, 24 op/s rd, 1.07k op/s wr

CEPH STATUS

CUG 2022 69

ncn-s# ceph node ls mon
{

"ncn-s001": [
"ncn-s001"

],
"ncn-s002": [

"ncn-s002"
],
"ncn-s003": [

"ncn-s003"
]

}
ncn-s# ceph
alerts df log progress telemetry
auth features mds prometheus tell
balancer fs mgr quorum_status test_orchestrator
cephadm fsid mon rbd time-sync-status
config health nfs report versions
config-key influx node restful zabbix
crash insights orch service
dashboard iostat osd status
device k8sevents pg telegraf

OTHER CEPH COMMANDS

Ceph commands support tab completion
and tab tab to get a list of available options

CUG 2022 70

ncn-s# ceph df
--- RAW STORAGE ---
CLASS SIZE AVAIL USED RAW USED %RAW USED
ssd 63 TiB 60 TiB 2.8 TiB 2.9 TiB 4.55
TOTAL 63 TiB 60 TiB 2.8 TiB 2.9 TiB 4.55

--- POOLS ---
POOL ID PGS STORED OBJECTS USED %USED MAX AVAIL
cephfs_data 1 256 385 GiB 311.95k 1.1 TiB 1.96 19 TiB
cephfs_metadata 2 256 405 MiB 19.83k 1.2 GiB 0 19 TiB
default.rgw.buckets.data 3 256 103 GiB 27.96k 309 GiB 0.53 19 TiB
default.rgw.buckets.index 4 32 3.1 MiB 704 9.2 MiB 0 19 TiB
.rgw.root 5 16 5.2 KiB 18 204 KiB 0 19 TiB
default.rgw.control 6 16 0 B 8 0 B 0 19 TiB
default.rgw.meta 7 16 788 KiB 171 3.9 MiB 0 19 TiB
default.rgw.log 8 16 30 KiB 210 624 KiB 0 19 TiB
kube 9 256 36 GiB 18.30k 76 GiB 0.13 19 TiB
smf 10 512 1.1 TiB 488.25k 1.3 TiB 2.28 28 TiB
default.rgw.buckets.non-ec 11 16 0 B 0 0 B 0 19 TiB
device_health_metrics 12 1 48 MiB 39 145 MiB 0 19 TiB

STORAGE UTILIZATION

ETCD

CUG 2022 71

CUG 2022 72

ETCD

• etcd is a distributed reliable key-value store for the most critical data
of a distributed system, with a focus on being:
• Simple: well-defined, user-facing API (gRPC)
• Secure: automatic TLS with optional client cert authentication
• Fast: benchmarked 10,000 writes/sec
• Reliable: properly distributed using Raft
• etcd is written in Go and uses the Raft consensus algorithm to manage a

highly-available replicated log
• General documentation - https://github.com/etcd-io/etcd

• CSM utilizes etcd in two major ways:
• etcd running on Kubernetes master nodes
• etcd running via a Kubernetes operator as data store for a specific service

https://raft.github.io/
https://github.com/etcd-io/etcd

CUG 2022 73

• etcd running on Kubernetes master nodes
• Supports only Kubernetes datastore needs

– Failures in the etcd cluster at the heart of Kubernetes will cause a failure of Kubernetes
– To mitigate this risk, the system is deployed with etcd on dedicated disks and with a specific configuration to optimize

Kubernetes workloads
• Includes a dedicated partition to provide the best throughput and scalability

– Enables the Kubernetes services to be scaled, as well as the physical nodes running those services

• Run on the Kubernetes master nodes and will not relocate
– Handles replication and instance re-election in the event of a node failure
– Scaling to more nodes will provide more resiliency, but it will not provide more speed

– For example, one write to the cluster is actually three writes, so one to each instance
– Scaling to five or more instances in a cluster would mean that one write will actually equal five writes to the cluster

• Backed up to a Ceph Rados Gateway (S3 compatible) bucket

ETCD FOR KUBERNETES

CUG 2022 74

• etcd running via a Kubernetes operator
• Services utilize this to deploy an etcd cluster on the worker nodes
• These additional clusters do not interact with the core Kubernetes etcd service
• The etcd pods are mobile and will relocate to another worker node in the event of a pod or node failure
• Each etcd cluster can be backed up to a Ceph Rados Gateway (S3 compatible) bucket

– This option is decided by the service owner or developer as some information has an extremely short lifespan, and by the
time the restore could be performed, the data would be invalid

ETCD FOR SERVICES

ETCD CLUSTERS

ncn# kubectl get pods -A -l app=etcd -o wide |head -19
NAMESPACE NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
Services cray-bos-etcd-b4xhqkrsxd 1/1 Running 0 62d 10.36.0.30 ncn-w002 <none> <none>
services cray-bos-etcd-d7ffv7pc7v 1/1 Running 0 56d 10.32.0.31 ncn-w003 <none> <none>
services cray-bos-etcd-scqbx8rvqf 1/1 Running 0 62d 10.44.0.14 ncn-w001 <none> <none>
services cray-bss-etcd-brp85brbnd 1/1 Running 0 56d 10.32.0.44 ncn-w003 <none> <none>
services cray-bss-etcd-h7pbzq9k5d 1/1 Running 0 62d 10.36.0.23 ncn-w002 <none> <none>
services cray-bss-etcd-hx7dv2gt9n 1/1 Running 0 62d 10.44.0.24 ncn-w001 <none> <none>
services cray-cps-etcd-lwfwq6xr8s 1/1 Running 0 62d 10.36.0.31 ncn-w002 <none> <none>
services cray-cps-etcd-q5ggc7b2gz 1/1 Running 0 62d 10.44.0.39 ncn-w001 <none> <none>
services cray-cps-etcd-snp2kpm2pp 1/1 Running 0 56d 10.32.0.27 ncn-w003 <none> <none>
services cray-crus-etcd-9gfz9wb2bn 1/1 Running 0 62d 10.36.0.24 ncn-w002 <none> <none>
services cray-crus-etcd-kzl9kh9b52 1/1 Running 0 56d 10.32.0.37 ncn-w003 <none> <none>
services cray-crus-etcd-nxhbk79hx6 1/1 Running 0 62d 10.44.0.34 ncn-w001 <none> <none>
services cray-externaldns-etcd-c9… 1/1 Running 0 62d 10.36.0.16 ncn-w002 <none> <none>
services cray-externaldns-etcd-h5… 1/1 Running 0 62d 10.44.0.15 ncn-w001 <none> <none>
services cray-externaldns-etcd-jp… 1/1 Running 0 56d 10.32.0.46 ncn-w003 <none> <none>
services cray-fas-etcd-6z825mv7b6 1/1 Running 0 56d 10.32.0.43 ncn-w003 <none> <none>
services cray-fas-etcd-9hs8d56nsp 1/1 Running 0 62d 10.36.0.18 ncn-w002 <none> <none>
services cray-fas-etcd-lt2rcvnwws 1/1 Running 0 62d 10.44.0.23 ncn-w001 <none> <none>

CUG 2022

When only 2 pods in a cluster are running that indicates an unbalanced etcd cluster

75

RESTORE AN ETCD CLUSTER FROM AUTOMATIC BACKUP – PART 1

ncn# cray bos sessiontemplate list
results = []

ncn# kubectl exec -it -n operators \
$(kubectl get pod -n operators | grep etcd-backup-restore | head -1 | awk '{print $1}') \
-c boto3 -- list_backups cray-bos

cray-bos/etcd.backup_v2821522_2021-12-28-19:34:57
cray-bos/etcd.backup_v2825842_2021-12-29-19:34:57
cray-bos/etcd.backup_v2830162_2021-12-30-19:34:57
cray-bos/etcd.backup_v2834482_2021-12-31-19:34:57
cray-bos/etcd.backup_v2838802_2022-01-01-19:34:57
cray-bos/etcd.backup_v2843122_2022-01-02-19:34:57
cray-bos/etcd.backup_v2847442_2022-01-03-19:34:57

ncn# kubectl exec -it -n operators \
$(kubectl get pod -n operators | grep etcd-backup-restore | head -1 | awk '{print $1}') \
-c util -- restore_from_backup cray-bos etcd.backup_v2847442_2022-01-03-19:34:57

etcdrestore.etcd.database.coreos.com/cray-bos-etcd created

Cray service is missing data after an etcd cluster restart
In this example for BOS (Boot Orchestration Service)

etcd cluster backups & restores are explained in the CSM
documentaiton

CUG 2022

Step 1) List Backups for the desired etcd cluster (e.g., BOS)

Step 2) Restore the cluster using a backup

Custom resource created during restore operation

76

RESTORE AN ETCD CLUSTER FROM AUTOMATIC BACKUP – PART 2
ncn# kubectl -n services get pod | grep bos
cray-bos-5d886cc78d-f72h6 2/2 Running 0 7d15h
cray-bos-5d886cc78d-v2rd2 2/2 Running 0 7d17h
cray-bos-5d886cc78d-vzl4p 2/2 Running 0 7d13h
cray-bos-etcd-wdcvldzlxt 0/1 Init:0/3 0 26s
ncn# kubectl -n services get pod | grep bos-etcd
cray-bos-etcd-bctpgwl5l5 0/1 Init:0/1 0 11s
cray-bos-etcd-wdcvldzlxt 1/1 Running 0 52s
ncn# kubectl -n services get pod -o wide | grep bos-etcd
cray-bos-etcd-bctpgwl5l5 0/1 Init:0/1 0 26s 10.39.0.138 ncn-w003 <none> <none>
cray-bos-etcd-wdcvldzlxt 1/1 Running 0 67s 10.47.0.228 ncn-w002 <none> <none>
ncn# kubectl -n services get pod -o wide | grep bos-etcd
cray-bos-etcd-bctpgwl5l5 1/1 Running 0 2m 10.39.0.138 ncn-w003 <none> <none>
cray-bos-etcd-wdcvldzlxt 1/1 Running 0 2m41s 10.47.0.228 ncn-w002 <none> <none>
cray-bos-etcd-x48gq2nh25 1/1 Running 0 71s 10.42.1.2 ncn-w001 <none> <none>

ncn# cray bos sessiontemplate list | grep name
name = "cos-sessiontemplate-2.0.27“
name = "uan-sessiontemplate-2.0.1"

ncn# kubectl -n services delete etcdrestore.etcd.database.coreos.com/cray-bos-etcd
etcdrestore.etcd.database.coreos.com "cray-bos-etcd" deleted

CUG 2022

Step 3) Watch the pods come back online

Step 4) Delete the etcdrestore custom
resource to allow for future restores to occur

77

ISTIO SERVICE MESH AND API GATEWAY

CUG 2022 78

• Kubernetes is a tool for building platforms
• Higher level abstractions for grouping containerized services with their proprietary

networking, data, and secrets and scheduling them for concurrent execution
• Declarative policy languages to express complex interactions
• Extensible with custom resources and reconciliation loops

CUG 2022

KUBERNETES IN SYSTEM MANAGEMENT

Pod container

container

secret

configuration

localhost
networking

Pod Network
Interface

Pod container

container

secret

configuration

localhost
networking

Pod Network
Interface

Pod Networking

Pods on different nodes can all talk to each
other over the Pod Network through the CNI
(Container Network Interface)

79

• Istio attaches to the Pod Network Interface and intercepts all network traffic
entering or leaving each Pod

• Istio containers in each pod are coordinated through the Istio control plane to
intercept, upgrade, and redirect HTTP/gRPC traffic on the Pod Network

CUG 2022

ISTIO EXTENDS KUBERNETES

Pod container

container

secret

configuration

localhost
networking

Pod Network
Interface

Pod container

container

secret

configuration

localhost
networking

Pod Network
Interface

Pod Networking

Pods on different nodes can all talk to each
other over the Pod Network through the CNI

istio

istio

80

CUG 2022

WHAT DOES AN API PROXY DO?

TLS? Token? ABAC?
yes yes yes

yes

Decisions a proxy can make

Exits

no

Deny Redirect to Auth Flow Deny

Is this connection
properly encrypted?

Does this request
include a secure
token that is
valid for this
action?

Does an existing
policy decision exist
permitting this action?

Policy?

Do all policies agree
that this action can
proceed?

no no

no

Pass request to API

81

• Binaries run in containers

• Related containers are in pods

• Pods are made available to the
outside world through Services

CUG 2022 82

WHAT’S A SERVICE MESH: BASIC PODS/SERVICES

Pod

Application
Container

Helper Container

Init Container

Service

Routing
Rules

Pod

Application
Container

Helper Container

Init Container

Pod

Application
Container

Helper Container

Init Container

CUG 2022 83

• Sidecars are containers
• Share the Pod
• Affect traffic in and out of the pod
• Add and Standardize

• Encryption
• Logging
• Tracing
• Transparent mTLS between services
• Managed TLS for API Clients

• Upgrades existing applications
• New applications can focus on business logic

WHAT’S A SERVICE MESH: SIDECARS

Pod

Application
Container

Helper Container

Init Container

Sidecar

CUG 2022 84

• Sidecars and Orchestration

• Upgrade older protocols

• Add security

• Improve visibility

WHAT’S A SERVICE MESH?

Pod

Application
Container

Helper Container

Init Container

Service

Routing
Rules

CUG 2022

Pod

Application
Container

Helper Container

Init Container

Pod

Application
Container

Helper Container

Init Container

Sidecar

Sidecar

Sidecar

Pod

Application
Container

Service

Routing
Rules

USING A SERVICE MESH FOR TLS

Sidecar

Pod

Application
ContainerSidecar

Encrypted

Unencrypted

Unencrypted

HTTPS
Client

• mTLS negotiation between
sidecars

• Client authenticates the server
• Server authenticates the client

• TLS negotiation between
sidecars and external clients

• Applications are unaware of TLS

CUG 2022 85

AUTHENTICATION AND AUTHORIZATION

CUG 2022 86

• Strong Authentication is a prerequisite for Authorization
• Narrow Authorization scope goes beyond POSIX permissions and ACLS
• Role Based Access Control (RBAC)

• What access do users like me have?
• Aspect Based Access Control (ABAC)

• Expressive policies that include more than users and groups
• Permission to access an API can be limited based on other recent access, connection origin, and many other

things
• Every Authentication token will expire
• Every Authorization decision will expire
• Recheck only as often as necessary
• Applications and Hardware Devices need to authenticate too

CUG 2022

STRONG AND UBIQUITOUS AUTHENTICATION

87

CUG 2022 88

SHASTA IAM WITH KUBERNETES: LOGGING IN

KeyCloak

Site Active
Directory

Open Policy
Agent

Application

Sync Users,
Groups, and
Attributes

Admin Console

User Console

HPC Application

Interactive
Logins

Non-Interactive Logins

HPC Application
HPC Application

HPC Application

Service Mesh

CUG 2022 89

SHASTA IAM WITH KUBERNETES: ACCESS SERVICE MESH

KeyCloak

Site Active
Directory

Open Policy
Agent

Application

Admin Console

User Console

HPC Application

Interactive
Logins

Non-Interactive Logins

HPC Application
HPC Application

HPC Application

Service Mesh

JWT

JWT

JWT

CUG 2022 90

SHASTA IAM WITH KUBERNETES: ACCESS CONTROL

KeyCloak

Site Active
Directory

Open Policy
Agent

Application

Admin Console

User Console

HPC Application

Interactive
Logins

Non-Interactive Logins

HPC Application
HPC Application

HPC Application

Service Mesh

JWT

JWT

JWT

Grant?

Pass

SCALABLE ACCESS POLICY WITH OPA

KeyCloak

Open Policy
Agent

ApplicationService Mesh
Pass

• Open Policy Agent (OPA)

• Stores and processes policies

• Cacheable answers

• Decisions based on arbitrary attributes
(ABAC)

Origin_Network_is_Admin: True
User_on_duty: True
User_Active_in_WLM: True
User_MFA_Recent: True

CUG 2022 91

SHASTA IAM WITH KUBERNETES: ACCESS SERVICE

KeyCloak

Site Active
Directory

Open Policy
Agent

Application

Admin Console

User Console

HPC Application

Interactive
Logins

Non-Interactive Logins

HPC Application
HPC Application

HPC Application

Service Mesh

JWT

JWT

JWT
CUG 2022 92

• A user must exist in Keycloak to use the cray CLI or sat CLI
user@ncn> cray auth login --username MYNAME
Password:
Usage: cray auth login [OPTIONS]
Try "cray auth login --help" for help.
Error: Invalid Credentials

• System administrator must set up the users in Keycloak
• Local accounts in Keycloak

– Use the Keycloak User Management UI in a browser
– https://auth.SYSTEM_DOMAIN_NAME/keycloak/

– Users can also be set up from the command line

• Federation to LDAP or other identity provider

CUG 2022 93

ADDING AUTHORIZED USERS TO KEYCLOAK

CUG 2022 94

EXAMPLE KEYCLOAK USER ACCOUNT: ATTRIBUTES

Additional keys populated if LDAP account

Attribute keys needed for UAI creation

CUG 2022 95

EXAMPLE KEYCLOAK USER ACCOUNT: ROLE MAPPINGS

HPE CRAY EX SYSTEM OVERVIEW
MANAGEMENT SERVICES
WHAT IS HAPPENING ON MY SYSTEM?
MANAGING USER ENVIRONMENTS
RESOURCES

CUG 2022 96

• Common Commands and RESTful APIs
• Hardware Management
• Network Management
• Image Management
• Configuration Management
• Ansible Primer

MANAGEMENT SERVICES

CUG 2022 97

COMMON COMMANDS AND RESTFUL APIS

CUG 2022 98

CUG 2022 99

COMMON COMMANDS

Command Description

kubectl CLI for Kubernetes cluster's control plane, using the Kubernetes API
• jsonpath - kubectl uses JSONPath expressions to filter on specific fields in the JSON object and format

the output

ceph Control utility for manual deployment and maintenance of a Ceph cluster

cephadm cephadm - deploys and manages a Ceph cluster

cray CLI framework integrates system management REST APIs into easily usable commands
• Outputs data in JSON, YAML, TOML

sat CLI interacts with the REST APIs of many services to perform more complex system management tasks
• Outputs data in JSON, YAML, TOML

fmctl CLI for Slingshot fabric management

stt CLI for Slingshot Topology Tool

jq command works on JSON data to slice and filter and map and transform structured data like
sed, awk, grep and friends let you play with text

Linux tools systemctl, journalctl, pdsh/dshbak, curl

• A RESTful API is an application program interface (API) that uses HTTP requests
• GET, DELETE, PUT, PATCH, POST

• REST API specification (Swagger/OpenAPI 3.0) for microservices used to generate
• API documentation

– Provided in docker image and in tarball for webserver

• API server stubs for the microservice
• API client code for the cray CLI framework

• The entire system could be managed by calling the APIs
• This presentation has a few places using direct access to the API for services or Redfish
• Most of this presentation shows use of the Kubernetes CLI or cray CLI or sat CLI

– Every command shown using the cray CLI has a direct mapping to the REST API of the related service

• Anything done with a CLI could be done programmatically with API calls instead

CUG 2022 100

REST API

CUG 2022 101

API DOCUMENTATION FROM REST API SPECIFICATION

CUG 2022 102

API DOCUMENTATION SEARCH

Groups:
artifacts Manage artifacts in S3

auth Manage OAuth2 credentials for the Cray CLI
badger Badger Service API
bos Boot Orchestration Service
bss Boot Script Service API

capmc Cray Advanced Platform Monitoring and Control API
cfs Configuration Framework Service
config View and edit Cray configuration properties
cps Content Projection Service
crus Compute Rolling Upgrade Service
fas Firmware Action Service
hsm Hardware State Manager API

ims Image Management Service
nmd Node Memory Dump Service
pals Parallel Application Launch Service
scsd System Configuration Service
sls System Layout Service
uas User Access Service

user@ncn> cray auth login --username UserWithAdminRole
Password:
user@ncn> cray --help
Usage: cray [OPTIONS] COMMAND [ARGS]...
Cray management and workflow tool

Options:

--version Show the version and exit.
--help Show this message and exit.

Commands:
aprun Run an application using the Parallel Application Launch...

init Initialize/reinitialize the Cray CLI
mpiexec Run an application using the Parallel Application Launch...

CRAY CLI FRAMEWORK FROM REST API SPECIFICATION

103CUG 2022

Management services which have API specifications

• Documentation convention is that if the admin
role is required for cray CLI or sat CLI, then the
command prompt will use hostname# rather
than user@hostname>

• Linux account and Keycloak authentication are
different credentials

CUG 2022 104

WHAT IS JQ AND WHY WOULD AN ADMINISTRATOR USE IT?

• Problem:
• Some commands generate a lot of output
ncn# cray hsm inventory hardware list --format json | wc -l
14930

• Solutions:
• Shrink font size impossibly small, buy a magnifying glass

– Do lots of scrolling

• Liberally use standard Linux tools: grep, awk, head, and tail
– Recreate monster commands every time output format changes.

• Learn to use jq and parse the JSON output

ncn# cray hsm inventory hardware list --format json
[
{
"Ordinal": 0,
"Status": "Populated",
"HWInventoryByLocationType": "HWInvByLocNode",
"NodeLocationInfo": {
"Description": "System Self",
"HostName": "",
"MemorySummary": {
"TotalSystemMemoryGiB": 61

},
"ProcessorSummary": {
"Count": 1,
"Model": "AMD EPYC 7402 24-Core Processor "

},
"Id": "Self",
"Name": "System"

},
"PopulatedFRU": {
"Subtype": "",
"FRUID": "Node.GJG7N8812A0064",
"Type": "Node",
"HWInventoryByFRUType": "HWInvByFRUNode",
"NodeFRUInfo": {
"BiosVersion": "C12",
"SKU": "01234567890123456789AB",
"UUID": "cd210000-3b17-11ea-8000-b42e99a23071",
"AssetTag": "Free form asset tag",
"SystemType": "Physical",
"SerialNumber": "GJG7N8812A0064",
"Model": "R272-Z30-00",
"PartNumber": "000000000001",
"Manufacturer": "Cray Inc."

}
},
"Type": "Node",
"ID": "x3000c0s6b0n0"

},
...

CUG 2022 105

USING JQ TO FILTER JSON OUTPUT
ncn# cray hsm inventory hardware list --format json \
| jq 'map(select(.ID == "x3000c0s23b2n0")) | .[].PopulatedFRU'
{
"Subtype": "",
"FRUID": "Node.GJG8U6712A004902",
"Type": "Node",
"HWInventoryByFRUType": "HWInvByFRUNode",
"NodeFRUInfo": {
"BiosVersion": "C10",
"SKU": "01234567890123456789AB",
"UUID": "cd210000-3b17-11ea-8000-b42e997f0d24",
"AssetTag": "Free form asset tag",
"SystemType": "Physical",
"SerialNumber": "GJG8U6712A004902",
"Model": "H262-Z63-00",
"PartNumber": "000000000001",
"Manufacturer": "Cray Inc."

}
}
ncn# cray hsm inventory hardware list --format json \
| jq 'map(select(.ID == "x3000c0s23b2n0")) | .[].PopulatedFRU.NodeFRUInfo.BiosVersion’
"C10"

The pipe “|” operator, inside the single quotes of the jq query, filters
output to only include objects with named keys. For sub-objects, dots
can be used to show the path of the desired object

In these examples, the result of the cray command is an array, in “[]”
brackets, of JSON objects. Each object has a “PopulatedFRU” object
at the top level and within that some have a “NodeFRUInfo” object
and within that a “BiosVersion” object

The map(select(.KEY == VALUE)) function selects
only qualifying objects from the array of results

In this case only the objects with the “ID” of
“x3000c0s23b2n0” are included in the output

CUG 2022 106

SAMPLE JQ COMMAND WITH FUNCTION CALLS
ncn# cray hsm state components list --format json \
| jq -j '.Components | map(select(.Type == "Node")) | map(select(.Role == "Compute")) \
| sort_by(.NID) | map({"NID": .NID, "State": .State, "Xname": .ID })'
[

{
"NID": 1,
"State": "Ready",
"Xname": "x3000c0s20b1n0"

},
{

"NID": 2,
"State": "Ready",
"Xname": "x3000c0s20b2n0"

},
...

{
"NID": 16,
"State": "Ready",
"Xname": "x3000c0s27b4n0"

}
]

This more interesting example filters the result set by Type and
then Role and then uses the sort_by function to sort the
results by NID number. Finally, the results are filtered to only
include NID, State, and Xname

• Assists administrators with common tasks
• Troubleshooting and querying information about the HPE Cray EX System and its components
• System boot and shutdown
• Replacing hardware components

• SAT offers a command line utility which uses subcommands
• Most commands require authentication to API gateway
• Some commands require Kubernetes configuration and authentication

• Several Kibana dashboards provide organized output for system health information
• Some Grafana dashboards display messages that are generated by the HSN (High Speed Network) and

reported through Redfish

CUG 2022 107

SYSTEM ADMIN TOOLKIT (SAT)

• Runs on master nodes in a container using podman, a daemonless container runtime
• Using either sat or sat bash always launches a container
• The SAT container does not have access to the NCN file system

• There are two ways to run sat
• Interactive: Launching a container using sat bash, followed by sat commands
ncn-m# sat bash
(CONTAINER-ID)sat-container# source /sat/venv/bin/activate
(CONTAINER-ID)sat-container# sat status
(CONTAINER-ID)sat-container# sat hwinv
(CONTAINER-ID)sat-container# exit

• Non-interactive: Running a sat command directly on a master node
ncn-m# sat status

• Authentication using Keycloak credentials
• sat auth and use Keycloak username and password per session
• Account used needs to have admin role in Keycloak

• Man pages exist for sat and subcommands
• Use to get more information on how to use options for subcommands

CUG 2022 108

SAT CLI

CUG 2022 109

SAT COMMANDS

sat auth Authenticate to the API gateway and save the
token

sat k8s Report on Kubernetes replicasets that have co-
located replicas

sat bmccreds Set BMC Redfish access credentials sat nid2xname Translate node IDs to node xnames

sat bootprep Prepare to boot nodes with images and
configurations

sat sensors Report current sensor data

sat bootsys Boot or shutdown the system (compute nodes,
application nodes, and management nodes)

sat setrev Set HPE Cray EX system revision information

sat diag Launch diagnostics on the HSN switches and
generate a report

sat showrev Print revision information for the HPE Cray EX
system

sat firmware Report firmware version sat slscheck Perform a cross-check between SLS and HSM

sat hwhist Report hardware component history sat status Report node status across the HPE Cray EX system

sat hwinv Give a listing of the hardware of the HPE Cray
EX system

sat swap Prepare HSN switch or cable for replacement and
bring HSN switch or cable into service

sat hwmatch Report hardware mismatches for processors and
memory

sat xname2nid Translate node and node BMC xnames to node IDs

sat init Create a default SAT configuration file

Newest SAT commands

• Shows current status of NCNs and CNs as reported by Hardware State Manager (HSM)
• Information must be discovered by HSM

• Requires authentication to show any information
ncn-m# sat status --sort-by NID
+----------------+-----------+------|----------+-------+------+---------+------+----------+----------+---------+----------+
| xname | Aliases | Type | NID | State | Flag | Enabled | Arch | Class | Role | Subrole | Net Type |
+----------------+-----------+------|----------+-------+------+---------+------+----------+----------+---------+----------+
x3000c0s20b1n0	nid000001	Node	1	On	OK	True	X86	River	Compute	None	Sling
x3000c0s20b2n0	nid000002	Node	2	Ready	OK	True	X86	River	Compute	None	Sling
x3000c0s20b3n0	nid000003	Node	3	On	OK	True	X86	River	Compute	None	Sling
x3000c0s20b4n0	nid000004	Node	4	Ready	OK	True	X86	River	Compute	None	Sling
x3000c0s23b1n0	nid000005	Node	5	On	OK	True	X86	River	Compute	None	Sling
x3000c0s23b2n0	nid000006	Node	6	Ready	OK	True	X86	River	Compute	None	Sling
x3000c0s23b3n0	nid000007	Node	7	On	OK	True	X86	River	Compute	None	Sling
x3000c0s23b4n0	nid000008	Node	8	On	OK	True	X86	River	Compute	None	Sling
x1000c0s1b0n0	nid001004	Node	1004	Ready	OK	True	X86	Mountain	Compute	None	Sling
x1000c0s1b0n1	nid001005	Node	1005	Ready	OK	True	X86	Mountain	Compute	None	Sling
x1000c0s1b1n0	nid001006	Node	1006	Ready	OK	True	X86	Mountain	Compute	None	Sling
x1000c0s1b1n1	nid001007	Node	1007	Ready	OK	True	X86	Mountain	Compute	None	Sling
x3000c0s1b0n0	ncn-m001	Node	100001	Ready	OK	True	X86	River	Management	Master	Sling
x3000c0s3b0n0	ncn-m002	Node	100002	Ready	OK	True	X86	River	Management	Master	Sling
x3000c0s5b0n0	ncn-m003	Node	100003	Ready	OK	True	X86	River	Management	Master	Sling
x3000c0s7b0n0	ncn-w001	Node	100004	Ready	OK	True	X86	River	Management	Worker	Sling
x3000c0s9b0n0	ncn-w002	Node	100005	Ready	OK	True	X86	River	Management	Worker	Sling
x3000c0s11b0n0	ncn-w003	Node	100006	Off	OK	True	X86	River	Management	Worker	Sling
x3000c0s13b0n0	ncn-s001	Node	100007	Ready	OK	True	X86	River	Management	Storage	Sling
x3000c0s15b0n0	ncn-s002	Node	100008	Ready	OK	True	X86	River	Management	Storage	Sling
x3000c0s17b0n0	ncn-s003	Node	100009	Ready	OK	True	X86	River	Management	Storage	Sling
x3000c0s27b0n0	uan01	Node	49169248	Off	OK	True	X86	River	Application	UAN	Sling
+----------------+-----------+------|----------+-------+------+---------+------+-------+-------------+---------+----------+

CUG 2022 110

SAT STATUS

• Can filter by any of the columns with both “equal to” and “not equal to”
• Can remove some of the pretty printing

ncn-m# sat status --no-borders --filter nid=1000
xname Aliases Type NID State Flag Enabled Arch Class Role Subrole Net Type
x1000c0s0b0n0 nid000004 Node 1000 Ready OK True X86 Mountain Compute None Sling
ncn-m# sat status --no-borders --no-headings --filter role=compute --filter state!=ready \
--filter enabled=true
x1000c1s2b0n1 nid001041 Node 1041 Standby Alert True X86 Mountain Compute None Sling
x1000c2s1b0n0 nid001068 Node 1068 Off OK True X86 Mountain Compute None Sling
x1000c7s5b1n0 nid001246 Node 1246 On OK True X86 Mountain Compute None Sling
ncn-m# sat status --no-borders --no-headings --filter class=river --filter role=application
x3000c0s23b0n0 uan01 Node 49169120 Ready OK True X86 River Application UAN Sling

• Can change fields displayed
ncn-m# sat status --no-borders --filter class=river --filter role=management \
--fields xname,aliases,nid,subrole,state
xname Aliases NID Subrole State
x3000c0s3b0n0 ncn-m002 100002 Master Ready
x3000c0s7b0n0 ncn-w001 100004 Worker Ready
x3000c0s17b0n0 ncn-s003 100008 Storage Ready

• Can report status on different types of components, but default is “Node”
• all, Chassis, ChassisBMC, ComputeModule, HSNBoard, Node, NodeBMC, NodeEnclosure, RouterBMC, RouterModule
ncn-m# sat status --no-borders --types RouterBMC
xname Type State Flag Enabled Arch Class Net Type
x3000c0r21b0 RouterBMC Ready OK True X86 River Sling

CUG 2022 111

SAT STATUS FILTERED

• Search for information in the product-catalog with jq filtering the output for only CSM
ncn# kubectl get cm cray-product-catalog -n services -o json | jq -r .data.csm
1.0.11:

configuration:
clone_url: https://vcs.groot.dev.cray.com/vcs/cray/csm-config-management.git
commit: 8c09c934b3b7e3a4b085c50575442226a133eba7
import_branch: cray/csm/1.6.28
import_date: 2022-02-25 20:39:53.562810
ssh_url: git@vcs.groot.dev.cray.com:cray/csm-config-management.git

images:
cray-shasta-csm-sles15sp2-barebones.x86_64-shasta-1.5:

id: bc6351e1-429c-4859-a559-08b575fb8517
recipes:

cray-shasta-csm-sles15sp2-barebones.x86_64-shasta-1.5:
id: 9677a6fb-e561-465c-b4ed-cafcdb919fc0

CUG 2022 112

CHECKING SOFTWARE VERSIONS WITH KUBECTL

• Display information for all software products installed
ncn-m# sat showrev --products
##
Product Revision Information
##
+-------------------------+-----------+--------+---+---+
| product_name | product | active | images | image_recipes |
| |_version | | | +
+-------------------------+-----------------+--+---+
analytics	1.1.24	N/A	Cray-Analytics.x86_64-base	-
cos	2.2.101	N/A	cray-shasta-compute-sles15sp3.x86_64-2.2.38	cray-shasta-compute-sles15sp3.x86_64-2.2.38
cpe	21.12.3	N/A	cpe-barebones-sles15sp3.x86_64-21.12.2	cpe-barebones-sles15sp3.x86_64-21.12.2
cpe	22.3.1	N/A	cpe-barebones-sles15sp3.x86_64-22.03.0	cpe-barebones-sles15sp3.x86_64-22.03.0
cray-sdu-rda	1.2.9	N/A	-	-
csm	1.0.11	N/A	cray-shasta-csm-sles15sp2-barebones.x86_64-shasta-1.5	cray-shasta-csm-sles15sp2-barebones.x86_64-shasta-1.5
hfp	22.03.0	N/A	-	-
sat	2.2.15	False	-	-
sat	2.2.16	True	-	-
sle-os-backports-15-sp2	22.02.1	N/A	-	-
sle-os-backports-15-sp3	22.02.1	N/A	-	-
sle-os-products-15-sp2	22.02.1	N/A	-	-
sle-os-products-15-sp3	22.02.1	N/A	-	-
sle-os-ptf-15-sp2	22.02.1	N/A	-	-
sle-os-updates-15-sp2	22.02.1	N/A	-	-
sle-os-updates-15-sp3	22.02.1	N/A	-	-
slingshot	1.7.0-59	N/A	-	-
slingshot	1.7.1-407	N/A	-	-
slingshot-host-software	1.7.1-22	N/A	-	-
slurm	1.1.5	N/A	-	-
sma	1.5.27	N/A	-	-
uan	2.3.2	N/A	-	-

CUG 2022 113

CHECKING SOFTWARE VERSIONS WITH SAT

ncn-m# sat bash
(cab2475ed202) sat-container:/sat # source /etc/bash_completion.d/sat-completion.bash
(cab2475ed202) sat-container:/sat # sat hwinv --list-
--list-all --list-drives --list-node-accels --list-nodes
--list-chassis --list-hsn-boards --list-node-enclosure-power-supplies --list-procs
--list-cmm-rectifiers --list-mems --list-node-enclosures --list-router-modules
--list-compute-modules --list-node-accel-risers --list-node-hsn-nics
(cab2475ed202) sat-container:/sat # sat hwinv --list-nodes --node-fields xname,serial_number,memory_size
##
Listing of all nodes
##
+----------------+------------------+-------------------+
| xname | Serial Number | Memory Size (GiB) |
+----------------+------------------+-------------------+
x1000c0s1b0n0	HR19380063	256.0
x1000c0s1b0n1	HR19380063	256.0
x1000c0s5b0n0	HR19380023	256.0
(cab2475ed202) sat-container:/sat # sat hwinv --list-router-modules		
##		
Listing of all router modules		
##		
+-----------+--------------+		
xname	Manufacturer	
+-----------+--------------+		
x1000c0r3	Cray Inc	
x1000c0r7	Cray Inc	

CUG 2022 114

QUERYING HARDWARE INVENTORY
sat supports tab completion! From the podman pod, sat bash, but
not from the sat CLI. Hitting tab twice provides a list of options

CUG 2022 115

SLINGSHOT SWITCH OR CABLE REPLACEMENT

• Disable a Slingshot switch before maintenance or enable a switch after maintenance is complete.
ncn-m# sat swap switch --dry-run x1000c3r3
Ports: x1000c3r3j104p1 x1000c3r3j105p0 x1000c3r3j105p1 x1000c3r3j106p0 x1000c3r3j106p1
x1000c3r3j107p0 x1000c3r3j107p1 x1000c3r3j100p1 x1000c3r3j101p0 x1000c3r3j101p1
x1000c3r3j102p0 x1000c3r3j102p1 x1000c3r3j103p0 x1000c3r3j103p1 x1000c3r3j104p0
x1000c3r3j100p0 x1000c3r3j9p0 x1000c3r3j8p1 x1000c3r3j8p0 x1000c3r3j6p1 x1000c3r3j6p0
x1000c3r3j4p1 x1000c3r3j4p0 x1000c3r3j2p1 x1000c3r3j2p0 x1000c3r3j22p1 x1000c3r3j22p0
x1000c3r3j20p1 x1000c3r3j20p0 x1000c3r3j24p1 x1000c3r3j24p0 x1000c3r3j18p1
x1000c3r3j18p0 x1000c3r3j16p1 x1000c3r3j12p0 x1000c3r3j11p1 x1000c3r3j10p1
x1000c3r3j11p0 x1000c3r3j10p0 x1000c3r3j16p0 x1000c3r3j14p1 x1000c3r3j14p0
x1000c3r3j13p1 x1000c3r3j12p1 x1000c3r3j13p0 x1000c3r3j9p1
Dry run completed with no action to enable/disable switch.

• Determine all linked ports from a single jack
ncn-m# sat swap cable --dry-run x5000c1r3j16
Ports: x5000c1r3j16p0 x5000c3r7j18p0 x5000c1r3j16p1 x5000c3r7j18p1
Dry run completed with no action to enable/disable cable.

configurations:
- name: cos-config
layers:
- name: cos-integration-2.2.101
playbook: site.yml
product:
name: cos
version: 2.2.101
branch: integration

- name: cpe-integration-22.3.1
playbook: pe_deploy.yml
product:
name: cpe
version: 22.3.1
branch: integration

- name: slurm-master-1.1.5
playbook: site.yml
product:
name: slurm
version: 1.1.5
branch: master

- name: analytics-integration-
1.1.24

playbook: site.yml
product:
name: analytics
version: 1.1.24
branch: integration

images:
- name: cray-shasta-compute-
sles15sp3.x86_64-2.2.38
ims:
is_recipe: true
name: cray-shasta-compute-

sles15sp3.x86_64-2.2.38
configuration: cos-config
configuration_group_names:
- Compute

session_templates:
- name: cray-shasta-compute-
sles15sp3.x86_64-2.2.38
image: cray-shasta-compute-

sles15sp3.x86_64-2.2.38
configuration: cos-config
bos_parameters:
boot_sets:
compute:
kernel_parameters: ip=dhcp

quiet
spire_join_token=${SPIRE_JOIN_TOKEN}

node_roles_groups:
- Compute

• Create CFS configurations, build IMS images,
customize IMS images with CFS configurations,
and create BOS session templates using the
customized IMS image and CFS configuration
which can then be used to boot compute and
application nodes

ncn-m# sat bootprep generate-example
ncn-m# cp example-bootprep-input.yaml \
bootprep-input.yaml
ncn-m# vi bootprep-input.yaml
ncn-m# sat bootprep run bootprep_input.yaml

• This bootprep_input.yaml example has been
trimmed to only show compute node information
– configurations
– images
– session_templates

SAT BOOTPREP

116CUG 2022

CUG 2022 117

FIRMWARE REPORTING

ncn-m# sat firmware -x x1000c0s0b0
+-------------+--------------------------+--------------------------+---+
| xname | name | target_name | version |
+-------------+--------------------------+--------------------------+---+
x1000c0s0b0	Node0.ManagementEthernet	Node0.ManagementEthernet	wnc.i210-p2sn01
x1000c0s0b0	Bootloader	Bootloader	1.10-wnc
x1000c0s0b0	FPGA2	mFPGA1	1.05
x1000c0s0b0	BMC	BMC	nc.1.5-31-shasta-release.arm.2021-11.-
03T03:49:30+00:00.b9ced71			
x1000c0s0b0	FPGA1	mFPGA0	1.05
x1000c0s0b0	Node1.BIOS	Node1.BIOS	ex425.bios-1.6.1
x1000c0s0b0	Node0.BIOS	Node0.BIOS	ex425.bios-1.6.1
x1000c0s0b0	FPGA0	nFPGA	5.02
x1000c0s0b0	Recovery	Recovery	nc.1.5-31-shasta-release.arm.2021-11-
03T03:49:30+00:00.b9ced71			
x1000c0s0b0	Node1.ManagementEthernet	Node1.ManagementEthernet	wnc.i210-p2sn01
+-------------+--------------------------+--------------------------+---+

Node controller (or BMC) for two liquid-cooled nodes

CUG 2022 118

FIRMWARE REPORTING WITH XNAME LIST

List of xnames: cabinet controller and Slingshot switch
ncn-m# sat firmware -x x1003c6b0,x3001c0r11b0
+--------------+------------+---------------+---+
| xname | name | target_name | version |
+--------------+------------+---------------+---+
x1003c6b0	Recovery	Recovery	cc.1.5-31-shasta-release.arm64.2021-11-03T03:50:18+00:00.b9ced71
x1003c6b0	Rectifier1	Rectifier 1	PFC_01.03-SEC_02.10
x1003c6b0	Bootloader	Bootloader	1.7-cc-pass4
x1003c6b0	Rectifier0	Rectifier 0	PFC_01.03-SEC_02.10
x1003c6b0	BMC	BMC	cc.1.5-31-shasta-release.arm64.2021-11-03T03:50:18+00:00.b9ced71
x1003c6b0	FPGA0	cFPGA	3.03
x1003c6b0	Rectifier2	Rectifier 2	PFC_01.03-SEC_02.10
x3001c0r11b0	BMC	BMC	sc.1.7.0-45-slingshot-release.arm64.2022-03-05T22:28:42+00:00.9a31838
x3001c0r11b0	Recovery	Recovery	rec.1.4.22-shasta-release.arm64.2021-04-26T23:22:15+00:00.79c40dd
x3001c0r11b0	FPGA0	sFPGA-ROS	1.08
x3001c0r11b0	Packages	Packages	na
x3001c0r11b0	Bootloader	Bootloader	1.9-sc-ros-tor
x3001c0r11b0	FPGA1	sFPGA-ROS-TOR	1.04
+--------------+------------+---------------+---+

CUG 2022 119

CHECK SENSORS

• Obtain sensor readings from BMCs (ChassisBMC, NodeBMC, RouterBMC)
• Limit the telemetry topics queried to the topics listed
• The default is to query all topics:

– cray-telemetry-temperature, cray-telemetry-voltage, cray-telemetry-power, 'cray-telemetry-energy, cray-telemetry-fan,
cray-telemetry-pressure

ncn-m# sat sensors -x x1003c2s6b1 -t NodeBMC -b 2 --timeout 10 --topic cray-telemetry-temperature
Telemetry data being collected for x1003c2s6b1
Please be patient...
Waiting for metrics for all requested xnames from cray-telemetry-temperature.
Receiving metrics from stream: cray-telemetry-temperature...
Telemetry data received from cray-telemetry-temperature for all requested xnames.
+-------------+---------+----------------------------+--------------------------------+--------------+----------+-----------+----------+------+
| xname | Type | Topic | Timestamp | Location | Parental Context | Physical Context | Index |Value |
+-------------+---------+----------------------------+--------------------------------+--------------+----------+-----------+----------+------+
x1003c2s6b1	NodeBMC	cray-telemetry-temperature	2022-04-01T18:17:57.079525696Z	x1003c2s6b1n0	Chassis	VoltageRegulator	0	55.4
x1003c2s6b1	NodeBMC	cray-telemetry-temperature	2022-04-01T18:17:56.585058025Z	x1003c2s6b1n0	Chassis	VoltageRegulator	2	45.8
x1003c2s6b1	NodeBMC	cray-telemetry-temperature	2022-04-01T18:17:57.081500532Z	x1003c2s6b1n1	Chassis	VoltageRegulator	0	51.2
x1003c2s6b1	NodeBMC	cray-telemetry-temperature	2022-04-01T18:17:56.580577726Z	x1003c2s6b1n1	Chassis	VoltageRegulator	2	45.8
x1003c2s6b1	NodeBMC	cray-telemetry-temperature	2022-04-01T18:17:57.072975044Z	x1003c2s6b1n0	MISSING	CPU	0	30.875000
x1003c2s6b1	NodeBMC	cray-telemetry-temperature	2022-04-01T18:17:57.072913765Z	x1003c2s6b1n0	MISSING	CPU	1	26.500000
x1003c2s6b1	NodeBMC	cray-telemetry-temperature	2022-04-01T18:17:57.073033042Z	x1003c2s6b1n1	MISSING	CPU	0	29.750000
x1003c2s6b1	NodeBMC	cray-telemetry-temperature	2022-04-01T18:17:57.073074561Z	x1003c2s6b1n1	MISSING	CPU	1	27.500000
+-------------+---------+----------------------------+--------------------------------+--------------+----------+-----------+----------+------+

CUG 2022 120

TRANSLATE XNAME AND NID

ncn-m# sat bash
(1e2360e3e3f0) sat-container:/sat # sat status | head -4
+---------------+-----------+------+------+-------+------+---------+------+----------+---------+---------+--------+
| xname | Aliases | Type | NID | State | Flag | Enabled | Arch | Class | Role | Subrole | NetType|
+---------------+-----------+------+------+-------+------+---------+------+----------+---------+---------+--------+
| x1000c0s0b0n0 | nid000004 | Node | 1000 | Ready | OK | True | X86 | Mountain | Compute | None | Sling |

(1e2360e3e3f0) sat-container:/sat # sat xname2nid x1000c0s0b0n0
nid001000
(1e2360e3e3f0) sat-container:/sat # sat nid2xname 1000
x1000c0s0b0n0
(1e2360e3e3f0) sat-container:/sat # sat xname2nid x1000c0s0b0
nid001000,nid001001

(1e2360e3e3f0) sat-container:/sat # sat xname2nid x3000c0s19,x1000c0s0b0n0
nid[000001-000004,1000]

(1e2360e3e3f0) sat-container:/sat # sat xname2nid -f nid x3000c0s19,x1000c0s0b0n0
nid000001,nid000002,nid000003,nid000004,nid001000

This BMC has two nodes which would be affected by hardware work

Recursively expand slot, chassis, and cabinet xnames to a range of nids

Recursively expand slot, chassis, and cabinet xnames to a list of nids

CUG 2022 121

• Display hardware component history by xname or Field-Replaceable Unit (FRU) ID by querying HSM
• FRU ID was added to output of sat hwinv

ncn-m# sat hwhist --help
usage: sat hwhist [-h] [-f PATH] [-x XNAME] [--format {pretty,yaml,json}] [--no-borders] [--no-headings]

[--reverse] [--sort-by FIELD] [--show-empty] [--show-missing] [--fields FIELDS] [--filter QUERY]
[--by-fru] [--fruid FRUID]

Report hardware component history.

optional arguments:
-h, --help show this help message and exit
--by-fru Display hardware component history by FRU.
--fruid FRUID, --fruids FRUID

A comma-separated list of FRUIDs to include in the hardware component history report.
xnames:
Options for specifying target xnames.

-f PATH, --xname-file PATH
Path to a newline-delimited file of xnames. In order to share the path between the host and container
when sat is run in a container environment, the path should be either an absolute or relative path of
a file in or below the home or current directory. Overrides value set in config file.

-x XNAME, --xname XNAME, --xnames XNAME
Specify an xname on which to operate. Multiple xnames may be specified via comma-separated entries or
by providing this option multiple times.

TRACK HARDWARE

HARDWARE MANAGEMENT

CUG 2022 122

CUG 2022

HARDWARE MANAGEMENT MICROSERVICES
• System Layout Service (SLS)

• “Single source of truth" for the system design
• Hardware State Manager (HSM)

• Operational datastore for current state of all components in the system
• Mountain Endpoint Discovery Service (MEDS)

• Redfish endpoint discovery for liquid-cooled Olympus (Mountain) hardware
• River Endpoint Discover Service (REDS)

• Redfish endpoint discovery for air-cooled (River) hardware
• Redfish Translation Service (RTS)

• Provide Redfish appearance for everything that cannot do Redfish, that such as PDUs with JAWS protocol
• Cray Advanced Platform Monitoring and Control (CAPMC)

• Power Control and Power Capping for all components
• System Configuration Service (SCSD)

• Set various BMC and controller parameters
• Firmware Action Service (FAS)

• Manages firmware for all Out-Of-Band components

123

CUG 2022

SYSTEM LAYOUT SERVICE (SLS)

• SLS stores a generalized abstraction of the system that other services can access
• Populated at install time with system-specific information that describes the hardware and network perimeter
• Details the physical locations of network hardware, management nodes, application nodes, compute nodes, and cabinets
• Stores information about the network, such as which port on which switch should be connected to each node
• Does not need to change as hardware within the system is replaced

• -SLS is responsible for the following:
• Providing an HTTP API to access site information
• Storing a list of all hardware
• Storing a list of all network links
• Storing a list of all power links

• Changes to system setup which require updating data in SLS
• Changing system cabling
• Expanding the system
• Reducing the system
• Updating UAN CAN IP addresses
• Updating UAN hostname aliases

ncn# cray sls hardware
ncn# cray sls networks
ncn# cray sls search hardware list
ncn# cray sls search networks list
ncn# cray sls dumpstate
ncn# cray sls loadstate

124

• No Static Inventory Required
• Redfish for discovery and acquisition of all devices
• No “test boot” or discovery image required
• Diskless nodes can get completely new images and

identity with reboot
• Suitable for any device with Redfish and DHCP/BootP

CUG 2022

CLOSED LOOP HARDWARE DISCOVERY

SNMP Walk
Switches

Detect and
Acquire

Redfish BMCs

Populate
Inventory

Update DNS
and DHCP

Configuration

Update Boot
Configuration

Process New
Switches

125

• Provides Redfish endpoint management and discovery
• Discovery of node, switch, and chassis controllers running Redfish top-level entry points

– Provides Redfish endpoint information to Hardware Management Services, which allows HMS to interact directly with
parent endpoints of system components

– Provides hardware inventory and component state data to other system services, which limits the number of systems that
interact directly with Redfish

• Performs hardware inventory discovery
• Uses raw data collected during discovery of Redfish endpoints
• Stores detailed information on hardware present in the system at discovery

– Includes information that is independent of the component's current location (serial number for FRU tracking)

• Provides component state management
• Tracks logical component states and other dynamic information (e.g., node roles) needed for most common

administrative and operational functions

HARDWARE STATE MANAGER (HSM)

CUG 2022 126

• Redfish Endpoints
• The entity where Redfish runs (nC, sC, cC, BMC)

• Component Endpoints
• They are the management representation of system components and are linked to the parent RedfishEndpoint

• Components
• Provide a higher-level HSM representation of the component, including State, NID, Role (i.e. compute/service), Subtype, and so on

• NodeMaps
• A mapping of one xname ID to a NID and, optionally, other default information

• Role and Subrole
• A node has exactly one Role and Subrole value
• Role Management with Subrole (master, worker, storage)
• Role Application with Subrole (UAN, Gateway, and multiple site-definable Subroles)
• Role Compute with no Subroles

• Groups
• A group is a division of the system that groups components using a site-definable group name
• Components can be members of multilple groups

• Partitions
• Partitions are used as an access control mechanism
• Each component may belong to at most one partition

• Memberships
• a mapping of a component xname to its set of group labels and partition names

HARDWARE STATE MANAGER DATA STRUCTURES

CUG 2022 127

HSM DATA HIERARCHY

All components that are tracked by HSM must be
associated with a Redfish endpoint!

Redfish Endpoints

ChassisBMC

NodeBMC

RouterBMC

Component Endpoints

RouterBMC

NodeEnclosure

NodeBMC

Node

HSNBoard

ComputeModule

Chassis

ChassisBMC

RouterModule

ncn# cray hsm inventory componentEndpoints list --
redfish-ep x1000c0b0 |grep -w Type |sort -u
Type = "Chassis"
Type = "ChassisBMC"
Type = "ComputeModule"
Type = "RouterModule"

ncn# cray hsm inventory componentEndpoints list --
redfish-ep x1000c0s1b0 |grep -w Type |sort -u
Type = "Node"
Type = "NodeBMC"
Type = "NodeEnclosure“

ncn# cray hsm inventory componentEndpoints list --
redfish-ep x1000c0r3b0 |grep -w Type |sort -u
Type = "HSNBoard"
Type = "RouterBMC"

CUG 2022 128

HSM SAMPLE DATA: REDFISHENDPOINTS
ncn# cray hsm inventory redfishEndpoints describe x1000c0s1b0

"ID": "x1000c0s1b0",
"Type": "NodeBMC",
"Hostname": "x1000c0s1b0",
"Domain": "",
"FQDN": "x1000c0s1b0",
"Enabled": true,
"User": "root",
"Password": "",
"MACAddr": "02:03:E8:00:31:00",
"RediscoverOnUpdate": true,
"DiscoveryInfo": {

"LastDiscoveryAttempt": "2021-10-29T21:19:03.935137Z",
"LastDiscoveryStatus": "DiscoverOK",
"RedfishVersion": "1.2.0"

ncn# cray hsm inventory redfishEndpoints describe x3000c0s20b2
"ID": "x3000c0s20b2",
"Type": "NodeBMC",
"Hostname": "x3000c0s20b2",
"Domain": "",
"FQDN": "x3000c0s20b2",
"Enabled": true,
"UUID": "b42e9978-5486-be03-0010-debfe042c46d",
"User": "root",
"Password": "",
"MACAddr": "b42e99785486",
"RediscoverOnUpdate": true,
"DiscoveryInfo": {

"LastDiscoveryAttempt": "2021-04-05T18:32:17.643790Z",
"LastDiscoveryStatus": "DiscoverOK",
"RedfishVersion": "1.7.0"

Retrieving Redfish Endpoint inventory
Liquid-cooled compute node

Retrieving Redfish Endpoint inventory
Air-cooled node

CUG 2022

Note the MAC address on a proprietary liquid-
cooled blade, the MACAddr is algorithmically
assigned to the node based on its position in the
system

Note the MAC address on a commodity node, the
MACAddr is assigned to the device by the
manufacturer

129

HSM SAMPLE DATA: COMPONENT ENDPOINTS
ncn# cray hsm inventory componentEndpoints describe x1000c0s1b0n0
{

"ID": "x1000c0s1b0n0",
"Type": "Node",
"RedfishType": "ComputerSystem",
"RedfishSubtype": "Physical",
"OdataID": "/redfish/v1/Systems/Node0",
"RedfishEndpointID": "x1000c0s1b0",
"Enabled": true,
"RedfishEndpointFQDN": "x1000c0s1b0",
"RedfishURL": "x1000c0s1b0/redfish/v1/Systems/Node0",
"ComponentEndpointType": "ComponentEndpointComputerSystem",
"RedfishSystemInfo": {

"Name": "Node0",
"Actions": {

"#ComputerSystem.Reset": {
"ResetType@Redfish.AllowableValues": [

"EthernetNICInfo": [
"RedfishId": "HPCNet0",
"@odata.id": "/redfish/v1/Systems/Node0/EthernetInterfaces/HPCNet0",
"Description": "Shasta Timms NMC REV04 (HSN)",
"MACAddress": "Not Available",
"PermanentMACAddress": "00:40:a6:83:57:16"

"RedfishId": "ManagementEthernet",
"@odata.id": "/redfish/v1/Systems/Node0/EthernetInterfaces/ManagementEthernet",
"Description": "Node Maintenance Network",
"MACAddress": "00:40:a6:83:63:39",
"PermanentMACAddress": "00:40:a6:83:63:39"

Retrieving Component Endpoint inventory
liquid-cooled compute node

CUG 2022

You would see:
"ForceOff",
"Off",
"On"

Output in slide has been trimmed to fit in slide

130

HSM SAMPLE DATA: COMPONENT ENDPOINTS

ncn# cray hsm inventory componentEndpoints describe x3000c0s17b1n0
ID = "x3000c0s17b1n0"
Type = "Node"
RedfishType = "ComputerSystem"
RedfishSubtype = "Physical"
UUID = "32324C58-6E35-3054-3031-505030313635"
OdataID = "/redfish/v1/Systems/1"
RedfishEndpointID = "x3000c0s17b1"
Enabled = true
RedfishEndpointFQDN = "x3000c0s17b1"
RedfishURL = "x3000c0s17b1/redfish/v1/Systems/1"
ComponentEndpointType = "ComponentEndpointComputerSystem"

[RedfishSystemInfo]
Name = "Computer System"
PowerURL = "/redfish/v1/Chassis/1/Power"
[[RedfishSystemInfo.EthernetNICInfo]]
RedfishId = "1"
"@odata.id" = "/redfish/v1/Systems/1/EthernetInterfaces/1"
MACAddress = "94:40:c9:c1:61:d4"
MemberId = "0"
PowerCapacityWatts = 1600
…
[RedfishSystemInfo.Actions."#ComputerSystem.Reset"]
"ResetType@Redfish.AllowableValues" = ["On", "ForceOff", "GracefulShutdown", "ForceRestart", "Nmi", "PushPowerButton",]
"@Redfish.ActionInfo" = ""
target = "/redfish/v1/Systems/1/Actions/ComputerSystem.Reset"

Retrieving Component Endpoint inventory air-cooled node

CUG 2022 131

HARDWARE INVENTORY DATA SAMPLE
ncn# cray hsm inventory hardware describe x3000c0s20b2n0p0
{
"ID": "x3000c0s20b2n0p0",
"Type": "Processor",
"Ordinal": 0,
"Status": "Populated",
"HWInventoryByLocationType": "HWInvByLocProcessor",
"ProcessorLocationInfo": {
"Id": "1",
"Name": "Processor 1",
"Description": "Processor Instance 1",
"Socket": "P0"

},
"PopulatedFRU": {
"FRUID": "Processor.AdvancedMicroDevicesInc.2B48D1E76B14022",
"Type": "Processor",
"Subtype": "",
"HWInventoryByFRUType": "HWInvByFRUProcessor",
"ProcessorFRUInfo": {
"InstructionSet": "x86-64",
"Manufacturer": "Advanced Micro Devices, Inc.",
"MaxSpeedMHz": 3350,
"Model": "AMD EPYC 7702 64-Core Processor ",
"SerialNumber": "2B48D1E76B14022",
"PartNumber": "",
"ProcessorArchitecture": "x86",
"ProcessorId": {
"EffectiveFamily": "AMD Zen Processor Family",
"EffectiveModel": "0x31",
"IdentificationRegisters": "178bfbff00830f10",
"MicrocodeInfo": "",
"Step": "0x0",
"VendorID": "AuthenticAMD"

},
"ProcessorType": "CPU",
"TotalCores": 64,
"TotalThreads": 128,
"Oem": null

}

ncn# cray hsm inventory hardware describe x3000c0s17b1n0d1 --
format json | jq '.PopulatedFRU.MemoryFRUInfo'
{

"BaseModuleType": "RDIMM",
"BusWidthBits": 72,
"CapacityMiB": 16384,
"DataWidthBits": 64,
"ErrorCorrection": "MultiBitECC",
"Manufacturer": "Micron",
"MemoryType": "DRAM",
"MemoryDeviceType": "DDR4",
"OperatingSpeedMhz": 3200,
"PartNumber": "18ASF2G72PDZ-3G2E1",
"RankCount": 2,
"SerialNumber": "266463A6“

}

Retrieving
Processor

Information

Retrieving DIMM
Information

ncn# cray hsm inventory hardware describe x3000c0s17b1 --
format json | jq '.NodeBMCLocationInfo'
{

"DateTime": "2021-03-19T18:51:13Z",
"DateTimeLocalOffset": "+08:00",
"Description": "",
"FirmwareVersion": "iLO 5 v2.12",
"Id": "1",
"Name": "Manager"

}

Retrieving ILO5
Information

CUG 2022 132

HARDWARE INVENTORY DATA SAMPLE – ethernetInterfaces

ncn# cray hsm inventory ethernetInterfaces list --format json | jq 'map(select(.ComponentID =="x3000c0s17b1n0"))'
[
{
"ID": "9440c9c161d4",
"Description": "",
"MACAddress": "94:40:c9:c1:61:d4",
"LastUpdate": "2021-03-11T12:18:43.539116Z",
"ComponentID": "x3000c0s17b1n0",
"Type": "Node",
"IPAddresses": []

},
{
"ID": "ecebb88dec20",
"Description": "",
"MACAddress": "ec:eb:b8:8d:ec:20",
"LastUpdate": "2021-03-11T12:42:02.44448Z",
"ComponentID": "x3000c0s17b1n0",
"Type": "Node",
"IPAddresses": [
{
"IPAddress": "10.254.1.23"

}
]

.

.
]

For the bmc interface(s) query for the
xname of the bmc

(Some lines omitted for clarity)

CUG 2022 133

HSM STATE DEFINITIONS

HSM State Definition

Unknown The state is unknown. Appears missing but has not been confirmed as empty

Empty The location is not populated with a component

Populated Present (not empty), but no further tracking can or is being done

Off Present but powered off

On Powered on. If no heartbeat mechanism is available, its software state may be Unknown

Standby No longer Ready and presumed dead. It typically means heartbeat has been lost (with alert)

Halt No longer Ready and halted. OS has been gracefully shutdown or panicked (with alert)

Ready Both On and Ready at Linux multi-user state to provide its expected role in the system

CUG 2022 134

HSM STATE TRANSITION MAP

On Standby

Halt

Ready

Off

OS gracefully
shutdown or

panicked

Heartbeat lost
presumed dead

(cause unknown)

Node booted
heartbeats
transmitted

capmc
node_off

capmc
node_off

capmc
node_off

capmc
node_off

capmc
node_on

capmc
node_on

Key

Event causing
state change

Power off
command

Power on
command

State

CUG 2022 135

HSM SPECIAL STATE TRANSITIONS

Unknown

On
Empty

Off

Populated

Component cannot
be reached by

HSM

Administrator
removes

components and
forces state

change

REDS or MEDS
discovers new

hardware

capmc
node_off

capmc
node_on

Cabinet
infrastructure

discovered

Hardware
detected

Hardware
not

detected

capmc
node_on

Component
rediscovered Key

Event causing
state change

Power off
command

Power on
command

Normal
State

Special
State

Initial
discovery

CUG 2022 136

DISABLING NODES IN HSM

ncn# kubectl logs -f -n services boa-6729097c-8f06-4169-8008-c40a06087677-mjwqq -c boa
...
2022-04-19 19:43:17,448 - ERROR - cray.boa.agent - Nodes were not ready: Number of retries: 361 exceeded allowed amount: 360; 1 nodes
were not in the state: Ready
2022-04-19 19:43:17,483 - ERROR - cray.boa.agent - Traceback (most recent call last):
2022-04-19 19:43:17,483 - ERROR - cray.boa.agent - These nodes failed to reboot. {'x3000c0s27b0n0'}
2022-04-19 19:43:17,483 - ERROR - cray.boa.agent - You can attempt to reboot these nodes by issuing the command:
cray bos v1 session create --template-uuid uan-sessiontemplate-2.3.2-cos-2.2.101-gpfs --operation reboot --limit x3000c0s27b0n0
...
ncn# cray hsm state components enabled update x3000c0s19b3n0 --enabled false
ncn# cray hsm state components describe x3000c0s19b3n0
Type = "Node"
Enabled = false
State = "Off"
NID = 3
ID = "x3000c0s19b3n0"
Flag = "OK"
Role = "Compute"
NetType = "Sling"
Arch = "X86"
Class = "River”

ncn# cray hsm state components bulkEnabled update x3000c0s19b3n0,x3000c0s19b3n1,x3000c0s3b1n0,x3000c0s3b1n0 --enabled true

Problem – One unhealthy node fails to boot

Solution – Disable the unhealthy node in HSM and relaunch the boot

CUG 2022

Note: Can also affect a list of several components with a single call

137

CREATING AND UPDATING HSM GROUPS

ncn# cray hsm groups list
results = []

ncn# cray hsm groups create --label blue
[[results]]
URI = "/hsm/v1/groups/blue"

ncn# cray hsm groups update --description ”All compute nodes that are blue" blue

ncn# cray hsm groups members create --id x3000c0s24b4n0 blue
[[results]]
URI = "/hsm/v1/groups/blue/members/x3000c0s24b4n0"

ncn# cray hsm groups describe blue
description = "All compute nodes that are blue"
label = ”blue"

[members]
ids = ["x3000c0s24b4n0",]

ncn# cray hsm groups members delete x3000c0s24b4n0 blue
message = "deleted 1 entry"
code = 0

CUG 2022 138

ADDING MULTIPLE MEMBERS TO AN HSM GROUP
ncn# cray hsm groups members create --id x3000c0s19b[1-4]n0 blue
Usage: cray hsm groups members create [OPTIONS] GROUP_LABEL
Try 'cray hsm groups members create --help' for help.

Error: Bad Request: invalid xname ID
ncn# for XNAME in $(sat status --filter role=Compute --no-borders --no-headings | awk '{print $1}');
do cray hsm groups members create --id $XNAME blue; done
[[results]]
URI = "/hsm/v1/groups/blue/members/x3000c0s19b1n0"

[[results]]
URI = "/hsm/v1/groups/blue/members/x3000c0s19b2n0"
...
[[results]]
URI = "/hsm/v1/groups/blue/members/x3000c0s24b4n0"

ncn# cray hsm groups describe blue
description = "All compute nodes that are blue"
label = ”blue"

[members]
ids = ["x3000c0s19b1n0", "x3000c0s19b2n0", "x3000c0s19b3n0", "x3000c0s19b4n0", "x3000c0s21b1n0",
"x3000c0s21b2n0", "x3000c0s21b3n0", "x3000c0s21b4n0", "x3000c0s24b1n0", "x3000c0s24b2n0",
"x3000c0s24b3n0", "x3000c0s24b4n0",]

Due to a parsing limitation in the API adding multiple
nodes in a single command is not supported

For now the work around is to add one
node at a time in a shell script loop

CUG 2022 139

• The Cray Advanced Platform Monitoring and Control (CAPMC) API
• Enables direct hardware control of power on/off, power monitoring, or system-wide power, telemetry and

configuration parameters from Redfish
• Implements a simple interface for powering on/off compute nodes, querying node state information, and

querying site-specific service usage rules
– These controls enable external software to more intelligently manage system-wide power consumption or configuration

parameters

• Features
• Retrieve Redfish power status and power management capabilities of components
• Control single components via NID or xname
• Control grouped components
• Control the entire system
• Can specify ancestors (--prereq) and descendants (--recursive) of single component
• Provide a --force option for immediate power off
• Power sequencing

CUG 2022 140

CRAY ADVANCED PLATFORM MONITORING AND CONTROL (CAPMC)

ncn# cray capmc get_node_status create --filter show_all
{
"e": 0,
"err_msg": "",
"off": [1006, 1038, 1108, 1110],
"on": [1076, 49168960],
"ready": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 1004, 1005, 1007, 1020, 1021, 1022, 1023, 1028,1029, 1030, 1031, 1036, 1037, 1039, 1077,
1078, 1079, 1109, 1111, 1180, 1181, 1182, 1183, 1252, 1253, 1254, 1255, 100001, 100002, 100003,
100004, 100005, 100006, 100007, 100008, 100009, 49168832, 49168896]

}
ncn# cray capmc get_xname_status create --filter show_all
{
"e": -1,
"err_msg": "Errors encountered with 1/109 Xnames for Status",
"off": ["x1000c0s1b1n0", "x1000c1s1b1n0", "x1000c3s3b0n0", "x1000c3s3b1n0"],
"on": ["x1000c0", "x1000c0r3", "x1000c0r3e0", "x1000c0r7", "x1000c0r7e0", "x1000c0s1", "x1000c0s1b0n0",
"x1000c0s1b0n1", "x1000c0s1b1n1", "x1000c0s5", "x1000c0s5b0n0", "x1000c0s5b0n1", "x1000c0s5b1n0",
"x1000c0s5b1n1", "x1000c0s7", "x1000c0s7b0n0", "x1000c0s7b0n1", "x1000c0s7b1n0", "x1000c0s7b1n1",
... << clipped for space >>
"x3000c0s37b3n0", "x3000c0s37b4n0"],

"undefined": ["x3000c0s2b0n0"]
}

CUG 2022 141

CAPMC GET STATUS BY NODE OR XNAME

capmc get_xname_status command to
show all nodes and their status.

capmc get_xname_status command to list
all nodes by their xnames and their power status.

ncn# curl -k -u admin:password -s https://x3000c0s20b1/redfish/v1/Systems/Self/ResetActionInfo |jq
{
"@odata.context": "/redfish/v1/$metadata#ActionInfo.ActionInfo",
"@odata.etag": "W/\"1601653292\"",
"@odata.id": "/redfish/v1/Systems/Self/ResetActionInfo",
"@odata.type": "#ActionInfo.v1_1_1.ActionInfo",
"Description": "This action is used to reset the Systems",
"Id": "ResetAction",
"Name": "ResetAction",
"Parameters": [
{
"AllowableValues": [
"ForceRestart",
"On",
"GracefulShutdown",
"ForceOff"

],
"DataType": "String",
"Name": "ResetType",
"Required": true

}
]

}

CUG 2022 142

SAMPLE REDFISH API CALL

The allowable values can be POSTed to the action URL to change the state of the node.

For example: Sending an HTTP POST of {“ResetType”: “On”} to the API path
redfish/v1/Systems/Self/Actions/ComputerSystem.Reset will
attempt to power up the node

Every Redfish endpoint on the system can be
interacted with for hardware monitoring and
management with the proper URL and credentials

ncn# cray capmc node_off create –-nids 7
e = 0
err_msg = "“

ncn# kubectl logs -n services --since=1m -l app.kubernetes.io/instance=cray-hms-capmc -c cray-capmc
2020/04/13 16:35:40 [DEBUG] GET http://cray-vault.vault:8200/v1/secret/hms-creds/x3000c0s23b3n0
2020/04/13 16:35:40 nodectl.go:134: Info: Node power command: Off, nids: [7], reason:
2020/04/13 16:35:40 capmcd.go:305: Info: --> HTTP POST http://cray-smd/hsm/v1/locks
2020/04/13 16:35:40 capmcd.go:326: Info: <-- HTTP 201 Created POST http://cray-smd/hsm/v1/locks
(6.588427ms)
2020/04/13 16:35:40 bmcapi.go:494: Info: Node: 'x3000c0s23b3n0', NodeBMC: '10.254.2.16', Command: 'Off'
2020/04/13 16:35:40 capmcd.go:305: Info: --> HTTP POST
https://10.254.2.16/redfish/v1/Systems/Self/Actions/ComputerSystem.Reset
2020/04/13 16:35:49 capmcd.go:326: Info: <-- HTTP 204 No Content POST
https://10.254.2.16/redfish/v1/Systems/Self/Actions/ComputerSystem.Reset (8.746677165s)
2020/04/13 16:35:49 capmcd.go:305: Info: --> HTTP DELETE http://cray-smd/hsm/v1/locks/ab2e36fd-0a0a-49e6-
bb11-02cbf2102946
2020/04/13 16:35:49 capmcd.go:326: Info: <-- HTTP 200 OK DELETE http://cray-smd/hsm/v1/locks/ab2e36fd-
0a0a-49e6-bb11-02cbf2102946 (7.933897ms)
2020/04/13 16:35:49 capmcd.go:272: Info: --> 127.0.0.1:40582 HTTP 200 OK POST /capmc/v1/node_off
(8.800847806s)

• Note: The System Admin Toolkit command sat status will give a list of nodes xnames and their nid
number

CUG 2022 143

CAPMC POWER CONTROL

The capmc call shown generated the Redfish calls shown in the logs
below.

CUG 2022 144

BOOTING AND SHUTTING DOWN THE SYSTEM

• The entire system can be booted or shut down in the documented, ordered stages
https://github.com/Cray-HPE/docs-csm/blob/release/1.0/operations/power_management/System_Power_Off_Procedures.md

ncn-m# sat bootsys boot --list-stages
ncn-power
platform-services
k8s-check
cabinet-power
bos-operations

ncn-m# sat bootsys shutdown --list-stages
capture-state
session-checks
bos-operations
cabinet-power
platform-services
ncn-power

• Can boot or shutdown multiple BOS session templates at the same time
ncn-m# sat bootsys boot --stage bos-operations --bos-templates A,B,C

https://github.com/Cray-HPE/docs-csm/blob/release/1.0/operations/power_management/System_Power_Off_Procedures.md

CUG 2022 145

SYSTEM CONFIGURATION SERVICE (SCSD)

ncn# cray scsd bmc cfg describe x3000c0r42b0 --format yaml
Force: false
Params:
SyslogServerInfo:
ProtocolEnabled: true
SyslogServers:
- 10.94.100.53
Port: 514
Transport: udp

NTPServerInfo:
NTPServers:
- 10.254.0.5
ProtocolEnabled: true
Port: 123

SSHKey: "ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQC/GrzGi0ff8nhKCP9E09sFf+gNf0ibP53DOr/a25JZxhAlw7QKJcpBhK/JOi/ch8QAM8YxLTae4
0p7jjfI5bJ58Y0HeSgVUmUTWh6QIFMd+CqQRU2jSv6m3gISrzSOmEkBtcl0RuTmOJxvg5tKL9Qm6ymVQwSK0KWFQAwTI0I7DkyinqcRbV
R3HVC4vnCQDWjPumQHzheRzIDfkUtOfX/YcFjH5GtvQzqolh0mLEQm2mpjWoXjAXK6RkI3SttxnMW/IM2RplynvC/ffGAYJwu0xZXb48y
ga0yhd7REL6Kcvahlc2jQqgXgqC0siMSoLSqKooKiZPZrxh1IdWf9Ic1mvqg7wbx3NDBik0vjU+ZChDicZw80vHtl217QegvzONT+XoEJ
o/F2Arur2UISZIT5THzJvMaFqnXQvgF6y+ejg+Il13NnWA5kds/sBnsl3VhxkOUWYHi6v0CPWmkBmQPdoah+K4gY1lfOQtu9wf8EXyLB+
NYjotf2D31URmJEBVGnL1CpTKPMxLF4zZVPu2jc1rilRfv34fbngzGJurne0TifmULFlT3yfzkJiIj+vJLzVsaoHRypzduvQZgTSP8hl5
ERPbfHIuGHDc3hKOdzq//JxF4qrw4voUab5+u/0YH6f4frzKQD7YcxMHvCjCFKynxvdVbouQctIPUrEi3Qvw==\

\ \n"

scsd is used to retrieve and set redfish controller (BMC)
parameters including:
• SSH keys
• NTP server
• Syslog server
• BMC/Controller passwords

See System Configuration Service documentation for details

146

FIRMWARE ACTION SERVICE (FAS)

• FAS updates firmware of Redfish-enabled hardware

Manufacturer Redfish Endpoint Firmware Target

HPE Cray Liquid-cooled node BMC BMC, Node0.BIOS, Node1.BIOS, Recovery

HPE Cray Chassis BMC BMC, Recovery

HPE Cray Slingshot switch BMC BMC, Recovery

Gigabyte Air-cooled node BMC BMC, BIOS

HPE Air-cooled node BMC iLO 5 (BMC), System ROM (BIOS)

CUG 2022

• Action
• A collection of operations initiated by user request to update to the firmware images on a set of hardware

• Operation
• An update (upgrade/downgrade) to a specific device's Firmware Target

• Snapshot
• Point-in-time record of what firmware images were running on the system
• Used to 'RESTORE' the system back to specific firmware versions

• Image
• A JSON object that contains

– Key data including deviceType, manufacturer, model and other information to identify the firmware
– Process Guides that tell FAS how to update the firmware in question
– S3 link (URL) where the firmware binary can be retrieved

CUG 2022 147

FAS TERMINOLOGY

• Complete a dry-run using a JSON file describing which component types, and dry-run flag
ncn# vi fas_file.json
ncn# cray fas actions create fas_file.json

• Interpret the output of the dry-run
• Poll the status of the action until the action `state` is `completed
mcn# cray fas actions describe actionID --format json
– NoOp: Nothing to do, already at version.
– NoSol: No viable image is available; this will not be updated.
– succeeded:

– IF dryrun: The operation should succeed if performed as a live update, FAS COULD update a component name (xname) + target with the declared strategy
– IF live update: the operation succeeded, and has updated the component name (xname) + target to the identified version

– failed:
– IF dryrun: There is something that FAS could do, but it likely would fail; most likely because the file is missing
– IF live update: the operation failed, the identified version could not be put on the component name (xname) + target

• If succeeded count > 0 now perform a real update
• Change the flag from dry-run to live in JSON file an do the real update
ncn# vi fas_file.json
ncn# cray fas actions create fas_file.json

• Interpret the output of the real update
• Poll the status of the action until the action `state` is `completed
ncn# cray fas actions describe newactionID –format json

CUG 2022 148

UPDATING FIRMWARE WITH FAS

• Slingshot fabric manager
• Slingshot topology tool

NETWORK MANAGEMENT

149CUG 2022

CUG 2022 150

ncn# kubectl get pod -n services | grep slingshot
slingshot-fabric-manager-7bddfccc87-bhx9x 2/2 Running 0 45d
ncn# FMN_POD=$(kubectl get pod -n services | grep slingshot | awk '{print $1}')
ncn# echo $FMN_POD
slingshot-fabric-manager-7bddfccc87-bhx9x

ncn# kubectl exec -it -n services $FMN_POD -c slingshot-fabric-manager -- /bin/bash
slingshot-fabric-manager-7bddfccc87-bhx9x:/opt/slingshot # fmn_version
FMN : 1.0.4-63-20210421180621_89c5fbb
FMN Scripts : 1.0.4
FMN CLI : 1.0.4
Slingshot Fabric Manager : 1.0.4
Slingshot Certificate Manager : 1.0.4
Slingshot Tools : 1.0.4
Slingshot UI : not installed
Slingshot Web Server : not installed
slingshot-fabric-manager-7bddfccc87-bhx9x:/opt/slingshot # exit
exit
ncn#

ACCESSING THE SLINGSHOT FABRIC MANAGER CONTAINER

Executing bash in the slingshot
fabric manager container
causes the prompt to change

The slingshot fabric manager
runs in a container inside a
Kubernetes pod

exit from within the container
will quit the bash session

CUG 2022 151

slingshot-fabric-manager-7bddfccc87-bhx9x:~ # head /opt/cray/fabric_template.json
{

"links": [
{

"endpoint1": "x1000c0r3j1p1",
"endpoint2": "x3000c0r42j31p1"

},
{

"endpoint1": "x1000c0r3j1p0",
"endpoint2": "x3000c0r42j31p0"

},
slingshot-fabric-manager-7bddfccc87-bhx9x:~ # head /opt/cray/etc/sct/Shasta_system_hsn_pt_pt.csv
cable_id,src_conn_a,src_conn_b,dst_conn_a,dst_conn_b,stage,src_egress_a,src_egress_b,dst_egress_a,dst_egress_b,link
_type,src_group,dst_group,part_number,part_length,calculated_distance,route
1000.1000.00.0080,x1000c0r3j10,none,x1000c5r7j11,none,1,none,none,none,none,local,1,1,102234306,2.13,1.9895352,[]
1000.1000.00.0086,x1000c0r3j11,none,x1000c7r3j14,none,1,none,none,none,none,local,1,1,102234307,2.39,2.2975296,[]
1000.1000.00.0090,x1000c0r3j12,none,x1000c7r7j11,none,1,none,none,none,none,local,1,1,102234308,2.62,2.504561,[]
1000.1000.00.0027,x1000c0r3j13,none,x1000c6r7j13,none,1,none,none,none,none,local,1,1,102234308,2.62,2.4771815,[]
1000.1000.00.0025,x1000c0r3j14,none,x1000c6r3j13,none,1,none,none,none,none,local,1,1,102234307,2.39,2.30091,[]
1000.1000.00.0022,x1000c0r3j16,none,x1000c4r7j13,none,1,none,none,none,none,local,1,1,102234306,2.13,1.9636838,[]
1000.1000.00.0018,x1000c0r3j18,none,x1000c4r3j14,none,1,none,none,none,none,local,1,1,102234305,1.91,1.7582719,[]
3000.1000.00.0000,x1000c0r3j1,none,x3000c0r42j31,none,1,x3000-LEFT,none,x1000-
CENTRE,none,global,1,0,102253304,19M,5.7431222,['x3000_BACK-x1000_BACK']
1000.1000.00.0013,x1000c0r3j20,none,x1000c2r7j14,none,1,none,none,none,none,local,1,1,102234304,1.64,1.4212273,[]

IMPORTANT FILES WITHIN THE FABRIC MANAGER CONTAINER

fabric_template.json is the slingshot
topology file used to initialize the slingshot
fabric. It is a complete json formatted description
of the slingshot switches and cables

Shasta_system_hsn_pt_pt.csv is a
Slingshot cabling configuration file that is built
from the SHCD and used to initially set up a
slingshot network

CUG 2022 152

• The template will be located at: /opt/cray/fabric_template.json
• Structure:
{

"links": [
{

"endpoint1": "x1000c7r3j13p0",
"endpoint2": "x1000c2r3j11p0"

},...
],
"maxNumLocalSwitches": 16,
"numGroups": 2,
"switches": [

{
"IP": "x1000c0r3b0",
"edgePorts": [{"id": "x1000c5r7a0l32", "meta": {"conn_port": "x1000c5r7j103p0"} }, ...]
"fabricPorts": [{"id": "x1000c5r7a0l6", "meta": {"conn_port": "x1000c5r7j4p1"} }, ...]
"grpId": 1,
"swcNum": 0

},...
]

}

FABRIC_TEMPLATE.JSON

The fabricPorts connect to other switches (L1 “Local” or L2
“Global”) and and edgePorts connect to hosts (L0)

Switch Group

Switch number within Group

links are used for setting up routing between switches

• “Helper” orchestration scripts
• Usually, configuration or diagnostic related

• Not yet built into higher-level API services
• Designed for human-readable text/shell output

only

fmn_*
• Built on native REST APIs
• Autogenerated from APIs, so automatically

extended when new functionality is added
• Reflect stable APIs that are not expected to

change

• Simple method to interact using CLI
• Can output data in human-readable or

machine-readable format, making them
useful for DevOps

fmctl

SLINGSHOT FABRIC MANAGER COMMAND OPTIONS

153CUG 2022

• Integrated into the Fabric Management container
• Also available as an RPM for download and install

• Two modes of input:
• Interactive mode
• Command-line arguments

• Provides direct interaction with the Slingshot
fabric API
• Connects to the fabric API based on the OpenAPI

specifications
• Allows basic CRUD operations and patch

• Get, create, update, replace, delete

FMCTL OVERVIEW

154CUG 2022

slingshot-fabric-manager-7bddfccc87-bhx9x:~ # fmctl
Usage:

fmctl { help | version }
fmctl { get | create | update | replace | delete } help
fmctl { get } <resource> [--fmn-endpoint ENDPOINT] [--timing] [--verbose lvl] [--raw] [--select key,key,...] [--response-code] [--
api-runtime-check]
fmctl { delete } <resource> [--fmn-endpoint ENDPOINT] [--timing] [--verbose lvl] [--raw] [--select key,key,...] [--response-code] [--
api-runtime-check]
fmctl { create | update | replace } <resource> [--fmn-endpoint ENDPOINT] [--timing] [--verbose lvl] [--raw] [--select key,key,...] [-
-response-code] [--api-runtime-check] {[--file payload.json] | [key=value ...]}
fmctl { interactive } [--fmn-endpoint ENDPOINT] [--timing]

Flag details:
--verbose: silent, low, high, debug
--raw: emit raw JSON
--select: Comma separated list of fields to print, \n separator

Default config is written to: /root/.fmctlrc

CUG 2022 155

slingshot-fabric-manager-7bddfccc87-bhx9x:~ # fmctl get switches
+---------------+-------------------------------+
| KEY | VALUE |
+---------------+-------------------------------+
documentCount	17
documentLinks	/fabric/switches/x3000c0r42b0
1	/fabric/switches/x1000c6r3b0
2	/fabric/switches/x1000c5r7b0
3	/fabric/switches/x1000c2r7b0
4	/fabric/switches/x1000c0r3b0
5	/fabric/switches/x1000c3r7b0
6	/fabric/switches/x1000c2r3b0
7	/fabric/switches/x1000c7r3b0
8	/fabric/switches/x1000c0r7b0
9	/fabric/switches/x1000c7r7b0
10	/fabric/switches/x1000c1r3b0
11	/fabric/switches/x1000c1r7b0
12	/fabric/switches/x1000c3r3b0
13	/fabric/switches/x1000c5r3b0
14	/fabric/switches/x1000c6r7b0
15	/fabric/switches/x1000c4r3b0
16	/fabric/switches/x1000c4r7b0
totalCount	17
+---------------+-------------------------------+

FMCTL GET SWITCHES

CUG 2022 156

slingshot-fabric-manager-7bddfccc87-bhx9x:~ # fmctl get switches/x3000c0r42b0 | head -7
+------------------+--------------------------------------+
| KEY | VALUE |
+------------------+--------------------------------------+
IP	x3000c0r42b0
agentLink	/fabric/agents/x3000c0r42b0
documentSelfLink	/fabric/switches/x3000c0r42b0
edgePortLinks	/fabric/ports/x3000c0r42j12p0

slingshot-fabric-manager-7bddfccc87-bhx9x:~ # fmctl get switches/x3000c0r42b0 | tail -7
2	map[id:x3000c0r42a0l0
	meta:map[conn_port:x3000c0r42j1p1]]
3	map[id:x3000c0r42a0l1
	meta:map[conn_port:x3000c0r42j1p0]]
grpId	0
swcNum	0
+------------------+--------------------------------------+	
slingshot-fabric-manager-7bddfccc87-bhx9x:~ # fmctl get switches/x3000c0r42b0 --raw \	
jq '.fabricPortLinks'	
[
"/fabric/ports/x3000c0r42j1p1",
"/fabric/ports/x3000c0r42j1p0",
"/fabric/ports/x3000c0r42j31p0",
"/fabric/ports/x3000c0r42j31p1"

]

FMCTL GET SWITCHES/ANY_SWITCH

CUG 2022 157

FMCTL PRIMARY COMMANDS

Command Definition

fmctl get View the current status of a resource or metric. Use with a resource path or OData parameter.

fmctl create Creates a resource with the given parameters

fmctl update Updates the value of a specified field

fmctl replace Replaces the entire value of the resource to the new given parameters

fmctl delete Deletes a resource

fmctl interactive Start interactive mode

fmctl get help View static resource paths. To view dynamic resource paths, use fmctl get switches.
Example resource paths:

• /fabric/switches/<xname>
• /fabric/routing-engines/dragonfly

fmctl version Print the fmctl version

CUG 2022 158

COMMON FMN_* COMMANDS

Command Definition

fmn_pw Set password

fmn_version Display version information

fmn_switch_reset Reset switch (warm boot)

fmn_update_switch_firmware Update firmware or display version

fmn_fabric_bringup Start switch synchronization with FMN

fmn_status Display fabric status

fmn_cert_provision Provision certificates to switches

fmn_shasta_dns Add or delete or print DNS records

CUG 2022 159

slingshot-fabric-manager-7bddfccc87-bhx9x:/opt/slingshot # fmn_status
Edge: 52 / 284
Fabric: 488 / 488
Ports Reported: 772 / 772
Fully Synchronized Switches: 17 / 17
slingshot-fabric-manager-7bddfccc87-bhx9x:/opt/slingshot # fmn_port_state --check x1000c4r7j1
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 214 100 214 0 0 12588 0 --:--:-- --:--:-- --:--:-- 13375
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 225 100 225 0 0 75000 0 --:--:-- --:--:-- --:--:-- 109k
slingshot-fabric-manager-7bddfccc87-bhx9x:/opt/slingshot # fmn_fabric_snapshot
Tue Jul 13 05:25:45 UTC 2021
tar: Removing leading `/' from member names
/var/tmp/triage-data/
/var/tmp/triage-data/fmn_fabric_snapshot.log
/var/tmp/triage-data/fabric_template.json
/var/tmp/triage-data/routing-engine-data.txt
/var/tmp/triage-data/fabric-agent-x3000c0r42b0.txt
/var/tmp/triage-data/fabric-agent-x1000c7r3b0.txt
/var/tmp/triage-data/fabric-agent-x1000c6r3b0.txt
...

FMN_* EXAMPLES

CUG 2022 160

• Runs in the Fabric Management container
• An integration of several Python-based tools generate configuration files for the Fabric Manager to

perform diagnostics on the network
• Can take input from the SHCD file (configuration file), and builds the full “topology file” that is a map of

the port-to-port connections for a Slingshot fabric: Shasta_system_hsn_pt_pt.csv
• Used via an interactive CLI
• Enables the following:

• Import and export of different file formats (SHCD files, point-to-point files)
• Generation of topologies from plugin algorithms
• Inspection, modification, generation, and validation of topologies
• Consolidation of diagnostic test scripts from various repositories, test execution, and result reporting

• Use of STT is optional
• Slingshot fabric does not require STT to function

SLINGSHOT TOPOLOGY TOOL (STT)

CUG 2022 161

slingshot-fabric-manager-7bddfccc87-bhx9x:/opt/slingshot # slingshot-topology-tool
Using Fabric Manager URL http://localhost:8000
STT diags log directory - /opt/slingshot/stt_diags_logs
STT diags log directory - /opt/slingshot/stt_diags_logs/default
Loading point2point file /opt/cray/etc/sct/Shasta_system_hsn_pt_pt.csv to default topology
Loading fabric template file /opt/cray/fabric_template.json to default topology
Welcome to the Slingshot Topology Tool v1.0.4-20.

General Usage is <command> <arguments>
Type help or ? to list commands.

(STT) help

Documented commands (use 'help -v' for verbose/'help <topic>' for details):
===
add copy help refresh_data set_active
clear_cache del history remove set_threadpool_size
combine exit list run shell
compute_nodes_creds filter load save show
configure generate new set snapshot_data

(STT)

STT INTERACTIVE COMMAND LINE INTERFACE

CUG 2022 162

(STT) help run
Run diagnostic command
Usage: run <command> <command options>
Usage: run <command> <help|summary>

Available list of diagnostic commands:
dgrperfcheck - Rosetta Diagnostics for performance check.
dgrlinkstat - Rosetta Diagnostics for links statistics.
dgrerrstat - Rosetta Diagnostics for error statistics.
dgrheadshellstat - Rosetta Diagnostics for Headshell statistics.
dgrflowdebug - Rosetta Diagnostics for flow control debugging.
dgrcounters - Rosetta Diagnostics for capturing counter data.
check-fabric - Validates current state of a fabric with fabric template file.
check-switches - Validates L1/L2 cabling with p2p file.
fmn_status - Provides summary of fabric switch ports status.
simple_discovery - Finds connected Switch/Node/Chassis BMCs to the SMS/NCN.
services_rosetta - Provides summary of services running on Rosetta.
services_platform - Provides summary of services running on Switch platform.
dgrvalidatesyscfg - Provides health snapshot of switches
linkdbg - Provides health snapshot of links
fabric_snapshot - Collects fabric information from the FMN.
show-flaps - Provides link flapping information.
compute_snapshot - Collects Network Config Snapshot from the CNs.
dgrcsr - Dumps Rosetta CSR data of switches

STT DIAGNOSTICS

CUG 2022 163

(STT) show cables

Working with 'default' topology and 'default' filter profile.
Collecting data using 'check-switches' script.
Collecting data using 'check-fabric' script.
Warning: login credentials for compute nodes is not set in STT.
Use 'compute_nodes_creds' command to input compute node login credentials.
Trying to access compute nodes without password using SSH.

Collecting data using 'dgrlinkstat' script.
check-fabric : Start time: 07/13/2021, 04:47:30 , End time: 07/13/2021, 04:47:33
dgrlinkstat : Start time: 07/13/2021, 04:47:30 , End time: 07/13/2021, 04:47:40
check-switches : Start time: 07/13/2021, 04:47:30 , End time: 07/13/2021, 04:47:53
+-----------------+-----------------+------------------+------------------+--------+---------------+--+
| srca | srcb | dsta | dstb | type | status | serial_ids |
+-----------------+-----------------+------------------+------------------+--------+---------------+--+
x1000c0r3j10p1	x1000c0r3j10p0	x1000c5r7j11p1	x1000c5r7j11p0	fabric	Connected	0619190050, 0619190050, 0619190050, 0619190050
x1000c0r3j11p1	x1000c0r3j11p0	x1000c7r3j14p1	x1000c7r3j14p0	fabric	Connected	0828190034, 0828190034, 0828190034, 0828190034
x1000c0r3j12p1	x1000c0r3j12p0	x1000c7r7j11p1	x1000c7r7j11p0	fabric	Connected	0828190074, 0828190074, 0828190074, 0828190074
x1000c0r3j13p1	x1000c0r3j13p0	x1000c6r7j13p1	x1000c6r7j13p0	fabric	Connected	0828190024, 0828190024, 0828190024, 0828190024
x1000c0r3j14p1	x1000c0r3j14p0	x1000c6r3j13p1	x1000c6r3j13p0	fabric	Connected	0619190001, 0619190001, 0619190001, 0619190001
x1000c0r3j16p1	x1000c0r3j16p0	x1000c4r7j13p1	x1000c4r7j13p0	fabric	Connected	0619190051, 0619190051, 0619190051, 0619190051
x1000c0r3j18p1	x1000c0r3j18p0	x1000c4r3j14p1	x1000c4r3j14p0	fabric	Connected	0828190047, 0828190047, 0828190047, 0828190047
x1000c0r3j1p1	x1000c0r3j1p0	x3000c0r42j31p1	x3000c0r42j31p0	fabric	Connected	UH294G00255, UH294G00255, UH294G00255, UH294G00255
x1000c0r3j20p1	x1000c0r3j20p0	x1000c2r7j14p1	x1000c2r7j14p0	fabric	Connected	0910190282, 0910190282, 0910190282, 0910190282
x1000c0r3j22p1	x1000c0r3j22p0	x1000c2r3j20p1	x1000c2r3j20p0	fabric	Connected	0612190337, 0612190337, 0612190337, 0612190337
x1000c0r3j24p1	x1000c0r3j24p0	x1000c0r7j24p1	x1000c0r7j24p0	fabric	Connected	0612190556, 0612190556, 0612190556, 0612190556
x1000c0r3j2p1	x1000c0r3j2p0	x1000c1r3j24p1	x1000c1r3j24p0	fabric	Connected	0527190006, 0527190006, 0527190006, 0527190006
x1000c0r3j4p1	x1000c0r3j4p0	x1000c1r7j20p1	x1000c1r7j20p0	fabric	Connected	0612190287, 0612190287, 0612190287, 0612190287
...

STT SHOW CABLES

• Nexus repository manager
• Image Management Service

IMAGE MANAGEMENT

164CUG 2022

CUG 2022 165

• Package management is performed with the Sonatype Nexus Repository Manager, or simply Nexus
• Nexus resources are orchestrated by Kubernetes

• By default, all Nexus resources are in the nexus namespace
• Support for multiple repository formats
• Support for multiple types of repositories

– hosted
– group
– Proxy

• Primary access to nexus is through a web-based interface
• https://nexus.EX_SHASTA_DOMAIN/
• Command line interaction with Nexus is via Kubernetes kubectl commands and through api calls

ncn# kubectl get pods -A |grep nexus
nexus cray-precache-images-q6ntx 1/1 Running 1 68d
nexus cray-precache-images-sshkq 1/1 Running 1 68d
nexus cray-precache-images-xmcth 1/1 Running 2 68d
nexus nexus-868d7b8466-t4cnb 2/2 Running 0 57d

PACKAGE MANAGEMENT

CUG 2022 166

ncn# curl -s https://packages.local/service/rest/v1/repositories -H "Content-type: application/json" \
|jq 'map(select(.type == "hosted"))' | jq 'map(select(.format == "raw")) | .[].name' |sort
"HFP-firmware-2.0.101916-0"
"HFP-firmware-2.0.111516-0"
"SUSE-21.16.0-SLE-Module-Basesystem-15-SP2-x86_64-Debug"
"SUSE-21.16.0-SLE-Module-Basesystem-15-SP2-x86_64-PTF"
"SUSE-21.16.0-SLE-Module-Basesystem-15-SP2-x86_64-Updates"
"SUSE-21.16.0-SLE-Module-Containers-15-SP2-x86_64-Updates“

ncn# curl -s https://packages.local/service/rest/v1/repositories -H "Content-type: application/json" \
|jq 'map(select(.type == "hosted"))' | jq 'map(select(.format == "yum")) | .[].name'
"aocc-sle-15-cn"
ncn# curl -s https://packages.local/service/rest/v1/repositories -H "Content-type: application/json" \
|jq 'map(select(.type == "hosted"))' | jq 'map(select(.format == "helm")) | .[].name'
"charts“
ncn# curl -s https://packages.local/service/rest/v1/repositories -H "Content-type: application/json" \
|jq 'map(select(.type == "hosted"))' | jq 'map(select(.format == "docker")) | .[].name'
"registry"

NEXUS REPOSITORIES INCLUDED BY DEFAULT

Nexus supports multiple repository formats
including raw, yum, helm, and docker as shown

below, note that the predominant format is “raw”

CUG 2022 167

ncn# zypper lr -P
| Alias | Name | Enabled | GPG Check | Refresh | Priority
--+--+--+---------+-----------+---------+---------
1 | SUSE-SLE-Module-Basesystem-15-SP2-x86_64-Pool | SUSE-SLE-Module-Basesystem-15-SP2-x86_64-Pool | Yes | () No | Yes | 99
2 | SUSE-SLE-Module-Basesystem-15-SP2-x86_64-Updates | SUSE-SLE-Module-Basesystem-15-SP2-x86_64-Updates | Yes | () No | Yes | 99
3 | SUSE-SLE-Module-Containers-15-SP2-x86_64-Pool | SUSE-SLE-Module-Containers-15-SP2-x86_64-Pool | Yes | () No | Yes | 99
4 | SUSE-SLE-Module-Containers-15-SP2-x86_64-Updates | SUSE-SLE-Module-Containers-15-SP2-x86_64-Updates | Yes | () No | Yes | 99
5 | SUSE-SLE-Module-HPC-15-SP2-x86_64-Pool | SUSE-SLE-Module-HPC-15-SP2-x86_64-Pool | Yes | () No | Yes | 99
6 | SUSE-SLE-Module-HPC-15-SP2-x86_64-Updates | SUSE-SLE-Module-HPC-15-SP2-x86_64-Updates | Yes | () No | Yes | 99
7 | cray-sdu-rda | cray-sdu-rda | Yes | (p) Yes | Yes | 99
8 | csm-sle-15sp2 | CSM SLE 15 SP2 Packages (added by Ansible) | Yes | (p) Yes | Yes | 99
9 | sat-sle-15sp2 | sat-sle-15sp2 | Yes | () No | Yes | 99
10 | sma-sle-15sp2 | sma-sle-15sp2 | Yes | () No | Yes | 99

nid001004# zypper lr -P
| Alias | Name | Enabled | GPG Check | Refresh | Priority
---+--+--+---------+-----------+---------+---------
1 | SUSE-Backports-SLE-15-SP2 | SUSE-Backports-SLE-15-SP2 | Yes | (p) Yes | No | 3
2 | SUSE-SLE-Module-Basesystem-15-SP2-x86_64-PTF | SUSE-SLE-Module-Basesystem-15-SP2-x86_64-PTF | Yes | (p) Yes | No | 3
3 | SUSE-SLE-Module-Basesystem-15-SP2-x86_64-Pool | SUSE-SLE-Module-Basesystem-15-SP2-x86_64-Pool | Yes | (r) Yes | No | 3
4 | SUSE-SLE-Module-Basesystem-15-SP2-x86_64-Updates | SUSE-SLE-Module-Basesystem-15-SP2-x86_64-Updates | Yes | (r) Yes | No | 3
5 | SUSE-SLE-Module-Desktop-Applications-15-SP2-x86_64-Pool | SUSE-SLE-Module-Desktop-Applications-15-SP2-x86_64-Pool | Yes | (r) Yes | No | 3
6 | SUSE-SLE-Module-Desktop-Applications-15-SP2-x86_64-Updates | SUSE-SLE-Module-Desktop-Applications-15-SP2-x86_64-Updates | Yes | (r) Yes | No | 3
7 | SUSE-SLE-Module-Development-Tools-15-SP2-x86_64-Pool | SUSE-SLE-Module-Development-Tools-15-SP2-x86_64-Pool | Yes | (r) Yes | No | 3
8 | SUSE-SLE-Module-Development-Tools-15-SP2-x86_64-Updates | SUSE-SLE-Module-Development-Tools-15-SP2-x86_64-Updates | Yes | (r) Yes | No | 3
9 | SUSE-SLE-Module-HPC-15-SP2-x86_64-Pool | SUSE-SLE-Module-HPC-15-SP2-x86_64-Pool | Yes | (r) Yes | No | 3
10 | SUSE-SLE-Module-HPC-15-SP2-x86_64-Updates | SUSE-SLE-Module-HPC-15-SP2-x86_64-Updates | Yes | (r) Yes | No | 3
11 | SUSE-SLE-Module-Legacy-15-SP2-x86_64-Pool | SUSE-SLE-Module-Legacy-15-SP2-x86_64-Pool | Yes | (r) Yes | No | 3
12 | SUSE-SLE-Module-Legacy-15-SP2-x86_64-Updates | SUSE-SLE-Module-Legacy-15-SP2-x86_64-Updates | Yes | (r) Yes | No | 3
13 | SUSE-SLE-Module-Public-Cloud-15-SP2 | SUSE-SLE-Module-Public-Cloud-15-SP2 | Yes | (r) Yes | No | 3
14 | SUSE-SLE-Module-Public-Cloud-15-SP2-x86_64-Updates | SUSE-SLE-Module-Public-Cloud-15-SP2-x86_64-Updates | Yes | (r) Yes | No | 3
15 | SUSE-SLE-Module-Python2-15-SP2-x86_64-Pool | SUSE-SLE-Module-Python2-15-SP2-x86_64-Pool | Yes | (r) Yes | No | 3
16 | SUSE-SLE-Module-Python2-15-SP2-x86_64-Updates | SUSE-SLE-Module-Python2-15-SP2-x86_64-Updates | Yes | (r) Yes | No | 3
17 | SUSE-SLE-Module-Server-Applications-15-SP2-x86_64-Pool | SUSE-SLE-Module-Server-Applications-15-SP2-x86_64-Pool | Yes | (r) Yes | No | 3
18 | SUSE-SLE-Module-Server-Applications-15-SP2-x86_64-Updates | SUSE-SLE-Module-Server-Applications-15-SP2-x86_64-Updates | Yes | (r) Yes | No | 3
…

nid00104# zypper lr -P | wc -l
33

NCN AND COMPUTE RPM REPOSITORIES

CUG 2022 168

ncn# curl -s https://packages.local/service/rest/v1/repositories \
-H "Content-type: application/json" |jq 'map(select(.name == "cray-sdu-rda"))'
[
{
"name": "cray-sdu-rda",
"format": "raw",
"type": "group",
"url": "https://packages.local/repository/cray-sdu-rda",
"attributes": {}

}
]
ncn# curl -s https://packages.local/service/rest/v1/repositories \
-H "Content-type: application/json" |jq 'map(select(.name == "cray-sdu-rda-1.1.7"))'
[
{
"name": "cray-sdu-rda-1.1.7",
"format": "raw",
"type": "hosted",
"url": "https://packages.local/repository/cray-sdu-rda-1.1.7",
"attributes": {}

}
]
ncn# zypper lr -up |grep -v ^- | awk -F "|" '{print $2 $8}' | grep sdu
cray-sdu-rda https://packages.local/repository/cray-sdu-rda

HOSTED VERSUS GROUP REPOSITORIES

Group repositories combine hosted
repositories into “meta repositories versioned
by minor releases and used by zypper

Hosted repositories are versioned according the patch release

CUG 2022 169

SONATYPE NEXUS REPOSITORY MANAGER

The Sonatype Nexus Repository Manager is
accessed from https://nexus.SHASTA_DOMAIN/

Only Keycloak authorized users can access

https://nexus.shasta_domain/

CUG 2022 170

• Allows administrators and authorized users to build or customize (pre-boot) images.
• IMS supports the following REST endpoints:

• Public key management
– Public keys to enable SSH access to debug and customize images

• Recipe management
– Recipes that can be used to build an image

• Image and image artifact management
– An image can consist of multiple image artifacts including the

image root, kernel and initrd
• Job management

– The workflow to create or customize an image via a Kubernetes job

IMAGE MANAGEMENT SERVICE (IMS)

CUG 2022 171

IMS API, BUCKETS, AND JOBS

Ceph S3

ims boot-images

IMS

tgztgz manifest

Fetch Recipe

Wait for Repos

Build CA RPM

Build Image

Buildenv
Sidecar

SSHD

Prepare

Buildenv
Sidecar

SSHD

CMCMCM

/healthz

/version

/v2
/v3

/recipes

/images

/public-keys

Services Namespace IMS Namespace

/jobs
IMS Job Customize Pod

IMS Job Create Pod

CUG 2022 172

• IMS uses the open-source tool KIWI-NG to build images from
Kiwi Image Descriptions

• KIWI-NG is the next generation (or updated version) of the
Kiwi Appliance Builder
• An appliance is just a ready to use image for an operating system
• Kiwi can create images that boot via PXE

• Kiwi supports building images of various Linux distributions
• Currently supported, SLES 15

• Image Description
• Specification to define an appliance
• The image description is a collection of human readable files in a directory
• The contents of the Image Description (“recipe”) are archived and stored in S3

– The artifact ID of the recipe is stored in IMS
• Image

• The result of a KIWI build process
• Consists of the kernel, initrd, image root, and possibly other artifacts
• Image artifacts are stored in S3 with a link to the artifact in IMS

KIWI-NG

CUG 2022 173

1. Admin submits a “create job” to IMS
2. IMS establishes a new Kubernetes pod to build

the image
3. The recipe is downloaded from S3 and passed

to KIWI-NG running in the new pod
4. KIWI-NG installs the RPM packages listed in the recipe.

RPMs are retrieved from repos setup by the Nexus
Repository Manager

5. KIWI-NG runs configuration scripts specified in the
recipe to the image

6. When KIWI-NG completes, the image artifacts
are collected and stored in S3

CREATING AN IMAGE

Image Root Initrd
Kernel

Image Artifacts

CUG 2022 174

ncn# cray ims recipes list | grep name |sort
"name": "cpe-barebones-sles15sp2.x86_64-21.11.7",
"name": "cray-shasta-compute-sles15sp2.x86_64-1.5.63",
"name": "cray-shasta-compute-sles15sp2.x86_64-1.5.66",
"name": "cray-shasta-uan-cos-sles15sp2.x86_64-0.2.35",
"name": "cray-shasta-uan-cos-sles15sp2.x86_64-0.2.37",
"name": "cray-shasta-uan-cos-sles15sp2.x86_64-0.2.39",

ncn# cray ims recipes list --format yaml | grep -B7 -A 1 cray-shasta-compute-sles15sp2.x86_64-1.5.66
- created: '2021-12-14T22:15:27.662675+00:00'
id: 667b38e5-2b09-429d-b09a-f848fcb48d84
link:
etag: 5afae742dab16ef9f549ab03f1747962
path: s3://ims/recipes/667b38e5-2b09-429d-b09a-f848fcb48d84/recipe.tar.gz
type: s3

linux_distribution: sles15
name: cray-shasta-compute-sles15sp2.x86_64-1.5.66
recipe_type: kiwi-ng

LISTING IMS RECIPES

Latest versions

CUG 2022 175

ncn# cray ims recipes describe 667b38e5-2b09-429d-b09a-f848fcb48d84
{

"created": "2021-12-14T22:15:27.662675+00:00",
"id": "667b38e5-2b09-429d-b09a-f848fcb48d84",
"link": {

"etag": "5afae742dab16ef9f549ab03f1747962",
"path": "s3://ims/recipes/667b38e5-2b09-429d-b09a-f848fcb48d84/recipe.tar.gz",
"type": "s3"

},
"linux_distribution": "sles15",
"name": "cray-shasta-compute-sles15sp2.x86_64-1.5.66",
"recipe_type": "kiwi-ng"

}

ncn# cray artifacts get ims recipes/667b38e5-2b09-429d-b09a-f848fcb48d84/recipe.tar.gz cray-
shasta-compute-sles15sp2.x86_64-1.5.66.tar.gz
ncn# file cray-shasta-compute-sles15sp2.x86_64-1.5.66.tar.gz
cray-shasta-compute-sles15sp2.x86_64-1.5.66.tar.gz: gzip compressed data, from Unix
ncn# ls -l cray-shasta-compute-sles15sp2.x86_64-1.5.66.tar.gz
-rw-r--r-- 1 root root 7413 Jan 5 15:11 cray-shasta-compute-sles15sp2.x86_64-1.5.66.tar.gz

DOWNLOADING AN IMAGE RECIPE

CUG 2022 176

ncn# tar -xvf cray-shasta-compute-sles15sp2.x86_64-1.5.66.tar.gz
./
./config.sh
./images.sh
./root/
./root/root/
./root/root/bin/
./root/root/bin/zypper-addrepo.sh
./config.xml

• config.xml - Image definition file provides image name and type and the packages and patterns to make the image
• images.sh - Optional script called at the beginning of the image creation process
• config.sh - Optional script called at the end of the installation while in chroot, but before package scripts have run
• root/ - Subdirectory that contains special files, directories, and scripts for adapting the image environment after the

installation of all the image packages. The entire directory is copied into the root of the image tree
using cp -a

• config/ - Optional subdirectory with Bash scripts called after the installation of all the image packages to remove
the parts of a package that are not needed

EXTRACTING AN IMAGE RECIPE

CUG 2022 177

• The config.xml file consist of the following elements or tags
• image

– The top-level tag for the image description provides the name of the image and the XML schema
• description

– This tag provides information on the author of the image description and some additional information
• preferences

– This tag contains information about the supported image type(s), the package manager used, the version of this image, and
optional attributes

– Each preferences block must define at least one type element. Multiple type elements can be specified in any
preferences block. The image type to be created is determined by the value of the image attribute

• users
– This tag allows for the creation of users within the image. Each child tag defines one user

• repository
– Specifies the location and type of a repository to be used by the package manager
– Each repository tag can include a priority attribute. The Zypper package manager prefers packages from a repository with a

lower priority over packages from a repository with higher priority values
• packages

– This tag specifies the list of packages to be used with the image.
– The value of the type attribute specifies how the packages and patterns listed are handled

• Tags in purple are mandatory

CONFIG.XML

• Version Control Service
• Configuration Framework Service

CONFIGURATION MANAGEMENT

178CUG 2022

CUG 2022 179

• Version Control Service (VCS)
• Manages configuration data and content

– Compute image configuration YAML files

• Gitea server holds configuration content

• Configuration Framework Service (CFS)
• Manages the launch of configuration actions
• Does git-clone of configuration data and content from VCS
• Launches Ansible Execution Environment (AEE) which runs Ansible playbook for target inventory

– Either hostnames of nodes for node personalization or reconfiguration
– Or IMS build environment for image customization

• Aggregates status to show how many targets passed/failed the Ansible run

CONFIGURATION WITH CFS AND VCS

• Stores Ansible to apply to nodes at lifecycle events
• All Ansible in git repositories with branches to allow site customization
• Ordered configuration management across multiple repositories
• CFS sessions as part of pre-boot Image Customization as well as post-boot Node Personalization

USING GIT FOR MANAGING CFS CONFIGURATION

Layer1 CSM

Layer2 SMA

Layer3 COS

CUG 2022 180

CUG 2022 181

CFS FOR IMAGE CUSTOMIZATION

CFS

COS

CSM

SMA

$ git clone $ ansible-playbook…

IMS

Build Container

Launch

Object Store

Squashfs

Kernel &
Initrd

Upload

CUG 2022 182

CFS FOR POST-BOOT CUSTOMIZATION

CFS

COS

CSM

SMA

$ git clone

N
odes

$ ansible-playbook…

Batcher

CUG 2022 183

ncn# kubectl get cm -n services cray-product-catalog -o json| \
jq -r '.data’ | sed 's/\\n/\n/g' | grep clone_url | sort -u

clone_url: https://vcs.creek.training.hpe.com/vcs/cray/analytics-config-management.git
clone_url: https://vcs.creek.training.hpe.com/vcs/cray/cos-config-management.git
clone_url: https://vcs.creek.training.hpe.com/vcs/cray/cpe-config-management.git
clone_url: https://vcs.creek.training.hpe.com/vcs/cray/csm-config-management.git
clone_url: https://vcs.creek.training.hpe.com/vcs/cray/sat-config-management.git
clone_url: https://vcs.creek.training.hpe.com/vcs/cray/slurm-config-management.git
clone_url: https://vcs.creek.training.hpe.com/vcs/cray/sma-config-management.git
clone_url: https://vcs.creek.training.hpe.com/vcs/cray/uan-config-management.git

ncn# VCSPWD=$(kubectl get secret -n services vcs-user-credentials \
--template={{.data.vcs_password}} | base64 --decode)

ncn# # curl -s -u crayvcs:${VCSPWD} -X 'GET' 'https://api-gw-service-
nmn.local/vcs/api/v1/repos/search' | jq -r .data[].name
analytics-config-management
cos-config-management
cpe-config-management
csm-config-management
sat-config-management
slurm-config-management
sma-config-management
uan-config-management

LIST GIT REPOSITORIES
Retrieve the clone urls of the git
repositories from Kubernetes

This command retrieves the
repository names directly from git

Retrieve the vcsuser password
from kubernetes

CUG 2022 184

ncn# kubectl get cm -n services cray-product-catalog -o json | jq -r '.data.cos' | sed 's/\\n/\n/g'
2.2.101:
configuration:
clone_url: https://vcs.groot.dev.cray.com/vcs/cray/cos-config-management.git
commit: a736bc12032330d5236456f1cec207a431620098
import_branch: cray/cos/2.2.101
import_date: 2022-03-16 18:34:23.475935
ssh_url: git@vcs.groot.dev.cray.com:cray/cos-config-management.git

images:
cray-shasta-compute-sles15sp3.x86_64-2.2.38:
id: 30068b70-9244-46e6-90d7-6d6000fe6339

recipes:
cray-shasta-compute-sles15sp3.x86_64-2.2.38:
id: c4cba248-51c4-45d5-af3c-ea1f4856ce67

2.2.76:
configuration:
clone_url: https://vcs.groot.dev.cray.com/vcs/cray/cos-config-management.git
commit: 6e18c471782b2c3d460e4edfc7e349eb71620540
import_branch: cray/cos/2.2.76
import_date: 2022-02-11 18:57:45.134106
ssh_url: git@vcs.groot.dev.cray.com:cray/cos-config-management.git

images:
cray-shasta-compute-sles15sp3.x86_64-2.2.29:
id: 982efd61-fe63-4b14-90dc-93805437f75c

recipes:
cray-shasta-compute-sles15sp3.x86_64-2.2.29:
id: 1292a468-2978-4db5-a157-f5e6c41b6d5f

PRODUCT RELEASE DETAILS

This command provides:
git branches, images, and
recipes included with each

product release

Available releases:
• cos
• cpe
• csm
• hfp
• pbs
• sat
• sdu
• slingshot
• slurm
• sma
• uan

CUG 2022 185

GIT COMMANDS
Area Git CLI command Description

Setup &
Init

git init <project name> Create a new project and local repository

git clone <url> Download a project

Stage &
Snapshot

git status List all new or modified files to be committed

git add <file name> Stages files for version control

git reset <file name> Unstages a file

git diff Shows file differences that are not yet staged for version control

git diff <branch 1> <branch 2> Show the differences between two branches

git commit –m <commit message> Records all added files in version history

Branch &
Merge

git branch List all local branches

git branch <branch name> Create a new branch

git checkout <branch name> Switche to the specified branch and updates the working directory

git merge <branch name> Combines the specified branch history into the current branch

git log Show all commits in the current branch history

Share &
Update

git push Push local committed changes back to remote git repository

git pull Pull content from remote git repository

CUG 2022 186

VCS WEB PORTAL

CUG 2022 187

ncn# git clone https://api-gw-service-nmn.local/vcs/cray/uan-config-management.git
Username for 'https://api-gw-service-nmn.local': crayvcs
Password for 'https://crayvcs@api-gw-service-nmn.local’:

ncn# cd uan-config-management
ncn# git checkout cray/uan/2.3.2
ncn# git pull
ncn# git checkout -b integration && git merge cray/uan/2.3.2

ncn# vi <file(s) to be edited>
ncn# git mv <file(s) to be renamed>
ncn# git rm <file(s) to be removed>

ncn# git status
ncn# git diff
ncn# git add <file(s) in repo that were added or edited>
ncn# git status

ncn# git commit -m "<some message about the change>"

ncn# git push --set-upstream origin integration

ncn# git rev-parse --verify HEAD
ecece54b1eb65d484444c4a5ca0b244b329f4667

SAMPLE GIT SEQUENCE

Git commit ID to be used on CFS layer

Checkout from VCS

Make local branch

Change something

Compare and Update

Describe change

Push changes to git

CUG 2022 188

• Provides a configuration framework for HPE and customers which integrates industry-standard
configuration management tooling (Ansible) with Cray services

• Flexible workflow
• Pre-boot image customization
• Post-boot node personalization

• Provides dynamic inventory plugins to target Cray nodes for configuration
• CFS is integrated with other Cray Management Services:

• Image Management Service (IMS)
• Nexus Repository Manager
• Version Control Service (VCS)
• Boot Orchestration Service (BOS)
• Artifact Repository / S3

• Configurations are applied in layers
• Configurations are processed in batches

CONFIGURATION FRAMEWORK SERVICE

CUG 2022 189

• Image customization options (pre-boot)
• IMS via manual SSH configuration environment
• IMS via automatic Ansible plays in SSH configuration environment

• Node personalization options (post-boot)
• Node personalization via Ansible plays on booted node
• Node personalization via manual configuration
• Live update (post-boot) via Zypper/Yum updates to RPM on booted node

• Reconfiguration of node (without rebooting)
• Same methods as node personalization

• Any customer-provided methods for image customization, node personalization, or reconfiguration
• With each option a cfs configuration must be specified

CONFIGURATION OPTIONS

CUG 2022 190

1. The Administrator submits a “customize job” to IMS
2. IMS establishes a new Kubernetes pod to customize the image
3. The existing image is downloaded from S3 and uncompressed
4. An SSH environment is established so CFS can run Ansible plays

1. Or an administrator could request manual access for debugging or to
make any required manual changes

5. When configuration is done, the image artifacts are collected
and stored in S3 as new artifacts

CUSTOMIZING AN IMAGE

Image Root Initrd
Kernel

Image Artifacts

CUG 2022 191

ncn# cray cfs configurations describe compute-slurm-cpe-21.6.5 --format json
{

"lastUpdated": "2021-06-24T18:58:25Z",
"layers": [

{
"cloneUrl": "https://api-gw-service-nmn.local/vcs/cray/cos-config-management.git",
"commit": "97209cb3e6c128e0b8c1eaae0e683227c57910ee",
"name": "cos-integration-2.1.70",
"playbook": "site.yml"

},
{

"cloneUrl": "https://api-gw-service-nmn.local/vcs/cray/slurm-config-management.git",
"commit": "b302e1b672e27f74c36ceacfd2ed6bd50ed14c0a",
"name": "slurm-integration-0.1.3",
"playbook": "site.yml"

},
{

"cloneUrl": "https://api-gw-service-nmn.local/vcs/cray/cpe-config-management.git",
"commit": "43f3a36bca35d693a583d1643fe1cebb0ccaf7fe",
"name": "cpe-integration-21.6.5",
"playbook": "pe_deploy.yml"

}
],
"name": " compute-slurm-cpe-21.6.5 "

}

CFS CONFIGURATIONS

CUG 2022 192

ncn# cray cfs components describe x1000c0s5b0n1 --format json
{
"configurationStatus": "configured",
"desiredConfig": " compute-slurm-cpe-21.6.5 ",
"enabled": true,
"errorCount": 0,
"id": "x1000c0s5b0n1",
"retryPolicy": 3,
"state": [
{
"cloneUrl": "https://api-gw-service-nmn.local/vcs/cray/cos-config-management.git",
"commit": " 97209cb3e6c128e0b8c1eaae0e683227c57910ee",
"lastUpdated": "2021-11-17T18:44:41Z",
"playbook": "site.yml",
"sessionName": "batcher-f80ebbdb-c4ec-4025-8156-68205b22ccdf"

},
{
"cloneUrl": "https://api-gw-service-nmn.local/vcs/cray/slurm-config-management.git",
"commit": " b302e1b672e27f74c36ceacfd2ed6bd50ed14c0a",
"lastUpdated": "2021-11-17T19:47:29Z",
"playbook": "site.yml",
"sessionName": "batcher-b57c437f-33e9-46d7-9416-8c955f773504"

},
<< snip >>

{
"cloneUrl": "https://api-gw-service-nmn.local/vcs/cray/cpe-config-management.git",
"commit": " 43f3a36bca35d693a583d1643fe1cebb0ccaf7fe",
"lastUpdated": "2021-12-06T20:42:02Z",
"playbook": "pe_deploy.yml",
"sessionName": "batcher-bdea16db-dae5-4f7a-bffe-40f0a179d328"

}
],
"tags": {
"bos_session": "d5f69110-dca6-4ecb-890f-3622957589fe"

CFS COMPONENTS

The configuration for a component and whether it is enabled are set by BOS
according to the sessiontemplate
If configuration fails it will be automatically retried up to the number specified in
the retryPolicy

To see configuration (ansible) output
check the cfs sessions to find
configuration jobs and then check the
logs of the ansible-x pods within those
jobs.

CUG 2022 193

ncn# cray cfs sessions describe batcher-080ba574-0a99-409b-a639-a45c73c25e63 --format json
{
"ansible": {
"config": "cfs-default-ansible-cfg",
"limit": "x3000c0s26b0n0",
"verbosity": 0

},
"configuration": {
"limit": "",
"name": "uan-config-2.0.0"

},
"name": "batcher-080ba574-0a99-409b-a639-a45c73c25e63",
"status": {
"artifacts": [],
"session": {
"completionTime": "2021-10-18T20:34:18",
"job": "cfs-e78738d3-99a9-4b73-bce1-a720b34a714d",
"startTime": "2021-10-18T20:31:15",
"status": "complete",
"succeeded": "true"

}
},
"tags": {
"bos_session": "bf88ad75-6a02-470c-85ca-4708a7f9fe0d"

},
"target": {
"definition": "dynamic",
"groups": null

}
}
ncn# kubectl logs -n services cfs-e78738d3-99a9-4b73-bce1-a720b34a714d-ps4ls
error: a container name must be specified for pod cfs-e78738d3-99a9-4b73-bce1-a720b34a714d-ps4ls, choose one of: [inventory ansible-0 ansible-1
ansible-2 istio-proxy] or one of the init containers: [git-clone-0 git-clone-1 git-clone-2 istio-init]

CFS SESSIONS

The limit shows which node(s) are
configured by each session

Kubernetes jobs control one or
more pods and the job name is
typically the start of the pod
name

Each layer will be executed by
a different container within the
cfs job or possibly a different
job

The containers names will have
the format ansible-N (e.g.,
ansible-0)

ncn# cray cfs options list --format json
{
"additionalInventoryUrl": "",
"batchSize": 25,
"batchWindow": 60,
"batcherCheckInterval": 10,
"defaultAnsibleConfig": "cfs-default-ansible-

cfg",
"defaultBatcherRetryPolicy": 1,
"defaultPlaybook": "site.yml",
"hardwareSyncInterval": 10,
"sessionTTL": "7d"

}

• Every 10 seconds the batcher checks for
components that need configuration

• Components (nodes) are assigned to a batch if:
• They need configuration
• They are not disabled
• They are currently not assigned to a batch

• Components are grouped according to their
desired state information.

• A new batch is created if
• no partial batches match the desired state
• all similar batches are full

• Batches are scheduled as CFS sessions when
either
• The batch is full
• The batch window time has been exceeded

CFS-BATCHER SCHEDULING RULES

194CUG 2022

CUG 2022 195

ncn-m001:~ # kubectl logs -n services cray-cfs-batcher-5d58b8964c-tdsm2 -c cray-cfs-batcher
2021-09-16 09:19:54,225 - INFO - batcher.batch - Successfully submited 1 batches for configuration
2021-09-16 09:20:54,910 - INFO - batcher.batch - 1 batches/sessions have completed
2021-09-16 09:21:15,163 - INFO - batcher.batch - Successfully submited 1 batches for configuration
2021-09-16 09:21:25,250 - INFO - batcher.batch - 1 batches/sessions have completed
2021-09-16 09:22:15,759 - INFO - batcher.batch - Successfully submited 1 batches for configuration
2021-09-16 09:23:26,546 - INFO - batcher.batch - 1 batches/sessions have completed
2021-09-16 09:23:26,547 - WARNING - batcher.batch - The 20 most recent configuration sessions have failed. Halting session creation for 60 seconds
2021-09-16 09:24:27,136 - INFO - batcher.batch - 1 batches/sessions have completed
2021-09-16 09:24:27,136 - WARNING - batcher.batch - The 20 most recent configuration sessions have failed. Halting session creation for 120 seconds
2021-09-16 09:26:28,170 - INFO - batcher.batch - Successfully submited 2 batches for configuration
2021-09-16 09:27:49,098 - INFO - batcher.batch - Successfully submited 1 batches for configuration
2021-09-16 09:28:49,865 - INFO - batcher.batch - 2 batches/sessions have completed
2021-09-16 09:28:49,866 - WARNING - batcher.batch - The 20 most recent configuration sessions have failed. Halting session creation for 240 seconds
2021-09-16 09:29:50,468 - INFO - batcher.batch - 1 batches/sessions have completed
2021-09-16 09:32:52,036 - INFO - batcher.batch - Successfully submited 2 batches for configuration
2021-09-16 09:34:53,393 - INFO - batcher.batch - 2 batches/sessions have completed
2021-09-16 09:34:53,393 - WARNING - batcher.batch - The 20 most recent configuration sessions have failed. Halting session creation for 480 seconds
2021-09-16 09:42:57,206 - INFO - batcher.batch - Successfully submited 1 batches for configuration
2021-09-16 09:44:28,008 - INFO - batcher.batch - 1 batches/sessions have completed
2021-09-16 09:44:28,008 - WARNING - batcher.batch - The 20 most recent configuration sessions have failed. Halting session creation for 960 seconds
2021-09-16 10:00:35,565 - INFO - batcher.batch - Successfully submited 1 batches for configuration
2021-09-16 10:00:45,689 - INFO - batcher.batch - Successfully submited 1 batches for configuration
2021-09-16 10:02:26,775 - INFO - batcher.batch - 2 batches/sessions have completed
2021-09-16 10:02:26,775 - INFO - batcher.batch - A session has succeeded. Resuming normal operations

WHY ISN’T CFS RUNNING?

CFS has implemented a crash loop back off style behavior to avoid creating an infinite number of failed configuration sessions

If the last 20 CFS session have failed, then it will pause increasing intervals to allow the problems to be corrected

ANSIBLE PRIMER

196CUG 2022

CUG 2022 197

• CFS uses Ansible for configuration management
• Create a configuration with one or more layers within a specific VCS git repository, and commit it to be executed

by Ansible
• Target a node, boot image, or group of nodes to apply the configuration
• Create a configuration session to apply and track the status of Ansible, applying each configuration layer to the

targets specified in the session metadata
• VCS is populated during software installation with Ansible code to configure each product
• Customers can write their own Ansible plays and roles to augment CFS configuration or implement new

features
• Ansible playbook best practices

– https://docs.ansible.com/ansible/latest/user_guide/playbooks_best_practices.html

• Ansible Examples
– https://github.com/ansible/ansible-examples

WRITE ANSIBLE CODE FOR CFS

https://docs.ansible.com/ansible/latest/user_guide/playbooks_best_practices.html
https://github.com/ansible/ansible-examples

CUG 2022 198

• Playbook
• One or more plays

• Play
• Maps groups of hosts to tasks

• Task
• Sequence of actions performed against group of hosts

that match a pattern in the play
• Modules

• Large Ansible library of common code
– Manage basic system resources
– Send notifications

• Roles
• Abstraction for naming a group of things that perform

same function

• Separate code from data
• Jinja2 templates (code)
• Variables (data)

• Jinja2
• Python-based template engine
• Templates have placeholders for parameter values

which can be replaced with variables
• Data

• Facts
– Automatically available
– Discovered at run time

• Variables
– User-defined

ANSIBLE – TERMS

group_vars/
group1.yml # here we assign variables to particular groups
group2.yml

host_vars/
hostname1.yml # here we assign variables to particular nodes
hostname2.yml

site.yml # master playbook
roles/
common/ # this hierarchy represents a "role"
tasks/ #
main.yml # <-- tasks file can include smaller files if warranted

handlers/ #
main.yml # <-- handlers file

templates/ # <-- files for use with the template resource
ntp.conf.j2 # <------- templates end in .j2

files/ #
bar.txt # <-- files for use with the copy resource
foo.sh # <-- script files for use with the script resource

vars/ #
main.yml # <-- variables associated with this role

defaults/ #
main.yml # <-- default lower priority variables for this role

meta/ #
main.yml # <-- role dependencies

library/ # roles can also include custom modules
module_utils/ # roles can also include custom module_utils
lookup_plugins/ # or other types of plugins, like lookup in this case

fooapp/ # "" same kind of structure as "common" was above but for fooapp

• Each repository directory matches Ansible
documentation
• https://docs.ansible.com/ansible/2.9/user_guide/pla

ybooks_best_practices.html#content-organization
• The default playbook site.yml is found at the top

level, if it exists
• Ansible roles and variables are in their appropriately

named directories
• Inventory directories like `group_vars` and

`host_vars` may exist, but they are empty and left
for variable overrides and customizations as needed
by the customer

ANSIBLE CODE STRUCTURE

199CUG 2022

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_best_practices.html

CUG 2022 200

• Ansible expects that all tasks are idempotent
• (action performed only once, even if play is run more than once)
• Care should be taken to ensure that tasks prescribe the desired state of the running system, making changes

only when necessary
• See “Resource Model” at https://docs.ansible.com/ansible/latest/reference_appendices/glossary.html

• When modifying files on a running system
• Keep in mind that other services may access the file
• Take the appropriate measures to ensure the modifications do not interfere with other operations
• Leave a breadcrumb that the file is updated by an automated process

– The “insertbefore” or “insertafter” options in the Ansible “lineinfile” module are well-suited to help with this

• If you find that you are trying to do something that is difficult to achieve in a few simple steps
• It is likely that Ansible already has a module that provides the functionality

ANSIBLE – BEST PRACTICES FOR PLAYBOOKS/ROLES

https://docs.ansible.com/ansible/latest/reference_appendices/glossary.html

CUG 2022 201

• Ansible playbook can designate which node groups the various tasks and roles will run against
• This is designated using the `hosts` parameter
• Users can create additional sections that target other node types, or adjust the hosts that the included roles will

run against
• Can target multiple groups within a section of a playbook or specify complex targets, such as nodes that are in

one group and not in another group
– https://docs.ansible.com/ansible/latest/user_guide/intro_patterns.html#common-patterns

• Hosts can be in more than one group at a time if there are user-defined groups
– Ansible will run all sections that match the node type against the node

WRITE PLAYBOOKS FOR MULTIPLE NODE TYPES

https://docs.ansible.com/ansible/latest/user_guide/intro_patterns.html

CUG 2022 202

• Dynamic inventory generates Ansible hosts file with data from HSM
• Can target an HSM group
ncn# cray hsm groups list --format json | jq .[].label
”blue"
”green"

• Can target HSM-reported hardware roles and sub-roles
– “Compute”, “Management”, “Application”
– “Application_UAN”, “Management_Worker”, other Application subroles for the system

• Static inventory can target specific groups of nodes
• Good for testing configuration changes on a small scale in a configuration repository
ncn# mkdir -p hosts; cd hosts; cat > static <<EOF
[test_nodes]
x3000c0s25b0n0
EOF
ncn# cd ..; git add hosts/static
ncn# git commit -m "Added a single node to static inventory for test_nodes"
ncn# git push

• Image Customization by IMS
• IMS image IDs are used as hosts and grouped according to input to the session creation
ncn# cray cfs sessions create --name example --configuration-name configurations-example \
--target-definition image --target-group Compute IMS_IMAGE_ID

CFS INVENTORY

CUG 2022 203

• Use image customization to limit how many times a task is run and improve boot times
• Use image customization for configuration that is the same for all nodes of a type

• Target a task to be run only when customizing image
when: "{{ cray_cfs_image | default(false) }}"

• Target a task to be run only on booted node during node personalization
when: "{{ not cray_cfs_image | default(false) }}"

• Import roles rather than playbooks
• Each time a new playbook starts, Ansible automatically gathers facts for all the systems it is running against
• This is not necessary more than once and can slow down Ansible execution

• Turn off facts that are not needed in a playbook by setting `gather_facts: false`
• If only a few facts are required, it is also possible to limit fact gathering by setting `gather_subset`

– For more information on `gather_subset`, see https://docs.ansible.com/ansible/latest/modules/setup_module.html

• Use loops rather than individual tasks where modules are called multiple times
• Some Ansible modules will optimize the command, such as grouping package installations into a single

transaction https://docs.ansible.com/ansible/latest/user_guide/playbooks_loops.html

CFS PERFORMANCE AND SCALING TIPS

https://docs.ansible.com/ansible/latest/modules/setup_module.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_loops.html

CUG 2022 204

• Name tasks uniquely and use debug
tasks:

- name: find nid match in external hosts file, capture IP address
shell: “grep {{nid}} /etc/mysitelocal/hosts-external | head -1 | awk '{ print $4 }’”
register: external_ipaddr

- name: add ListenAddress/external options to file
lineinfile:
dest: /etc/sshd/sshd_config
regexp="^SSHD_OPTS="
line="SSHD_OPTS=‘-u0 -f /etc/ssh/sshd_config.external -o ListenAddress={{external_ipaddr}}’"
backup: yes

when:
external_ipaddr is defined

- debug: “Did not find external interface to start SSHD on...”
when: external_ipaddr is not defined

• Ansible tasks and playbooks can be profiled to determine execution times and identify poor runtime performance
• Edit the default CFS Ansible.cfg
ncn# kubectl edit cm cfs-default-ansible-cfg -n services

• Uncomment this line
#callback_whitelist = cfs_aggregator, timer, profile_tasks, profile_roles

• New sessions will be created with profiling information available in the Ansible logs of the CFS session pods

ANSIBLE DEBUGGING

CUG 2022 205

• Find the CFS pod that is in an error state
ncn# kubectl get pods -n services | grep Error

NAME READY STATUS RESTARTS AGE
cfs-e8e48c2a-448f-4e6b-86fa-dae534b1702e-pnxmn 0/3 Error 0 25h

• Check to see what containers are in the pod
ncn# kubectl logs -n services $CFS_POD_NAME

Error from server (BadRequest): a container name must be specified for pod cfs-e8e48c2a-448f-4e6b-86fa-dae534b1702e-pnxmn,
choose one of: [inventory ansible-0 istio-proxy] or one of the init containers: [git-clone-0 istio-init]

• Check the git-clone-0, inventory, ansible-0 containers in that order
ncn# kubectl logs -n services CFS_POD_NAME git-clone-0
ncn# kubectl logs -n services CFS_POD_NAME inventory

Sidecar available
2019-12-05 15:00:12,160 - INFO - cray.cfs.inventory - Starting CFS Inventory version=0.4.3, namespace=services
2019-12-05 15:00:12,171 - INFO - cray.cfs.inventory - Inventory target=dynamic for cfsession=boa-2878e4c0-39c2-4df0-989e-

053bb1edee0c
2019-12-05 15:00:12,227 - INFO - cray.cfs.inventory.dynamic - Dynamic inventory found a total of 2 groups
2019-12-05 15:00:12,227 - INFO - cray.cfs.inventory - Writing out the inventory to /inventory/hosts

ncn# kubectl logs -n services CFS_POD_NAME ansible-0
Waiting for Inventory
TASK [ncmp_hsn_cns : SLES Compute Nodes (HSN): Create/Update ifcfg-hsnx File(s)] ***
fatal: [x3000c0s19b1n0]: FAILED! => {"msg": "'interfaces' is undefined"}
fatal: [x3000c0s19b2n0]: FAILED! => {"msg": "'interfaces' is undefined"}
NO MORE HOSTS LEFT ***
PLAY RECAP ***
x3000c0s19b1n0 : ok=28 changed=20 unreachable=0 failed=1 skipped=77 rescued=0 ignored=1
x3000c0s19b2n0 : ok=27 changed=19 unreachable=0 failed=1 skipped=63 rescued=0 ignored=1

TROUBLESHOOT ANSIBLE PLAY FAILURES IN CFS SESSIONS

HPE CRAY EX SYSTEM OVERVIEW
MANAGEMENT SERVICES
WHAT IS HAPPENING ON MY SYSTEM?
MANAGING USER ENVIRONMENTS
RESOURCES

CUG 2022 206

CUG 2022 207

• Booting Processes
• System Health

• Prometheus, Jaeger, Kiali, Alertmanager, Grafana, Dashboards
• Logs and Dumps

• ConMan, Elasticsearch, Logstash, SMA-Kibana
• Monitoring

• LDMS, SMA-Grafana, Alerts and Notifications, Dashboards
• System Testing
• Troubleshooting Tips

WHAT IS HAPPENING ON MY SYSTEM?

• Booting overview
• Boot Script Service
• Content Projection Service
• Boot Orchestration Service

BOOTING PROCESS

208CUG 2022

CUG 2022 209

The Boot Orchestration Service (BOS) is responsible for booting, configuring, or
shutting down collections of nodes.

The Boot Orchestration Service has the following components:
• Boot Orchestration Session Template – a collection of one or more boot set

objects
• A boot set defines a collection of nodes and the information about the boot

artifacts and parameters
• Boot Orchestration Session – An instance of a BOS operation that manages Boot

Orchestration Agents
• Boot Orchestration Agent (BOA) – Executes actions submitted to the BOS API

BOS coordinates with several services to boot compute nodes:
• Hardware State Manager (HSM) – Tracks the state of each node and holds their

group and role associations
• Image Management Service (IMS) – Manages image records (kernel, initrd,

image root)
• Simple Storage Service (S3) – Stores boot artifacts (kernel, initrd, image root)
• Boot Script Service (BSS) – Stores per-node information about iPXE boot script
• Cray Advanced Platform and Monitoring Control (CAPMC) – provides system-

level power control for nodes in the system
• Configuration Framework Service (CFS) – Configures node(s) using

configuration framework

BOOT FLOWCHART WITH BOS AND S3

manifest.json

BOS

S3

BOA BSS iPXE

Session template
(S3 Boot image
reference)

http
s d

ownload

BSS generates presigned
download URL when boot
script is generated.

During boot, BOS/BOA will get the S3 reference to boot image.
BOA will need to access the image to read boot parameters. At the
point that BSS generates the iPXE bootscript, BSS will generate the
pre-signed S3 Download URL for the kernel and initrd. CPS will
similarly need to be updated to project the rootfs.

CUG 2022 210

1. The compute node is powered on
2. The BIOS issues a DHCP discover request
3. DHCP Server responds with:

• The IP address of the TFTP server
• The name of the file to download

4. The node sends a request to the TFTP server
5. The TFTP server sends ipxe.efi to the node
6. The node chainloads the iPXE binary
7. iPXE downloads an ipxe boot script from BSS
8. Following the boot script, iPXE downloads the kernel,

initrd, and kernel parameters from S3
9. The node attempts to boot using the boot artifacts

pulled from S3

COMPUTE NODE BOOT SEQUENCE

Compute
Node

UEFI
(BIOS)

iPXE

DHCP
Server

TFTP
Server

S3
(via HTTP)

BSS

1

2

3

4

6
5

7

8

9

{BSS}

initrd

kernel

CUG 2022 211

Boot Script Service (BSS)
• REST API to interact with HSM and provide nodes with boot artifacts and cloud-init payloads
• Stores the configuration information that is used to boot each hardware component
• Nodes consult BSS for their boot artifacts and boot parameters when nodes boot or reboot

• The BSS stores the current image and parameters that are assigned to each node
• The boot parameters stored in BSS for a node when a node is powered on will be used for that boot
• The Boot Orchestration Service (BOS) is used to update the boot script for a given node

• Updating the boot script for a node in the BSS directly is not recommended
• BSS does not have any information about how a node should be configured after it boots
• Post-boot configuration (node personalization) is controlled by the Configuration Framework Service (CFS)

– BOS calls CFS as part of the process of orchestrating the boot process

BOOT SCRIPT SERVICE (BSS)

CUG 2022 212

• The boot script for a node includes the following boot artifacts (highlighted):

ncn# cray bss bootscript list --name x3000c0s23b2n0
#!ipxe
kernel --name kernel http://rgw-vip.nmn/boot-images/1c4f7f49-bfaf-4c25-9110-f5b46440c9a2/kernel?
X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=L18PWYUE7B8KBQR3X4NB%2F20220105%2Fdefault%2Fs3%2Faws4_request&X-Amz-
Date=20220105T012211Z&X-Amz-Expires=86400&X-Amz-SignedHeaders=host&X-Amz-
Signature=8aa3bdb208d5e216a0331c41c66f4346f6bf75b75b0f5f0addf0caf4bde3fd7e
initrd=initrd console=ttyS0,115200 bad_page=panic crashkernel=360M hugepagelist=2m-2g intel_iommu=off
intel_pstate=disable iommu=pt numa_interleave_omit=headless oops=panic pageblock_order=14 pcie_ports=native
rd.neednet=1 rd.retry=10 rd.shell turbo_boost_limit=999 biosdevname=0 ip=dhcp quiet
spire_join_token=8900a2f6-3bee-4757-bccb-75247893a6d0
root=craycps-s3:s3://boot-images/1c4f7f49-bfaf-4c25-9110-f5b46440c9a2/rootfs:
c91e4b1462822da009f191c206d8c9fa-205:dvs:api-gw-service-nmn.local:300:nmn0 nmd_data=url=s3://boot-images/1c4f7f49-bfaf-
4c25-9110-f5b46440c9a2/rootfs,etag=c91e4b1462822da009f191c206d8c9fa-205 bos_session_id=f8937b77-2c10-4a05-93bd-06cff8ee076b
xname=x3000c0s23b2n0 nid=6 ds=nocloud-net;s=http://10.92.100.81:8888/ || goto boot_retry
initrd --name initrd http://rgw-vip.nmn/boot-images/1c4f7f49-bfaf-4c25-9110-f5b46440c9a2/initrd?
X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=L18PWYUE7B8KBQR3X4NB%2F20220105%2Fdefault%2Fs3%2Faws4_request&X-Amz-
Date=20220105T012211Z&X-Amz-Expires=86400&X-Amz-SignedHeaders=host&X-Amz-
Signature=0dc66fb06761dd2e8f022446da6a5d31f9320c0bdb0c054cc2e7a10d0af4a972 || goto boot_retry
boot || goto boot_retry
:boot_retry
sleep 30
chain https://api-gw-service-nmn.local/apis/bss/boot/v1/bootscript?mac=b4:2e:99:7f:0d:24&retry=1

RETRIEVING A BOOT SCRIPT FROM BSS

kernel image

initrd image

root file system
squashfs image

Kernel
parameters

MAC address of node’s NIC

CUG 2022 213

• It is useful to monitor the logs of the cray-bss container within the BSS pods.

03/08 19:00:33 ncn# kubectl get pods -n services | grep bss
cray-bss-647fb9775f-jmxs7 2/2 Running 0 54d
cray-bss-647fb9775f-k4gl5 2/2 Running 0 53d
cray-bss-647fb9775f-qzxf5 2/2 Running 0 53d
cray-bss-etcd-4kvjphv69p 1/1 Running 0 53d
cray-bss-etcd-7lxvcq4drk 1/1 Running 0 54d
cray-bss-etcd-brp85brbnd 1/1 Running 0 119d
03/08 19:01:05 ncn# for POD in $(kubectl get pods -n services | grep bss |grep -v etcd | awk '{ print$1}');
do kubectl logs -n services --since 10m $POD -c cray-bss; done
03/08 19:01:23 ncn# ssh x1000c1s1b0n1 reboot
Connection to x1000c1s1b0n1 closed by remote host.
03/08 19:01:35 ncn# sleep 480
03/08 19:11:07 ncn# for POD in $(kubectl get pods -n services | grep bss |grep -v etcd | awk '{ print$1}');
do kubectl logs -n services --since 10m $POD -c cray-bss | grep -v DEBUG; done
2022/03/08 19:10:18 Retrieving state info from http://cray-smd/hsm/v1
2022/03/08 19:10:18 GET /meta-data, xname: x1000c1s1b0n1 ip: 10.100.0.114
2022/03/08 19:10:18 http: superfluous response.WriteHeader call from main.metaDataGetAPI
(cloudInitAPI.go:209)
'
', &spireResp): { 0 9a4f8130-7dee-4180-a4cd-63b22138c03c}
2022/03/08 19:07:34 BSS request succeeded for MAC 00:40:a6:83:63:34 (x1000c1s1b0n1)

BSS LOGS

Like other core boot
services, BSS runs insides
a Kubernetes pod

reboot is NOT the recommended way to reboot a node; BOS should be used

CUG 2022 214

• The Content Projection Service (CPS) is a container-based microservice managed by Kubernetes
• The main components of CPS are:

– CPS Brokers
– Content Managers
– Projection Managers

• At node boot the Boot Script Service (BSS) provides
• The Linux kernel

• initrd
• Boot parameter data

• CPS provides
• Node’s root file system image (operating system image)
• HPE Cray Programming Environment (CPE) images
• Analytics images

WHAT IS THE CONTENT PROJECTION SERVICE (CPS)

cray cps contents provides
a list of images being managed by
the content manager

cray cps deployment
provides a list of CPS pods and their
statuses

cray cps transports
provides a list images currently
being exported (served) to nodes

CUG 2022 215

ncn# kubectl get pods -n services -o wide | grep cps
cray-cps-59db74b89f-7v2ps 2/2 Running 0 41d 10.39.0.241 ncn-w001 <none> <none>
cray-cps-59db74b89f-qv4h9 2/2 Running 0 41d 10.40.0.216 ncn-w002 <none> <none>
cray-cps-cm-pm-8bmfk 4/4 Running 0 41d 10.37.0.223 ncn-w003 <none> <none>
cray-cps-cm-pm-lj5ph 4/4 Running 0 41d 10.39.1.55 ncn-w001 <none> <none>
cray-cps-cm-pm-sr9qr 4/4 Running 0 41d 10.40.0.240 ncn-w002 <none> <none>
cray-cps-etcd-f98mlv2n4g 1/1 Running 0 41d 10.39.0.232 ncn-w001 <none> <none>
cray-cps-etcd-f9f9lhcw5g 1/1 Running 0 41d 10.40.1.15 ncn-w002 <none> <none>
cray-cps-etcd-p7q44q5pdt 1/1 Running 0 41d 10.37.0.242 ncn-w003 <none> <none>

CPS COMPONENTS AND THEIR PODS

CPS Broker
• Provides the API service
• Runs in the cray-cps pod

CPS Content Manager ("CM")
Retrieves file system images from S3 to make them
available to the CPS Projection Manager

CPS Projection Manager ("PM")
Makes artifacts available to other nodes via network
file systems "transports" such as DVS

CPS state manager (etcd)
Facilitates communication between
CPS components about the current or
desired state of the CPS service.

CUG 2022 216

ncn# cray bss bootparameters list --name x3000c0s14b0n0 --format json | jq '.[].kernel'
"s3://boot-images/1c329db9-3a32-49b8-be7c-2b09d47a609f/kernel“

ncn# cray bss bootparameters list --name x3000c0s14b0n0 --format json | jq '.[].params'
"console=ttyS0,115200 bad_page=panic crashkernel=360M hugepagelist=2m-2g intel_iommu=off
intel_pstate=disable iommu=pt ip=nmn0:dhcp numa_interleave_omit=headless numa_zonelist_order=node
oops=panic pageblock_order=14 pcie_ports=native printk.synchronous=y quiet rd.neednet=1 rd.retry=10
rd.shell turbo_boost_limit=999 ifmap=net2:nmn0,lan0:hsn0,lan1:hsn1 spire_join_token=${SPIRE_JOIN_TOKEN}
root=craycps-s3:s3://boot-images/1c329db9-3a32-49b8-be7c-2b09d47a609f/rootfs:
4f862288a668ed8328158a438f276ab3-190:dvs:api-gw-service-nmn.local:300:nmn0 nmd_data=url=s3://boot-
images/1c329db9-3a32-49b8-be7c-2b09d47a609f/rootfs,etag=4f862288a668ed8328158a438f276ab3-190
bos_session_id=43254b57-d787-4797-8b45-ab621ca0b327”

ncn# ssh x3000c0s14b0n0 cat /proc/cmdline
kernel initrd=initrd console=ttyS0,115200 bad_page=panic crashkernel=360M hugepagelist=2m-2g
intel_iommu=off intel_pstate=disable iommu=pt ip=nmn0:dhcp numa_interleave_omit=headless
numa_zonelist_order=node oops=panic pageblock_order=14 pcie_ports=native printk.synchronous=y quiet
rd.neednet=1 rd.retry=10 rd.shell turbo_boost_limit=999 ifmap=net2:nmn0,lan0:hsn0,lan1:hsn1
spire_join_token=d399ee35-c191-46c7-9f40-da63f895d368 root=craycps-s3:s3://boot-images/1c329db9-3a32-49b8-
be7c-2b09d47a609f/rootfs:4f862288a668ed8328158a438f276ab3-190:dvs:api-gw-service-nmn.local:300:nmn0
nmd_data=url=s3://boot-images/1c329db9-3a32-49b8-be7c-2b09d47a609f/rootfs,
etag=4f862288a668ed8328158a438f276ab3-190 bos_session_id=43254b57-d787-4797-8b45-ab621ca0b327
xname=x3000c0s14b0n0 nid=49168832 ds=nocloud-net;s=http://10.92.100.81:8888/

IDENTIFYING THE IMAGE IN USE BY A NODE

CUG 2022 217

ncn# cray cps contents list --format json | grep 1c329db9-3a32-49b8-be7c-2b09d47a609f/rootfs
"s3path": "s3://boot-images/1c329db9-3a32-49b8-be7c-2b09d47a609f/rootfs",

ncn# cray cps contents list --format json | jq 'map(select(.s3path == "s3://boot-images/1c329db9-3a32-49b8-
be7c-2b09d47a609f/rootfs")) | .[].artifactID'
"e2e335eda4055fd1b293de4f2c9ab6ce”

ncn# cray cps contents list --format json | jq 'map(select(.s3path == "s3://boot-images/1c329db9-3a32-49b8-
be7c-2b09d47a609f/rootfs")) | .[].exportPath'
"/var/lib/cps-local/e2e335eda4055fd1b293de4f2c9ab6ce"

ncn# ssh ncn-w001
Last login: Thu Jul 15 04:53:58 2021 from 10.252.1.9

ncn# file /var/lib/cps-local/e2e335eda4055fd1b293de4f2c9ab6ce/rootfs
/var/lib/cps-local/e2e335eda4055fd1b293de4f2c9ab6ce/rootfs: Squashfs filesystem, little endian, version
4.0, 1589565630 bytes, 90812 inodes, blocksize: 131072 bytes, created: Tue Jun 29 17:23:47 2021

TRACKING AN IMAGE FROM NODE TO CPS TO S3

When a node requests a new image from CPS the
content manager (CM) downloads the squashfs file
from S3 to the Kubernetes worker node hosting each
cray_cps_cm_pm_ pod. The squashfs files are stored
on local disk in the worker nodes until CPS deletes the
content

CUG 2022 218

• All files in the compute node root file system (rootfs) are provided from a squashFS image stored in S3
(Ceph)

• Compute node rootfs images are projected by CPS pods and mounted via DVS
• Rootfs images are mounted on compute nodes with /opt/cray/cps-utils/bin/cpsmount.sh

and are mounted read-only
• A compute node local overlay file system is configured to enable writes "on top of" the rootfs to an ephemeral

in-memory file system
• DVS mount content is accessed over the network on demand

• When a block is first referenced, DVS caches the content in the node-local Linux page cache so future references
to that data will not involve the network
– If available memory gets too low, Linux can evict these pages, and thus the data will be accessed over the network again

(and cached again) if/when they are referenced again
– Overlay Preload can permanently "pin" files in memory on the compute node at boot time so they can never be evicted

• DVS can also project other filesystems unrelated to CPS
• Projections of user file systems using DVS can be configured as read-write or read-only

COMPUTE NODE ROOT FILE SYSTEM MOUNTS

CUG 2022 219

• Use the provided empty session template template as a JSON framework and edit all the fields
ncn# cray bos sessiontemplatetemplate list --format json
{
"boot_sets": {
”boot_set1": {
"boot_ordinal": 1,
"etag": "your_boot_image_etag",
"kernel_parameters": "your-kernel-parameters",
"network": "nmn",
"node_list": ["x3000c0s19b1n0", "x3000c0s19b1n1", "x3000c0s19b2n0"]
"path": "your-boot-path",
"rootfs_provider": "your-rootfs-provider",
"rootfs_provider_passthrough": "your-rootfs-provider-passthrough",
"type": "your-boot-type"

},
"boot_set2": { ... }

},
"cfs": {
"configuration": "desired-cfs-config"

},
"enable_cfs": true,
"name": "name-your-template"

}

TEMPLATE OF BOS SESSION TEMPLATE

Can specify nodes one of these ways:
"node_list": ["x3000c0s19b1n0", "x3000c0s19b1n1", "x3000c0s19b2n0"]
"node_groups": ["green", "white", "pink"]
"node_roles_groups": ["Compute"]

Multiple boot sets can be defined that will have same
CFS configuration to be applied, but different kernel
parameters or different path to boot artifacts

CUG 2022 220

ncn# cray bos sessiontemplate describe cos-sessiontemplate-2.2.101 --format json
{
"boot_sets": {
"compute": {
"boot_ordinal": 2,
"etag": "b29bb9e8cd8c64541f4ff025e108f7a6",
"kernel_parameters": "ip=dhcp quiet spire_join_token=${SPIRE_JOIN_TOKEN}",
"network": "nmn",
"node_roles_groups": [
"Compute"

],
"path": "s3://boot-images/c26034f1-4acf-4a45-b898-c5842d711ef6/manifest.json",
"rootfs_provider": "cpss3",
"rootfs_provider_passthrough": "dvs:api-gw-service-nmn.local:300:hsn0,nmn0:0",
"type": "s3"

}
},
"cfs": {
"configuration": "cos-config-2.2.99"

},
"enable_cfs": true,
"name": "cos-sessiontemplate-2.2.101"

}

BOS SESSION TEMPLATE DETAIL

etag: 'entity tag helps identify the version of the manifest.json file. Currently not used but cannot be left blank

network: The network over which the node will boot kernel parameters : Kernel parameters passed to the operating system

rootfs_provider: The root file system provider

rootfs_provider_passthrough: Additional kernel parameters that will be appended to the 'rootfs=' kernel parameter

cfs or cfs_url: The repository configuration file or clone URL for the repository providing the configuration

enable_cfs: Whether to enable the Configuration Framework Service (CFS)

boot_sets: A collection of nodes & the images they should boot with. One or more boot_sets may be specified per session template

Path: s3 location of the components of the boot image file ([IMS_Image_ID] manifest.json). Processed based on the “type”

name: Name of the Session Template. The length of the name is restricted to 45 characters

CUG 2022 221

ncn# cat INPUT_FILE.json
{
"name": "cos-sessiontemplate-2.2.101",
"boot_sets": {
"test_compute": {
"network": "nmn",
"boot_ordinal": 1,
"kernel_parameters": "ip=dhcp quiet spire_join_token=${SPIRE_JOIN_TOKEN}",
"rootfs_provider": "cpss3”,
"node_list": ["x3000c0s19b1n0"],
"etag": "90b2466ae8081c9a604fd6121f4c08b7",
"path": "s3://boot-images/06901f40-f2a6-4a64-bc26-772a5cc9d321/manifest.json",
"rootfs_provider_passthrough": "dvs:api-gw-service-nmn.local:300:eth0",
"type": "s3" }

},
"cfs": {
"configuration": "cos-config-2.2.101"

},
"enable_cfs": true

}
ncn# cray bos sessiontemplate create --file INPUT_FILE.json --name cos-sessiontemplate-2.2.101
ncn# cray bos sessiontemplate list --format json | jq '.[].name'
"cos-sessiontemplate-2.2.101"
"uan-sessiontemplate-2.3.2-cos-2.2.101"

CREATE A BOS SESSION TEMPLATE

Display a list of all session templates in your system, filtering the output with jq for the .name

CUG 2022 222

• A BOS Session represents an operation on a Session Template
• boot – Boot nodes that are off
• configure – Reconfigure the nodes using the Configuration Framework Service (CFS)
• reboot – Gracefully power down nodes that are on and then power them back up
• shutdown – Gracefully power down nodes that are on

• Use cray bos session create to create a BOS session
ncn# cray bos session create --template-uuid cos-sessiontemplate-2.2.101 --operation reboot
operation = "Reboot"
templateUuid = "cos-sessiontemplate-2.2.101"
[[links]]
href = "/v1/session/158fc371-d279-4494-a60e-fcac5612d605"
jobId = "boa-158fc371-d279-4494-a60e-fcac5612d605"
rel = "session"
type = "GET"

[[links]]
href = "/v1/session/158fc371-d279-4494-a60e-fcac5612d605/status"
rel = "status"
type = "GET“

• BOS supports an optional --limit parameter when creating a session
• List of nodes, HSM groups, or HSM roles to limit the nodes that BOS runs against
• Components are treated as OR operations unless preceded by “&” for AND or “|” for NOT

cray bos session create --template-uuid cos-sessiontemplate-2.2.101 --operation reboot --limit
x3000c0s20b2n0

CREATE BOS SESSION

When a BOS session is created it initiates one or more Boot Orchestration Agent (BOA) jobs. The name of the
session created will be labeled href and included in the BOA jobid – which is part of the BOA pod name

CUG 2022 223

• Use cray bos session describe to view progress of the BOS job
• Use kubectl get pods to view the status of the Boot Orchestration Agent (BOA) job

associated with the BOS job

ncn# cray bos session describe 158fc371-d279-4494-a60e-fcac5612d605

boa_job_name = "boa-158fc371-d279-4494-a60e-fcac5612d605"
complete = false
error_count = 0
in_progress = true
operation = "Reboot"
start_time = "2021-06-28 08:40:14.949422"
status_link = "/v1/session/158fc371-d279-4494-a60e-fcac5612d605/status"
templateUuid = "team1_session_template“

ncn# kubectl get pods -n services -l job-name=boa-158fc371-d279-4494-a60e-fcac5612d605

NAME READY STATUS RESTARTS AGE
boa-158fc371-d279-4494-a60e-fcac5612d605-xw4xh 2/2 Running 0 2m47s

VIEW RUNNING BOS SESSION INFORMATION

When a BOS session is created it initiates one or more Boot
Orchestration Agent (BOA) jobs. The name of the session
created will be labeled href and included in the BOA jobid –
which is part of the BOA pod name

cray bos session describe <JOB ID> is used to
view the status and progress of the job.
boa_job_name – Boot Orchestration Agent job name.

Monitoring the BOA JOB with kubectl get pods command.

CUG 2022 224

ncn# cray bos session status describe CATEGORY_NAME PHASE_NAME BOOT_SET_NAME SESSION_ID --format json
• BOS session status Phases

• shutdown
• boot
• configure

• BOS session status Categories
• not_started
• succeeded
• failed
• excluded
• in_progress

ncn# cray bos session status describe succeeded shutdown compute fb808925-2dd6-440d-8d6c-834892472036
name = "succeeded"
node_list = ["x3000c0s19b4n0", "x3000c0s19b2n0", "x3000c0s19b3n0", "x3000c0s19b1n0",]
ncn# cray bos session status describe failed boot compute fb808925-2dd6-440d-8d6c-834892472036
name = ”failed"
node_list = ["x3000c0s19b4n0",]
ncn# cray bos session status describe in_progress configure compute fb808925-2dd6-440d-8d6c-834892472036
name = "in_progress"
node_list = ["x3000c0s19b2n0", "x3000c0s19b3n0", "x3000c0s19b1n0",]

VIEW BOS SESSION STATUS

CUG 2022 225

• Use cray bos session describe to view progress of the BOS job.
• Use kubectl get pods to view the status of the Boot Orchestration Agent (BOA) job

associated with the BOS job.

ncn# cray bos session describe 158fc371-d279-4494-a60e-fcac5612d605

boa_job_name = "boa-158fc371-d279-4494-a60e-fcac5612d605"
complete = true
error_count = 0
in_progress = false
operation = "Reboot"
start_time = "2021-06-28 08:40:14.949422"
status_link = "/v1/session/158fc371-d279-4494-a60e-fcac5612d605/status"
stop_time = "2021-06-28 08:53:50.711327"
templateUuid = "team1_session_template“

ncn# kubectl get pods -n services -l job-name=boa-158fc371-d279-4494-a60e-fcac5612d605
NAME READY STATUS RESTARTS AGE
boa-158fc371-d279-4494-a60e-fcac5612d605-xw4xh 0/2 Completed 0 14m

VIEW COMPLETED BOS SESSION INFORMATION

Monitoring the BOS job with cray bos session describe <JOB ID> to completion

Monitoring the BOA job with kubectl get pods command to completion

• Prometheus
• Alertmanager
• Istio with Kiali and Jaeger
• Grafana
• Dashboards

SYSTEM HEALTH

226CUG 2022

CUG 2022 227

SYSTEM MANAGEMENT HEALTH SERVICE

Kubernetes
Prometheus-operator chart features Prometheus with
support for
• K8s nodes
• Etcd
• K8s internals
• K8s workloads

Istio
Istio chart includes
• Prometheus which collects Istio metrics
• Kiali and Jaeger

Ceph
Prometheus module exposes metrics from ceph-mgr

System Mgmt Health Service
Helm chart includes

• Prometheus to federate metrics
• Alertmanager for custom notifications
• Grafana with dashboards for Kubernetes, Istio, Ceph

10d

4h

4h

4h

SMF

Export Prometheus
metrics

30d

Is the system healthy?
• Independent from the System Monitoring Framework (SMF)
• Does not monitor computes!

CUG 2022 228

• Prometheus is the de-facto standard cloud-native metrics and monitoring tool
• Prometheus operator provides custom resource definitions

– Scrape metrics from service endpoints
• Prometheus alerting rules triggers alerts to Alertmanager
• Alertmanager manages the silencing, inhibition, aggregation, and sending out of notifications

• Grafana supports pulling data from Prometheus
• Dashboards are readily available

• Istio supports service mesh tracing with Jaeger and observability with Kiali
• Customer integration

• Customize Alertmanager notifications
– Email, Slack, custom web hook

• Consume metrics via SMF Telemetry API
– Reuse SMF integration strategy
– Export alert configurations

• Run components “off system”
– Integrate with existing Prometheus infrastructure

INDUSTRY STANDARD TOOLS

CUG 2022 229

• Prometheus alerts provide coverage across infrastructure and platform
• Coarse-grained and comprehensive, as opposed to fine-grained and exhaustive
• Supports preventive and diagnostic use cases

HEALTH CHECKS

NON-COMPUTE
NODES UTILITY STORAGE

CONTAINER
ORCHESTRATION SERVICE MESH WORKLOADS

• CPU and memory
utilization

• Local storage utilization
• Network I/O errors and

latency
• Clock skew

• Ceph status
• Storage utilization
• Disk I/O errors and

latency

• Kubernetes status
• API errors
• CPU and memory

overcommitments

• Istio status
• Service availability
• Service request rates
• Service response

statuses and latency

• Status of pods,
deployments, stateful
sets, daemon sets, jobs

• CPU, memory, network,
and storage utilization
and errors

CUG 2022 230

ncn# kubectl -n sysmgmt-health get svc cray-sysmgmt-health-promet-prometheus
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
cray-sysmgmt-health-promet-prometheus ClusterIP 10.21.141.187 <none> 9090/TCP 34d
ncn# curl -s http://10.21.141.187:9090/api/v1/alerts |jq -j '.data' | grep alertname | sort -u

"alertname": "CPUThrottlingHigh",
"alertname": "CephMgrIsAbsent",
"alertname": "CephMgrIsMissingReplicas",
"alertname": "KubeContainerWaiting",
"alertname": "KubeDeploymentReplicasMismatch",
"alertname": "KubeJobCompletion",
"alertname": "KubeJobFailed",
"alertname": "KubePodNotReady",
"alertname": "PostgresqlFollowerReplicationLagSMA",
"alertname": "PostgresqlFollowerReplicationLagServices",
"alertname": "PostgresqlHighRollbackRate",
"alertname": "PostgresqlInactiveReplicationSlot",
"alertname": "PostgresqlNotEnoughConnections",
"alertname": "TargetDown",
"alertname": "Watchdog",

RETRIEVING ALERTS FROM PROMETHEUS

CUG 2022 231

ncn# curl -s http://10.21.141.187:9090/api/v1/alerts |jq -j '.data.alerts \
| map(select(.labels.alertname == "CPUThrottlingHigh")) | max_by(.activeAt)'
{

"labels": {
"alertname": "CPUThrottlingHigh",
"container": "manager",
"namespace": "gatekeeper-system",
"pod": "gatekeeper-controller-manager-588d6476db-d5g8v",
"severity": "info"

},
"annotations": {

"message": "28.03% throttling of CPU in namespace gatekeeper-system for container manager
in pod gatekeeper-controller-manager-588d6476db-d5g8v.",

"runbook_url": "https://github.com/kubernetes-monitoring/kubernetes-
mixin/tree/master/runbook.md#alert-name-cputhrottlinghigh"

},
"state": "pending",
"activeAt": "2022-04-27T16:11:07.129355508Z",
"value": "2.8030608135320173e-01"

}

RETRIEVING THE LATEST ALERT FROM PROMETHEUS

CUG 2022 232

PROMETHEUS - GRAPH

Graph of container receive packets total

Point on graph shows details for ncn-m003

https://prometheus.<systemdomain>

CUG 2022 233

PROMETHEUS - ALERTS

https://prometheus.<systemdomain>

CUG 2022 234

ALERTMANAGER

https://alertmanager.<systemdomain>

CUG 2022 235

• Kiali
• Observability console for Istio with service mesh configuration and validation capabilities
• Helps you understand the structure and health of your service mesh by monitoring traffic flow to infer the topology and report errors
• Provides detailed metrics and a basic Grafana integration, which can be used for advanced queries
• Distributed tracing is provided by integration with Jaeger
• https://kiali-istio.<systemdomain>
• Documentation https://kiali.io/

• Jaeger
• Distributed transaction monitoring
• Performance and latency optimization
• Root cause analysis
• Service dependency analysis
• Distributed context propagation
• https://jaeger-istio.<systemdomain>
• Documentation https://www.jaegertracing.io/

• Prometheus
• Monitoring system and time series database
• Record metrics that track the health of Istio and of applications within the service mesh
• https://prometheus-istio.<systemdomain>
• Documentation https://prometheus.io/

ISTIO WITH KIALI , JAEGER , AND PROMETHEUS

https://kiali.io/
https://www.jaegertracing.io/
https://prometheus.io/

CUG 2022 236

KIALI: SERVICES NAMESPACE

CUG 2022 237

KIALI: ISTIO-SYSTEM NAMESPACE

CUG 2022 238

KIALI: ISTIO-SYSTEM NAMESPACE ONE LINK

Selected link
istio-ingressgateway

to cray-smd

HTTP request response codes

HTTP request response times

CUG 2022 239

JAEGER: CRAY-SMD-SERVICES

CUG 2022 240

GRAFANA

• Uses Keycloak authentication/authorization
• Secured with TLS sharing cluster certificate bundle
• About 40 included dashboards

• Ceph
• CoreDNS
• Etcd
• ETCD Clusters
• Istio
• Kea-dhcp
• Kubernetes
• Node Exporter
• Nodes
• PostgreSQL
• Prometheus

https://grafana.<systemdomain>/dashboards

GRAFANA DASHBOARDS CATALOG

241CUG 2022

• Nodes up (quorum)
• RPC Rate
• Active Streams
• DB Size
• Disk Sync Duration
• Memory
• Client Traffic in
• Client Traffic Out
• Peer Traffic In
• Peer Traffic Out
• Raft proposals
• Total Leader Elections Per day

GRAFANA DASHBOARDS: ETCD

242CUG 2022

GRAFANA DASHBOARDS: KUBERNETES CLUSTER

243CUG 2022

CUG 2022 244

GRAFANA DASHBOARDS: KUBERNETES POD REQUESTS AND LIMITS

CPU usage

Memory Usage

• Console logs and access
• Log aggregation
• Elasticsearch, Logstash, SMA-Kibana
• Dumps

LOGS AND DUMPS

245CUG 2022

CUG 2022 246

• ConMan is a serial console management program designed to support a large number of console devices
and simultaneous users

• cray-console uses ConMan for interactive remote console access and console log collection
• Automatically detects nodes which have been added or removed
• Shared filesystem in Ceph for all cray-console pods to easily view log data
• Console log data sent to SMA for other log processing
• Dynamic autoscaling number of cray-console-node pods for size of system

– Minimally, two pods are started
– The number of PODs is scaled on

– 750 Liquid-cooled nodes and/or 2000 “River” nodes
– The Liquid-cooled nodes each require an ssh connection, so numbers are different.

• Log locations:
• Logs visible in any cray-console-node-x pod
• Node logs: /var/log/conman/console.XNAME
• ConMan damon logs: /var/log/conman.log

CONTAINERIZED CONSOLE ACCESS

ncn# kubectl get pods -A |grep cray-console
services cray-console-data-5cd59677d9-lf4f4
services cray-console-data-postgres-0
services cray-console-data-postgres-1
services cray-console-data-postgres-2
services cray-console-node-0
services cray-console-node-1
services cray-console-operator-7f9894f657-5psn5

CUG 2022 247

ncn# kubectl get pods -A |grep console-node
services cray-console-node-0 3/3 Running 1 62d
services cray-console-node-1 3/3 Running 0 68d
ncn# kubectl -it exec -n services cray-console-node-1 -c cray-console-node -- ls /var/log/conman
console.x1000c0s1b0n0 console.x1000c3s3b0n0 console.x3000c0s20b4n0
console.x1000c0s1b0n1 console.x1000c3s3b0n1 console.x3000c0s23b1n0
console.x1000c0s1b1n0 console.x1000c3s3b1n0 console.x3000c0s23b2n0
console.x1000c0s1b1n1 console.x1000c3s3b1n1 console.x3000c0s23b3n0
console.x1000c0s5b0n0 console.x1000c5s5b0n0 console.x3000c0s23b4n0
console.x1000c0s5b0n1 console.x1000c5s5b0n1 console.x3000c0s25b1n0
console.x1000c0s5b1n0 console.x1000c5s5b1n0 console.x3000c0s25b2n0
console.x1000c0s5b1n1 console.x1000c5s5b1n1 console.x3000c0s25b3n0
console.x1000c0s7b0n0 console.x1000c7s7b0n0 console.x3000c0s25b4n0

ncn# kubectl -it exec -n services cray-console-node-1 -c cray-console-node – \
tail -f /var/log/conman/console.x1000c0s1b0n0

ncn# kubectl -it exec -n services cray-console-node-1 -c cray-console-node –- /bin/bash
cray-console-node-1-pod# grep –i error /var/log/conman/console.x1000c0s1b0n0

• Access Console Log Data Via the System Monitoring Framework (SMF)
https://github.com/Cray-HPE/docs-csm/blob/release/1.0/operations/conman/Access_Console_Log_Data_Via_the_System_Monitoring_Framework_SMF.md

CONSOLE LOGS WITH CRAY-CONSOLE-NODE

Can view log without entering pod

Can view log by entering pod

Each pod sees all the console files,
only one cray-console-node pod is
managing that node and writing its
log file

https://github.com/Cray-HPE/docs-csm/blob/release/1.0/operations/conman/Access_Console_Log_Data_Via_the_System_Monitoring_Framework_SMF.md

CUG 2022 248

• To join the console, use conman -j
• Retrieve the `cray-console-operator` pod ID
ncn# CONPOD=$(kubectl get pods -n services \

-o wide|grep cray-console-operator|awk '{print $1}')
ncn# echo $CONPOD
cray-console-operator-79bf95964-qpcpp

• Set the `XNAME` variable to the xname of the node whose console you wish to open
ncn# XNAME=x1000c0s0b0n0

• Find the `cray-console-node` pod that is managing that node
ncn# NODEPOD=$(kubectl -n services exec $CONPOD -c cray-console-operator \
-- sh -c "/app/get-node $XNAME" | jq .podname | sed 's/"//g')
ncn# echo $NODEPOD
cray-console-node-1

• Connect to the node's console using ConMan on the `cray-console-node` pod you found
ncn# kubectl exec -it -n services $NODEPOD -- conman -j $XNAME
<ConMan> Connection to console [x1000c0s0b0] opened.
nid000001 login:

• To exit console use &. command

INTERACTIVE CONSOLE EXAMPLE (LONG)

CUG 2022 249

• Alternate form of previous slide
ncn# ConsoleJ () { XNAME=$@; CONPOD=$(kubectl get pods -n services \
| grep cray-console-operator|awk '{print $1}’); \
NODEPOD=$(kubectl exec -n services -c cray-console-operator $CONPOD \
-- sh -c "/app/get-node $XNAME" | jq .podname | tr -d '”’); \
echo conpod = $CONPOD nodepod = $NODEPOD; \
kubectl exec -n services -it $NODEPOD -c cray-console-node \
-- conman -j $XNAME }
ncn# ConsoleJ x1000c0s0b0n0
<ConMan> Connection to console [x1000c0s0b0n0] opened.
nid000001 login:

• To exit console use &. command
• To view the console read-only instead of joining it read-write, use conman –m

INTERACTIVE CONSOLE EXAMPLE (SHORT)

CUG 2022 250

LOG AGGREGATION

Container Service

Container Service

Logging Sidecar

Base OS syslog

ClusterStor Logs

rsyslog Collector

rsyslog Aggregator

Kafka Transport Bus

ElasticSearch Telemetry API

Utility
Storage

Kibana

• Sidecar runs a logging agent
• Picks up logs from application containers in pod
• Can separate several logs streams from different

parts of the application

KUBERNETES CONTAINER SIDECAR

251CUG 2022

CUG 2022 252

SMA-KIBANA
https://sma-kibana.creek.training.hpe.com/app/kibana

CUG 2022 253

SAT DASHBOARDS IN SMA-KIBANA
Dashboard Short Description Long Description

sat-aer AER corrected Corrected Advanced Error Reporting messages from PCI Express devices on each node

sat-aer AER fatal Fatal Advanced Error Reporting messages from PCI Express devices on each node

sat-atom ATOM failures Application Task Orchestration and Management tests are run on a node when a job finishes. Test failures are logged

sat-atom ATOM admindown ATOM test failures can result in nodes being marked admindown. An admindown node is not available for job launch

sat-heartbeat Heartbeat loss events Heartbeat loss event messages reported by the hbtd pods that monitor for heartbeats across nodes in the system

sat-kernel Kernel assertions The kernel software performs a failed assertion when some condition represents a serious fault. The node goes down

sat-kernel Kernel panics The kernel panics when something is seriously wrong. The node goes down

sat-kernel Lustre bugs (LBUGs) The Lustre software in the kernel stack performs a failed assertion when some condition related to file system logic
represents a serious fault. The node goes down

sat-kernel CPU stalls CPU stalls are serous conditions that can reduce node performance, and sometimes cause a node to go down. Technically
these are Read-Copy-Update stalls where software in the kernel stack holds onto memory for too long

sat-kernel Out of memory An Out Of Memory (OOM) condition has occurred. The kernel must kill a process to continue. The kernel will select an
expendable process when possible. If there is no expendable process the node usually goes down in some manner. Even if
there are expendable processes the job is likely to be impacted. OOM conditions are best avoided

sat-mce MCE Machine Check Exceptions (MCE) are errors detected at the processor level

sat-rasdaemon rasdaemon errors Errors from the rasdaemon service on nodes. The rasdaemon service is the Reliability, Availability, and Serviceability
Daemon, and it is intended to collect all hardware error events reported by the linux kernel, including PCI and MCE errors

sat-rasdaemon rasdaemon messages All messages from the rasdaemon service on nodes

CUG 2022 254

• Standard Linux kdump mechanism
• Uses kexec for booting into the dump-capture kernel (kdump boot) immediately after kernel crash
• Standard kdump not scalable to large systems

– Standard, each node decides on its own to produce a node memory dump
• Needs a service to initiate dumps of selected nodes

• NMD controls the kdump process of the panicked node
• Initiates and monitors node memory dumps remotely
• Operates in the management plane
• Generates the node memory dump only when request is received from the NMD service on the SMS
• Registers a dump discovery callback with the System Diagnostic Service (SDS)
• SDS can download existing dumps or create a new dump and download it
ncn# cray nmd dumps --help
Usage: cray nmd dumps [OPTIONS] COMMAND [ARGS]...
Options:
--help Show this message and exit.

Commands:
create
delete
describe
list

NODE MEMORY DUMP (NMD)

• System Monitoring Framework
• LDMS
• Telemetry API
• SMA-Grafana
• Dashboards

MONITORING

255CUG 2022

CUG 2022 256

• Tightly-integrated monitoring system
• Provides detailed telemetry information from multiple subsystems:

• Fabric
• Environmental
• Network
• Storage
• Operating systems (vmstat and iostat metrics)

• Incorporates the context necessary to understand telemetry data
• Feeds into a common message bus (Kafka), persistence, and minimal UI infrastructure

• SAT has user interfaces that integrate with the System Monitoring Framework

SYSTEM MONITORING FRAMEWORK

CUG 2022 257

SYSTEM MONITORING FRAMEWORK DIAGRAM

Workload manager
events

HPE Cray EX
Compute

ClusterStor Storage

Service or Compute nodes

LDMS Collector

LDMS Aggregator
Level 1 … Level n-1

syslog

Service node

Co
lle
ct
or

pl
ug
-in

s

Co
lle
ct
or

pl
ug
-in

s

Co
lle
ct
or

pl
ug
-in

s

Data Sources Data Integration
and Infrastructure

Data Persistence User Interface
and Access

AP
I G

at
ew

ay
Au

th
or

iza
tio

n
an

d
Au

th
en

tic
at

io
n

Telemetry
API

Grafana

Kibana

Postgres

Elasticsearch

Logs

Events
IB topo

Metrics

Jobs

Ka
fk

a

Consumer

Metrics
Consumer

Job event
consumer

Producer

Producer

rsyslog

LDMS
aggregator
level - n

Store
plug-ins

• Developed by Sandia National Lab for Blue
Waters Cray XE/XK

• Distributed data collection, transport, and storage
tool

• Samplers run one or more sampling plugins that
periodically sample data on monitored nodes
• Defines a metric set (a collection of metrics)
• HA configuration supported

• Aggregators periodically collect data in a pull
fashion from samplers or other aggregators

• Storage plugins periodically write in MySQL or
flat file (file per metric name or CSV file per
metric set)
• Incomplete or not updated metric set data is not

written to storage

LIGHTWEIGHT DISTRIBUTED METRIC SERVICE (LDMS)

258CUG 2022

Sampler

Sampler

Level 1
Aggregator

Level 2
Aggregator

Storage

Metric Set

CUG 2022 259

LDMS

Compute Node
(LDMS Sampler)

Compute Node
(LDMS Sampler)

Service Node
(L1 LDMS

Aggregator)

Service Node
(L1 LDMS

Aggregator)

Kafka Bus

Postgres

Visualization
L2 LDMS Aggregator

Containers

SMS

Kafka

Postgres Persister

Grafana, etc.

LDMS Samplers

VM
Stat

IO Stat Etc.

• LDMS on nodes is configured by a CFS layer for SMA

• Uses a distributed streaming platform to publish
and subscribe to streams of records

• Apache Kafka
• A distributed publish-subscribe messaging system
• Easy to scale horizontally
• Supports multiple subscribers and balances

consumers during failure
• Persists messages on disk
• Supports multiple client-side APIs for consumers

and producers
• Commonly referred to as the “Kafka Bus”

DATA INTEGRATION AND INFRASTRUCTURE LAYER

260CUG 2022

Data Integration
and Infrastructure

Ka
fk

a

Consumer

Metrics
Consumer

Job event
consumer

Producer

Producer

rsyslog

LDMS
aggregator
level - n

Store
plug-ins

• Store telemetry data from Cray defined
producers, collectors and aggregators
• It is possible for customers to develop their own

data collectors but the data they collect would not
be stored in the SMF data persistence databases
– Data from custom collectors can be streamed via the

Telemetry API
• Two main responsibilities:

• Time scale database (TSDB) optimized for handling
time series data

• Convert raw data into internal documents and store
them with full text search

• Two main technologies:
• Postgres for TSDB
• Elasticsearch search engine

• Administrators and users should NOT attempt to
read or update these databases directly

DATA PERSISTENCE LAYER

261CUG 2022

Data Persistence

Postgres

Elasticsearch

Logs

Events
IB topo

Metrics

Jobs

• Provides limited end user access to data stored in the SMF
• Allows consumption of streaming data and data that was

persisted
• Creation of custom graphs and panels
• Generation of custom tables and search dialog boxes
• Notification generation for metrics in the form of emails,

alarms, alerts.
– Metrics coming in version 1.2
– Notifications for log data will be later

• LDMS, IO stat, and attached ClusterStor metrics via
Grafana

• Log analysis via Kibana
• AuthN and AuthZ provided by API gateway and Keycloak
• Telemetry API used for access to streaming telemetry and

data stored in the Data Persistence layer
• Telemetry API is the only recommended way to pull data from

the Kafka bus

USER INTERFACE AND ACCESS LAYER

262CUG 2022

User Interface
and Access

AP
I G

at
ew

ay
Au

th
or

iza
tio

n
an

d
Au

th
en

tic
at

io
n

Telemetry
API

Grafana

Kibana

CUG 2022 263

TELEMETRY API

Provides access to metrics
Accessible through a RESTful JSON interface
Authenticated using bearer tokens, and token must be included in all HTML requests to the API
Streams telemetry data to clients using Server-Side Events (SSE)

CUG 2022 264

ncn# CLIENT_SECRET=`kubectl get secrets admin-client-auth -o jsonpath='{.data.client-secret}’ | base64 –d`
ncn# TOKEN=$(curl -s -d grant_type=client_credentials -d client_id=admin-client \
-d client_secret=${CLIENT_SECRET} \
https://api-gw-service-nmn.local/keycloak/realms/shasta/protocol/openid-connect/token)
ncn# ACCESS_TOKEN=$(echo ${TOKEN} | jq -r .access_token)
ncn# curl -k -s -H "Authorization: Bearer ${ACCESS_TOKEN}" \
https://api-gw-service-nmn.local/apis/sma-telemetry-api/v1/ping |jq
{
"api_version": "v1",
"timestamp": 1591990968

}
ncn# curl -k -s -H "Authorization: Bearer ${ACCESS_TOKEN}" \
https://api-gw-service-nmn.local/apis/sma-telemetry-api/v1/stream | jq '' |head
{
"streams": [
{
"name": "cray-node",
"scale_factor": 4

},
{
"name": "cray-logs-clusterstor",
"scale_factor": 4

},

ACCESSING THE TELEMETRY API WITH CURL

CUG 2022 265

ncn# curl -ks --compressed -H "Authorization: Bearer ${ACCESS_TOKEN}" \
https://api-gw-service-nmn.local/apis/sma-telemetry-api/v1/stream/cray-node |head -3 \
| tail -1 | fold -80 | head -5
data: { "metrics": { "messages": [{"metric":{"name":"cray_storage.cray_vmstat.me
m_swpd","dimensions":{"product":"shasta","system":"compute","service":"ldms","co
mponent":"cray_vmstat","hostname":"nid001255","cname":"x1000c7s7b1n1","job_id":"
0"},"timestamp":1599767510102,"value":0},"meta":{"tenantId":"6305a7f186e74d849ad
3f00ade0242a9","region":"RegionOne"},"creation_time":3386706919782612992},{"metr
ncn# curl -ks --compressed -H "Authorization: Bearer ${ACCESS_TOKEN}" \
https://api-gw-service-nmn.local/apis/sma-telemetry-api/v1/stream/cray-node |head -3 \
| tail -1 | cut -c 7- | jq '' | head
{
"metrics": {
"messages": [
{
"metric": {
"name": "cray_storage.cray_vmstat.mem_cache",
"dimensions": {
"product": "shasta",
"system": "compute",
"service": "ldms",

READING FROM THE TELEMETRY API WITH CURL

To get output from telemetry stream the
--compressed option is needed

Telemetry stream output is one json
object per line of output.

Linux formatting tools are helpful

CUG 2022 266

SMA-GRAFANA

CUG 2022 267

SMA-GRAFANA DASHBOARDS INCLUDED

• About 20 included dashboards
• System CPU, I/O, Kernel, Memory,

Processes, Swap
• Cabinet Controller Sensors
• CDU Information
• Fabric Congestion
• Fabric Errors
• Fabric Port State
• Fabric RFC3635
• Node Controller Sensors
• Overview Details
• Overview Device II/O Stats
• Overview Device I/O Stats Original

Overview Mellanox Host Details
• PDU dashboard
• Redfish Events
• River Sensors
• Switch Controller Sensors
• System Monitoring Dashboard

https://sma-grafana.<systemdomain>/dashboards

Power used by River nodes

Click on xname to drill into that node

Select peak to see xname

• CSM Health Checks
• CSM Diags

SYSTEM TESTING

268CUG 2022

CUG 2022 269

• CSM documentation describes a series of checks
which can be done to validate health for parts of
the Shasta system
• Run before rebooting or rebuilding a management node
• Run before complete system graceful shutdown
• Run during complete system graceful startup
• Run during complete system non-graceful startup
• Run as part of troubleshooting toolbox

• Platform Health Checks
• ncnHealthChecks

ncn# /opt/cray/platform-utils/ncnHealthChecks.sh
• ncnPostgresHealthChecks

ncn# /opt/cray/platform-utils/ncnPostgresHealthChecks.sh
• BGP Peering Status and Reset
• Verify KEA has active DHCP leases
• Verify ability to resolve external DNS
• Verify Spire Agent is running on management nodes
• Verify the Vault cluster is health
• Automated Goss testing

• Hardware Management Services
• HMS Test execution
• HSM Discovery Validation

• Software Management Services
• BOS, TFTP, cray-console, IMS, CFS, VCS, CRUS

• Booting CSM Barebones image
• Tests whether the booting services infrastructure is functional to boot a

compute node

• UAS/UAI tests
• Validate basic UAS installation
• Validate UAI creation
• Troubleshooting UAS/UAI

• See procedures in CSM documentation
https://github.com/Cray-HPE/docs-
csm/tree/release/1.0/operations/validate_csm_health.md

CSM HEALTH CHECKS

https://github.com/Cray-HPE/docs-csm/tree/release/1.0/operations/validate_csm_health.md

A set of diagnostic tools to perform various node level and system wide tests on compute nodes

• Functional test suites and performance test suites with both MPI and non MPI test suites
• Tests initiated using cray-hms-badger service to submit WLM jobs on compute nodes

• System Level Diagnostics
linpack, cwlinpack, nodeperf, stream, olcmt, oldisk, olconf, cwolconf, rank, pandora, cwhpcc

• GPU Diagnostics
gpu-burn, xkbandwidth, xkcheck, xkdgemm, xkmemtest, xkmemtest, xkstress, dgnettest

• OSU Benchmark
osu_startup, osu_bw_bibw, osu_single_multi_latency, osu_multiplebw_message_rate, osu_multithread_multiprocess_latency,
osu_bw_latency_ops, osu_put_bibw, osu_get_acc_latency, osu_collective_blocking_barrier, osu_collective_MPI_blocking_ops,
osu_collective_MPI_non_blocking_ibarrier, osu_collective_MPI_non_blocking_ops,

• sdiag_run.py using cray-hms-badger
• Execute multiple diagnostics (MPI, NON_MPI, GPU, Slingshot) in one shot on multiple compute nodes

CUG 2022 270

CSM DIAGS

CUG 2022 271

• A CLI (which uses Badger framework) has been provided on the worker nodes to execute multiple
diagnostics (MPI, NON_MPI, Slingshot) in a single instance on multiple compute nodes
• Admin needs to modify the configuration files, with the list of diagnostics that need to be executed

– sdiag-list.json (List of diagnostics which Admin needs to run)
– sdiag-arguments.json (Argument Values for each Diagnostic Test)
– sdiag-gumball.json (Badger Information, Session directory)
– Nodes (file with the list of node names)

• Can be run by:
• ->python3 sdiag_run.py
• out_02:12:02.txt output file has been created in /var/log/cray/shasta-diag
• Execution completed

gpu-burn: cray badger sessions describe '2912b65c-80dd-417c-93a4-792fb7e5d971'

CSM DIAGS - CLI

CSM-DIAGS CLI

Badger

Slurm/PBS

• Kubernetes
• SDU

TROUBLESHOOTING TIPS

272CUG 2022

CUG 2022 273

KUBERNETES LIMITS AND EXCEPTIONS

https://sysdig.com/blog/kubernetes-limits-requests/

CUG 2022 274

ncn# kubectl get LimitRange --all-namespaces
NAMESPACE NAME CREATED AT
backups cpu-mem-limit-range 2022-01-19T18:49:07Z
ceph-cephfs cpu-mem-limit-range 2022-01-19T18:49:06Z
ceph-rbd cpu-mem-limit-range 2022-01-19T18:49:07Z
default cpu-mem-limit-range-requests 2022-01-19T18:49:08Z
ims cpu-mem-limit-range 2022-01-19T18:49:07Z
istio-system cpu-mem-limit-range 2022-01-19T18:49:07Z
loftsman cpu-mem-limit-range 2022-01-19T18:49:07Z
metallb-system cpu-mem-limit-range 2022-01-19T18:49:07Z
operators cpu-mem-limit-range 2022-01-19T19:29:37Z
pki-operator cpu-mem-limit-range 2022-01-19T19:29:37Z
services cpu-mem-limit-range 2022-01-19T19:29:37Z
sma cpu-mem-limit-range 2022-01-19T18:49:07Z
sysmgmt-health cpu-mem-limit-range 2022-01-19T18:49:08Z
uas cpu-mem-limit-range 2022-01-19T19:45:25Z
user cpu-mem-limit-range 2022-01-19T19:45:25Z
vault cpu-mem-limit-range 2022-01-19T19:29:37Z
velero cpu-mem-limit-range 2022-01-19T18:49:08Z

CPU AND MEMORY LIMITS

CUG 2022 275

ncn# kubectl top pod --all-namespaces --sort-by=memory
NAMESPACE NAME CPU(cores) MEMORY(bytes)
sma elasticsearch-master-1 56m 33242Mi
sma elasticsearch-master-0 172m 33163Mi
sma elasticsearch-master-2 166m 33160Mi
sma cluster-kafka-0 258m 7873Mi
sma cluster-kafka-1 177m 6813Mi
sma cluster-kafka-2 173m 6047Mi
sysmgmt-health prometheus-cray-sysmgmt-health-promet-prometheus-0 383m 5760Mi
istio-system prometheus-c6f686f44-287qm 201m 4217Mi
istio-system prometheus-c6f686f44-jz7xg 182m 3585Mi
istio-system prometheus-c6f686f44-8p7p5 221m 3421Mi
nexus nexus-7b948976d7-rgzbf 11m 2408Mi
sma sma-monasca-thresh-node-7594fcd77-wrz4d 849m 1633Mi
kube-system kube-apiserver-ncn-m001 300m 1563Mi
kube-system kube-apiserver-ncn-m002 102m 1408Mi
services cray-shared-kafka-kafka-2 52m 1380Mi
services slingshot-fabric-manager-6d7fbb785f-d7scw 50m 1348Mi
services cray-shared-kafka-kafka-0 41m 1283Mi
services cray-shared-kafka-kafka-1 40m 1257Mi
sma sma-postgres-cluster-1 14m 1172Mi
sma sma-monasca-thresh-dmtf-6c4fcc7c84-2vlzc 845m 1152Mi
sma sma-monasca-thresh-metrics-69cf45c768-2kmq9 835m 1144Mi
sma cluster-zookeeper-1 17m 1031Mi

POD MEMORY USAGE

CUG 2022 276

ncn# kubectl top pod --all-namespaces --sort-by=cpu
NAMESPACE NAME CPU(cores) MEMORY(bytes)
sysmgmt-health prometheus-cray-sysmgmt-health-promet-prometheus-0 1562m 5762Mi
sma sma-monasca-thresh-node-7594fcd77-wrz4d 874m 1634Mi

sma sma-monasca-thresh-dmtf-6c4fcc7c84-2vlzc 839m 1152Mi
sma sma-monasca-thresh-metrics-69cf45c768-2kmq9 832m 1144Mi
kube-system kube-apiserver-ncn-m001 312m 1563Mi
sma cluster-kafka-0 220m 7883Mi
istio-system prometheus-c6f686f44-8p7p5 212m 3423Mi
istio-system prometheus-c6f686f44-jz7xg 189m 3586Mi
istio-system prometheus-c6f686f44-287qm 182m 4217Mi
sma elasticsearch-master-2 167m 33160Mi
sma cluster-kafka-2 161m 6050Mi
gatekeeper-system gatekeeper-controller-manager-588d6476db-hrmns 158m 119Mi
sma cluster-kafka-1 153m 6819Mi
sma elasticsearch-master-0 146m 33164Mi
kube-system kube-apiserver-ncn-m003 113m 960Mi
sysmgmt-health cray-sysmgmt-health-prometheus-node-exporter-5jjgw 110m 212Mi
sysmgmt-health cray-sysmgmt-health-prometheus-node-exporter-gpb8w 109m 232Mi
kube-system kube-apiserver-ncn-m002 102m 1408Mi

POD CPU USAGE

CUG 2022 277

• Pluggable architecture to collect logs, core files, register dumps, and more
• Can package the output to tar to share any useful system triage information
• Collects data from distributed parts of the system

• Remote Device Access (RDA) is capable of securely transporting this data to HPE
• AFT (Asynchronous File Transport) is used to securely transport SDU data to HPE
• IDA (Interactive Device Access) is used to tunnel TCP sessions with HPE
• Independent from one another and both are opt-in features

• SDU is running in a podman container
• Container is controlled as a service via systemd on master node

– /etc/sysconfig/cray-sdu-rda – container settings
– ncn-m# systemctl start cray-sdu-rda.service
– /usr/sbin/cray-sdu-rda – used by systemd to configure, start, and stop container

–/usr/sbin/sdu – passes commands into the cray-sdu-rda podman container
–allows sdu commands to be run whether on NCN or in the container

•sdu commands can be run from the master node or within the container
ncn-m001: # sdu bash
ncn-m001-sdu: # <--- prompt indicates you are inside the SDU/RDA container

SYSTEM DIAGNOSTIC UTILITY (SDU)

CUG 2022 278

SYSTEM DUMP FRAMEWORK (SDF)

• Provides a standard system dump feature
• Onsite triage
• Onsite to central support
• Provides a structured data format

• Resiliency model
• ncn-m001 and ncn-m002 (but SDU can be started

on ANY master node, only 1 at a time)
• Each eligible master node should have a unique

RDA configuration

CUG 2022 279

• Health
• Performs a system health collection to gather health information from the system
• Useful times to run

–After CSM install.sh completes
–Before and after NCN reboots
–After the system is brought back up
–Any time there is unexpected behavior observed
–In order to provide relevant information to create support tickets

• Inventory
• Performs an inventory collection to gather version information for software, firmware, and hardware
• Useful to run after system upgrades

–The information collected is used by the HPE Cray Service and R & D organizations to improve customer
support

• Triage
• Performs a triage collection which will gather diagnostic information and logs necessary for HPE Cray

Service and R & D to perform problem determination and isolation
• You are encouraged to provide the --ref 'sfdc:<case number>' command line option to ensure that the

snapshot is associated with your service case

SDU SCENARIOS

CUG 2022 280

ncn-m001# sdu --scenario triage --start_time '-2 days’ --reason "Problem with system"
Output similar to the following is expected:
[stdout] INFO Configuration file "/etc/opt/cray/sdu/sdu.conf" and CLI Options Valid.
[stdout] INFO UI master_control status is (enabled) [no control file created]
[stdout] INFO MASTER CONTROLS -> (M:True, U:False)
[stdout] INFO UI CONTROLS -> (C:True, U:True)
[stdout] INFO Exclusive run: Lock file created
@ /var/opt/cray/sdu/lock/sdu.lock_channel-triage_system-devkit
[stdout] INFO COLLECT stage start
[...]
[stdout] INFO dir created in view /var/opt/cray/sdu/collection/triage/view/
2021-02-15T03-10-53_UTC-3c7c6d3040cef5b59b15f15f29c9eda2
[stdout] INFO starting purge
[stdout] INFO work directory removed from '/var/opt/cray/sdu/collection/triage/.work'
[stdout] INFO keeping 10 snapshot(s) max
[stdout] INFO Found 2 snapshot(s) to keep, 0 to purge
[stdout] INFO exiting purge, nothing to do
[stdout] INFO 1813098605.0 raw bytes collected.
[stdout] INFO SDU session stop successfully
[stdout] INFO run took 2431.83 seconds
ncn-m001# cd /var/opt/cray/sdu/collection/triage/view/\
2021-02-15T03-10-53_UTC-3c7c6d3040cef5b59b15f15f29c9eda2

SDU TRIAGE SCENARIO

All data collected from
plugins will be in the view

directory

CUG 2022 281

• Dump contents are organized first by host or system management component, and then by content type (files and
cmds)
• The following is an example of the directory path:
ncn-m001# ls -l
total 3576
drwxr-x--- 4 root root 31 Feb 15 03:51 ceph
drwxr-x--- 3 root root 18 Feb 15 03:51 fmn
drwxr-x--- 3 root root 18 Feb 15 03:51 k8s
drwxr-x--- 3 root root 19 Feb 15 03:51 localhost
drwxr-x--- 3 root root 19 Feb 15 03:51 ncn-m002
drwxr-x--- 4 root root 31 Feb 15 03:51 ncn-m003
drwxr-x--- 4 root root 31 Feb 15 03:51 ncn-m003-sdu
drwxr-x--- 3 root root 19 Feb 15 03:51 ncn-s001
drwxr-x--- 3 root root 19 Feb 15 03:51 ncn-s002
drwxr-x--- 3 root root 19 Feb 15 03:51 ncn-s003
drwxr-x--- 3 root root 19 Feb 15 03:51 ncn-w001
drwxr-x--- 3 root root 19 Feb 15 03:51 ncn-w002
drwxr-x--- 3 root root 19 Feb 15 03:51 ncn-w003
-rw-r--r-- 1 root root 3659206 Feb 15 03:51
session-1613358653-3c7c6d3040cef5b59b15f15f29c9eda2.json

• Additional subdirectories exist that contain the logs, core files, register dumps, and more

EXPLORE SDU VIEW

CUG 2022 282

• Sample files in subdirectories
• ceph/cmds/ncn-s001_usr_bin_ceph_status
• ceph/cmds/ncn-s001_usr_bin_ceph_osd_pool_stats
• ceph/files/ncn-s001/ncn-s001-ceph-logs.tgz
• fmn/cmds/usr_bin_fmn_status
• fmn/cmds/usr_bin_fmctl__get_fabric_switches
• fmn/cmds/usr_bin_slingshot-topology-tool_--cmd_run_show-flaps
• fmn/cmds/usr_bin_slingshot-topology-tool_--cmd_show_cables
• k8s/cmds/usr_bin_kubectl_describe_*
• k8s/cmds/usr_bin_kubectl_get_*
• k8s/cmds/usr_bin_kubectl_-n_namespace_describe_pod_*
• k8s/cmds/usr_bin_kubectl_-n_namespace_logs_*
• k8s/cmds/usr_bin_kubectl_top_nodes
• k8s/cmds/usr_bin_kubectl_top_pods
• localhost/files/report/summary_report
• ncn-s001/ncn-s001-ceph-logs.tgz
• ncn-w003/cmds/usr_bin_dmesg
• ncn-w003/cmds/sbin_lsmod
• ncn-w003/cmds/sbin_sysctl_-a
• ncn-w003/cmds/usr_sbin_smartctl_dev_s

EXPLORE SDU DATA

SDU summary report
• Metadata about the collection
• List of all commands run
• List of files collected
• Exit_code from all plugins

Output from commands run on specific nodes

Ceph commands and files

Fabric Manager commands and files

Kubernetes commands and files

CUG 2022 283

• Service (manages SDU container)
• /usr/lib/systemd/system/cray-sdu-rda.service

• Application (inside the container)
• SDU core: /opt/cray/sdu/default/
–ncn-m001-sdu:/ # ls /opt/cray/sdu

3.3.12-20210624113255_6631f99 default
• SDU Plugins: /opt/cray/sdu/default/plugins

• Configuration
• /etc/opt/cray/sdu/sdu.conf

• scenario_dir: /etc/opt/cray/sdu/scenario (defined in sdu.conf, may have changed from default)
• output (defined in sdu.conf, may have changed from default)

• log_dir: /var/opt/cray/sdu/log
• lock_dir: /var/opt/cray/sdu/lock
• state_dir: /var/opt/cray/sdu/run
• collection_dir: /var/opt/cray/sdu/collection

SDU – KEY DIRECTORIES

CUG 2022 284

• Tar up collection
ncn-m001# cd /var/opt/cray/sdu/collection/<scenario>/view
ncn-m001# tar cvfzh test-system-2020-10-01T00-35-20_UTC-c410d30f1d5656ae006f657aa09d4d27.tgz
2020-10-01T00-35-20_UTC-c410d30f1d5656ae006f657aa09d4d27

• RDA Configuration (within the SDU container)
• /etc/rda/rda.conf (if proxy settings are needed)

• RDA Outbox
• /var/opt/cray/sdu/outbox

• Staging files to RDA (to send to HPE) (this will be automated in a future release)
ncn-m001-sdu# cd /var/opt/cray/sdu/collection/<scenario>/view
ncn-m001-sdu# sdu-stage-to-rda 2021-02-25T20-09-52_UTC-
f6cade95450824711405aa52dade8092
Staging files for RDA transport
Moving files from /var/tmp/RDA_STAGE.7gL3 to RDA outbox /var/tmp/rda/outbox
Done.

SDU – MOVING THE COLLECTION (TAR / RDA)

HPE CRAY EX SYSTEM OVERVIEW
MANAGEMENT SERVICES
WHAT IS HAPPENING ON MY SYSTEM?
MANAGING USER ENVIRONMENTS
RESOURCES

CUG 2022 285

CUG 2022

• Site Modifications
• User Access Nodes and Application Nodes
• User Access Instances
• Workload Management
• Cray Programming Environment
• Analytics and AI

MANAGING USER ENVIRONMENTS

286

SITE MODIFICATIONS

CUG 2022 287

CUG 2022 288

• Site configuration in CFS/VCS
• Overall versioned configuration name with multiple layers applied to node types
• Each HPE product may have a layer of configuration which needs site data added to Ansible group_vars or host_vars

– Lustre filesystem, SpectrumScale (GPFS) filesystem, application node networking, node MOTD, WLM settings, etc.
• Site may need a layer of configuration from a site-specific config repo in VCS with Ansible plays and related data

– Use HSM role/subrole and HSM groups to ensure configuration change applies to appropriate type of node
– Could have a playbook from site repo inserted as a layer before or after any HPE layers

• Site choice of default versions of CPE and Analytics tools
• Site rpms and package repository in Nexus
• Site changes to image recipe for compute nodes, UANs, or other application nodes with special functions

• Site rpms or non-default HPE or OS rpms should be placed into the image either via the image recipe or via pre-boot
CFS Ansible plays

• Can adjust scripts used by kiwi-ng to build image recipe into an image root
• Site customizations for UAI classes to provide customized environments for different groups of users
• Site defined names and node membership for HSM groups

• Used by CFS/Ansible and BOS
• Site BOS session templates specify boot artifacts and configuration to be applied to nodes

WHAT MAKES MY SYSTEM UNIQUE?

USER ACCESS NODES AND APPLICATION NODES

CUG 2022 289

CUG 2022 290

• An application node (AN) is an NCN which is not
providing management functions for the HPE Cray EX
system
• The AN is not part of the Kubernetes cluster like

management nodes and is not a compute node
• One special type of AN is the UAN (User Access Node),

sometimes called a login node
• Different systems may have need for other types of ANs

– Nodes which provide a Lustre routing function (LNet router)
– Gateways between HSN and Infiniband
– Data movers between two different network file systems
– Visualization servers
– Other special-purpose nodes

• Physical node
• Mounted in standard air-cooled cabinet
• More flexibility in node hardware configuration than the

management nodes
• Adjust hardware configuration to meet purpose of node

• Software
• Default image is similar to the compute node image

– May be customized, as needed, or entirely different image
could be used

• Configuration with CFS can target special needs of
different groups of ANs

• UAN
– Shared process space for standard Linux multi-user

environment
– Access via SSH on standard port (22)
– Workload manager client (natively installed)
– Cray Programming Environment (mounted, not part of the

image)
– Lustre filesystem (mounted)

APPLICATION NODES AND UANS

USER ACCESS INSTANCES

CUG 2022 291

CUG 2022 292

• Container Image
• Operating System
• Preinstalled packages

• Volumes
• Volumes defined for a UAI provide external access to data provided by the host node
• Example uses:

– Workload Manager configuration files
– Programming Environment libraries and tools
– Lustre or other external storage for user data

• Resource specifications
• Sets the minimum amount of memory and CPU to allocate to a UAI by Kubernetes

• Collection of Configuration Items
• For example:

– Additional network connections
– UAI scheduling priority

ELEMENTS OF A USER ACCESS INSTANCE (UAI)

• User Access Service (UAS) manages UAIs and UAI
Configuration

• Broker UAIs
• Face multiple users on external IP
• Select or create End-User UAIs on demand
• Forward SSH sessions to End-User UAIs over private SSH

sessions
• Share private session keys among replicas using key

management
• End-User UAIs

• Each faces a single user on internal Kubernetes IP
• All UAIs are Orchestrated by Kubernetes on worker

nodes
• UAI classes are created and managed by System

Administrators

CUG 2022

UAS/UAI RELATIONSHIPS

Management nodes

Containerized
UAIs

User Access
Service

SSH Broker

SSH Key
Management

User SSH
Sessions

Private SSH
Sessions

293

CUG 2022 294

ncn# cray uas admin config images list
[[results]]
default = false
image_id = "051eb2aa-888c-419c-ba18-d54f148594b6"
imagename = "registry.local/cray/cray-uai-compute:latest"

[[results]]
default = false
image_id = "a7ec4716-8fac-4774-b312-2ec577f173c7"
imagename = "registry.local/cray/cray-uai-cos-2.1.70:latest"

[[results]]
default = true
image_id = "c785276a-aeb5-4a8f-be9d-2a1f6ee77a13"
imagename = "registry.local/cray/cray-uai-sles15sp2:1.0.14"

LISTING AVAILABLE UAI IMAGES

See documentation for
how to create UAI images

CUG 2022 295

ncn# kubectl get pods -n user -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
slurmctld-59bf5d5597-pfkpn 3/3 Running 0 4d7h 10.42.0.147 ncn-w003 <none> <none>
slurmdb-74b9cd94f5-2jsg9 1/1 Running 0 4d7h 10.42.0.88 ncn-w003 <none> <none>
slurmdbd-6bb485cd99-b7lns 3/3 Running 0 4d7h 10.44.0.102 ncn-w001 <none> <none>
uai-erl-1bdcd856-8bf4c5479-w2nzp 1/1 Running 0 9h 10.44.0.99 ncn-w001 <none> <none>
ncn# kubectl get pods -n uas -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
uai-broker-5489b7b4-675f6d849c-9q6hg 2/2 Running 0 3d9h 10.42.0.141 ncn-w003 <none> <none>
ncn# cray uas admin uais list
[[results]]
uai_age = "3d9h"
uai_connect_string = "ssh broker@10.102.11.145"
uai_host = "ncn-w003"
uai_img = " registry.local/cray/cray-uai-broker:latest"
uai_ip = "10.102.11.145"
uai_msg = ""
uai_name = "uai-broker-5489b7b4"
uai_status = "Running: Ready"
username = "broker"

[[results]]
uai_age = "9h30m"
uai_connect_string = "ssh erl@10.26.5.108"
uai_host = "ncn-w001"
uai_img = "registry.local/cray/cray-uai-sles15sp2:1.0.14"
uai_ip = "10.26.5.108"
uai_msg = ""
uai_name = "uai-erl-1bdcd856"
uai_status = "Running: Ready"
username = "erl"

UAI BROKER DEMO – BEFORE UAI CREATION

Here we see there is one UAI broker and
one end user UAI running on our system

Note the broker and end user UAIs are in
different Kubernetes namespaces

CUG 2022 296

ncn# cray uas admin config classes list --format json | jq '.[].class_id, .[].comment'
"1d127b7b-dcb1-4a66-8a85-ce97b00b3300"
"8c297ba3-b144-481e-ae0e-39388c28907c"
"e5c1cba3-035c-4101-a187-92404d7d8256"
"Class for Creating UAI Brokers for PE Supporting UAIs"
"default class for creating legacy mode UAIs with PE support"
"UAI Class for Brokered End-User UAIs -- Supports PE and Slurm"
ncn# cray uas admin config classes list --format json \
| jq 'map(select(.class_id == "1d127b7b-dcb1-4a66-8a85-ce97b00b3300"))’ \
| head -12
[

{
"class_id": "1d127b7b-dcb1-4a66-8a85-ce97b00b3300",
"comment": "Class for Creating UAI Brokers for PE Supporting UAIs",
"default": false,
"namespace": "uas",
"opt_ports": [],
"priority_class_name": "uai-priority",
"public_ip": true,
"resource_config": null,
"uai_compute_network": false,
"uai_creation_class": "e5c1cba3-035c-4101-a187-92404d7d8256",

ncn# cray uas admin uais list --class-id 1d127b7b-dcb1-4a66-8a85-ce97b00b3300
[[results]]
uai_age = "3d9h"
uai_connect_string = "ssh broker@10.102.11.145"
uai_host = "ncn-w003"
uai_img = "dtr.dev.cray.com/cray/cray-uai-broker:latest"
uai_ip = "10.102.11.145"
uai_msg = ""
uai_name = "uai-broker-5489b7b4"
uai_status = "Running: Ready"
username = "broker”

UAI BROKER DEMO – REVIEWING THE UAI BROKER

Here we list the class ids and comments to determine
which classes exist for UAIs
• First we’ll look at the class (cyan) for the UAI broker
• Note it specifies which class (orange) it uses for the

UAIs it creates

CUG 2022 297

ncn# cray uas admin config classes list --format json | jq 'map(select(.class_id == \
"e5c1cba3-035c-4101-a187-92404d7d8256"))' | head -15
[
{
"class_id": "e5c1cba3-035c-4101-a187-92404d7d8256",
"comment": "UAI Class for Brokered End-User UAIs -- Supports PE and Slurm",
"default": false,
"namespace": "user",
"opt_ports": [],
"priority_class_name": "uai-priority",
"public_ip": false,
"resource_config": null,
"uai_compute_network": true,
"uai_creation_class": null,
"uai_image": {
"default": true,
"image_id": "ab4b789e-8cac-406b-b100-8f94e8c2ba55",

ncn# cray uas admin uais list --class-id e5c1cba3-035c-4101-a187-92404d7d8256
[[results]]
uai_age = "9h47m"
uai_connect_string = "ssh erl@10.26.5.108"
uai_host = "ncn-w001"
uai_img = "registry.local/cray/cray-uai-compute:latest"
uai_ip = "10.26.5.108"
uai_msg = ""
uai_name = "uai-erl-1bdcd856"
uai_status = "Running: Ready"
username = "erl"

UAI BROKER DEMO – REVIEWING THE END USER UAI CLASS – 1

Here we look at the class for the UAIs created by our
broker. Remember that a class is like a template

At this point there is only one UAI running that based
on this class

CUG 2022 298

ncn# cray uas admin config classes describe e5c1cba3-035c-4101-a187-92404d7d8256 --format json
{
"class_id": "e5c1cba3-035c-4101-a187-92404d7d8256",
"comment": "UAI Class for Brokered End-User UAIs -- Supports PE and Slurm",
"default": false,
"namespace": "user",
"opt_ports": [],
"priority_class_name": "uai-priority",
"public_ip": false,
"resource_config": null,
"uai_compute_network": true,
"uai_creation_class": null,
"uai_image": {
"default": true,
"image_id": "ab4b789e-8cac-406b-b100-8f94e8c2ba55",
"imagename": "registry.local/cray/cray-uai-compute:latest"

},
"volume_mounts": [
{
"mount_path": "/etc/cray-pe.d",
"volume_description": {
"host_path": {
"path": "/etc/cray-pe.d",
"type": "DirectoryOrCreate"

}
},
"volume_id": "0d9a6493-d7fc-4650-8a21-a260a07756b5",
"volumename": "etccrayped"

},

UAI BROKER DEMO – REVIEWING THE END USER UAI CLASS – 2

Here we can see the beginning of the class definition.
Items of note are outlined in cyan

CUG 2022 299

ncn# cray uas admin config classes describe e5c1cba3-035c-4101-a187-92404d7d8256 --format json | jq '.volume_mounts
| .[].volume_description.host_path.path'
"/etc/cray-pe.d"
"/opt/modulefiles"
"/opt/forge"
"/opt/totalview_license"
"/opt/R"
"/opt/totalview"
"/opt/lmod"
"/usr/share/lmod"
"/opt/cray/cray-ucx"
"/opt/gcc"
"/usr/local/Modules"
"/etc/ld.so.conf.d/cray-pe.conf"
"/opt/AMD"
"/etc/profile.d"
"/etc/localtime"
"/opt/cray/pe"
"/lus"
"/opt/arm-licenceserver"
"/opt/nvidia/hpc_sdk"
"/opt/intel"
null
"/usr/local/Modules/bin/modulecmd"
"/opt/totalview-support"
"/var/opt/cray/pe/pe_images"
"/opt/toolworks"
null
"/opt/forge_license"
"/opt/cray/modulefiles/cray-ucx"

UAI BROKER DEMO – REVIEWING THE END USER UAI CLASS – 3

Here we can see all the volumes that are defined in
this class. All but two are just mapping directories on
the UAI host to the UAI. The other two in orange are
a Kubernetes managed secret and a config_map

CUG 2022 300

ncn# cray uas admin uais describe uai-broker-5489b7b4
uai_age = "3d10h"
uai_connect_string = "ssh broker@10.102.11.145"
uai_host = "ncn-w003"
uai_img = "dtr.dev.cray.com/cray/cray-uai-broker:latest"
uai_ip = "10.102.11.145"
uai_msg = ""
uai_name = "uai-broker-5489b7b4"
uai_status = "Running: Ready"
username = "broker"

[uai_portmap]

*cmarsh@linux ~ $ ping 10.102.11.145
PING 10.102.11.145 (10.102.11.145) 56(84) bytes of data.
64 bytes from 10.102.11.145: icmp_seq=1 ttl=54 time=3.41 ms
64 bytes from 10.102.11.145: icmp_seq=2 ttl=54 time=2.43 ms
64 bytes from 10.102.11.145: icmp_seq=3 ttl=54 time=2.39 ms
^C
--- 10.102.11.145 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/avg/max/mdev = 2.396/2.750/3.417/0.475 ms

*cmarsh@linux ~ $ ssh 10.102.11.145
Password:
Creating a new UAI...
The authenticity of host '10.18.134.250 (10.18.134.250)' can't be established.
ECDSA key fingerprint is SHA256:BGN8lcRtr6z9FL424gBM9Cz79zjwJgloeVYvVbndvZ4.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '10.18.134.250' (ECDSA) to the list of known hosts.
cmarsh@uai-cmarsh-732ed456-98d66f944-6n2mk:~>

UAI BROKER DEMO – USING THE BROKER TO CREATE A UAI

To create the end user UAI with the broker
we just SSH to the broker and authenticate

The second IP address is our UAI’s internal
IP address – only reachable from the UAI
broker

CUG 2022 301

cmarsh@uai-cmarsh-732ed456-98d66f944-6n2mk:~>
cmarsh@uai-cmarsh-732ed456-98d66f944-6n2mk:~> module list
Currently Loaded Modulefiles:
1) cpe-cray 5) libfabric/1.11.0.3.66(default) 9) xpmem/2.2.40-
7.0.1.0_1.9__g1d7a24d.shasta(default)
2) cce/11.0.3(default) 6) craype-network-ofi 10) cray-mpich/8.1.3(default)
3) craype/2.7.5(default) 7) cray-dsmml/0.1.3(default) 11) cray-libsci/21.03.1.1(default)
4) craype-x86-rome 8) perftools-base/21.02.0(default)
cmarsh@uai-cmarsh-732ed456-98d66f944-6n2mk:~> sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
workq* up infinite 2 down* nid[001010,001029]
workq* up infinite 16 idle nid[001000-001009,001011-001015,001028]
cmarsh@uai-cmarsh-732ed456-98d66f944-6n2mk:~> whoami
cmarsh
cmarsh@uai-cmarsh-732ed456-98d66f944-6n2mk:~> pwd
/home/users/cmarsh
cmarsh@uai-cmarsh-732ed456-98d66f944-6n2mk:~> srun -n 2 -N 2 hostname
slurmstepd: error: couldn't chdir to `/home/users/cmarsh': No such file or directory: going to /tmp instead
nid001000
slurmstepd: error: couldn't chdir to `/home/users/cmarsh': No such file or directory: going to /tmp instead
nid001001
cmarsh@uai-cmarsh-732ed456-98d66f944-6n2mk:~> exit
logout
Connection to 10.18.134.250 closed.
Connection to 10.102.11.145 closed.
*cmarsh@linux ~ $

UAI BROKER DEMO – USING THE UAI

When we disconnect, we see two connections end

CUG 2022 302

ncn# kubectl get pods -n user -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
slurmctld-59bf5d5597-pfkpn 3/3 Running 0 4d8h 10.42.0.147 ncn-w003 <none> <none>
slurmdb-74b9cd94f5-2jsg9 1/1 Running 0 4d8h 10.42.0.88 ncn-w003 <none> <none>
slurmdbd-6bb485cd99-b7lns 3/3 Running 0 4d8h 10.44.0.102 ncn-w001 <none> <none>
uai-cmarsh-732ed456-98d66f944-6n2mk 1/1 Running 0 6m34s 10.44.0.98 ncn-w001 <none> <none>
uai-erl-1bdcd856-8bf4c5479-w2nzp 1/1 Running 0 10h 10.44.0.99 ncn-w001 <none> <none>
ncn# cray uas admin uais list --format json | jq 'map(select(.username == "cmarsh"))'
[

{
"uai_age": "8m",
"uai_connect_string": "ssh cmarsh@10.18.134.250",
"uai_host": "ncn-w001",
"uai_img": "registry.local/cray/cray-uai-compute:latest",
"uai_ip": "10.18.134.250",
"uai_msg": "",
"uai_name": "uai-cmarsh-732ed456",
"uai_portmap": {},
"uai_status": "Running: Ready",
"username": "cmarsh"

}
]
ncn# cray uas admin uais delete --owner cmarsh
results = ["Successfully deleted uai-cmarsh-732ed456",]

ncn# cray uas admin uais list --format json | jq 'map(select(.username == "cmarsh"))'
[]
ncn# kubectl get pods -n user -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS
GATES
slurmctld-59bf5d5597-pfkpn 3/3 Running 0 4d8h 10.42.0.147 ncn-w003 <none> <none>
slurmdb-74b9cd94f5-2jsg9 1/1 Running 0 4d8h 10.42.0.88 ncn-w003 <none> <none>
slurmdbd-6bb485cd99-b7lns 3/3 Running 0 4d8h 10.44.0.102 ncn-w001 <none> <none>
uai-cmarsh-732ed456-98d66f944-6n2mk 1/1 Terminating 0 9m59s 10.44.0.98 ncn-w001 <none> <none>
uai-erl-1bdcd856-8bf4c5479-w2nzp 1/1 Running 0 10h 10.44.0.99 ncn-w001 <none> <none>

UAI BROKER DEMO – REVIEWING AND DELETING THE NEW UAI

Currently UAIs persist until they are deleted by an
administrator

WORKLOAD MANAGEMENT

CUG 2022 303

• PALS – Parallel Application Launch Service
• Used only by PBS Pro

• Application Task Orchestration and
Management (ATOM) combines:
• JACS – Job and application configuration services
• HATS – Health analysis test service
• JARS – Job and application reporting service
• RUR – Resource Utilization Reporting (from Cray

XC)

CRAY WLM SERVICES

• Actively working with SchedMD and Altair on
HPE Cray Ex system check-out and new APIs

• Cray providing integration through a new set of
services and APIs

• Both WLMs supported
• Other WLMs can also use the same APIs

SLURM and PBS PRO

WORKLOAD MANAGEMENT

304CUG 2022

• WLM clients are installed local to the user access
node (UAN)
• Commands executed as WLM vendor intended, not

proxied
• No escaping or special handling of the environment

• Access to Lustre mount for job scripts, binaries,
and results
• All UANs default to the Lustre mount point

• Networking handled by base OS

UAN

USER ACCESS AND JOB LAUNCH

305CUG 2022

• Workload Manager (WLM) clients are installed
local to the user access instance (UAI)
• Commands executed as WLM vendor intended, not

proxied
• No escaping or special handling of the environment

• Access to Lustre mount for job scripts, binaries,
and results
• All UAIs default to the Lustre mount point

• Networking handled by Kubernetes

UAI

CUG 2022 306

• Maintained by SchedMD
• Open-source, fault-tolerant, highly scalable cluster management and job scheduling system
• Three key functions:

• Allocates exclusive and/or non-exclusive access to resources (compute nodes)
• Provides a framework for starting, executing, and monitoring work
• Manages a queue of pending work

• Includes an application launcher (srun)
• Slurm architecture
• slurmctld

– Centralized manager to monitor resources and work
– Runs on management node with an optional fail-over twin

• slurmd
– Daemon running on each compute node
– Waits for work, executes that work, returns status, and waits for more work
– Provides fault-tolerant hierarchical communications

• slurmdbd
– Optional
– Used to record accounting information from multiple Slurm-managed clusters in a single database

SLURM OVERVIEW

CUG 2022 307

SLURM WORKFLOW

• Both a launcher and Workload Manager
• Slurm will use a default build

• For example, the Config file is /etc/slurm
• Different options for slurmctld pod can

be configured

CUG 2022 308

• Owned by Altair
• Based on the open source OpenPBS

• PBS = Portable Batch System
• Automates job scheduling, management, monitoring, and reporting
• Allocates available computing resources to batch requests
• Does not include a launcher
• PBS Pro architecture
• pbs_server

– Creates batch jobs, modifies jobs, and tracks resources
• pbs_sched

– Schedules jobs on nodes or vnodes

• pbs_mom
– MoM (Machine-oriented Miniserver) executes the job on the host
– Each node must have a MoM to execute a job

• Works like it currently works in a cluster
• Uses the HPE-provided Parallel Application Launch Service (PALS)
• Job script executed on a compute node

PBS PRO OVERVIEW

CUG 2022 309

• Application launcher that enables WLMs to function normally
• WLM-specific plugins and configured to access the WLM interfaces
• Launch daemon (palsd) integrates with WLMs that have a compute node presence

• PBS Pro’s MoM
• Runs alongside the WLM daemon on the compute node
• Coordinates execution of parallel applications on multiple compute nodes

• Treats these as a unit rather than separate processes
• Needed for WLMs that do not have a launcher or Cray PMI plugin

• PBS Pro
• What about Slurm?

• Already has a launcher (srun) and Cray PMI plugin
• PALS will be disabled

PARALLEL APPLICATION LAUNCH SERVICE (PALS)

CUG 2022 310

• REST API Interface
• AuthN/AuthZ Integration
• State stored in Postgres DB
• ZeroMQ/JSON-RPC between nodes
• Cray APIs mainly provide value-add

PALS ARCHITECTURE AND COMPONENTS

API Calls

Istio Ingress
PALS

Launch Service

Cray CLI

PALS
Database

User Kubernetes Compute

https https

postgres

PALS Launch
Daemon

Launch
Daemon

0MQ

Launch
Daemon

Launch
Damon

Launch
Damon

Launch
Damon

Launch
Damon

CUG 2022 311

PALS WORKFLOW WITH PBS PRO

CUG 2022 312

PALS COMMANDS AND ENVIRONMENT VARIABLES

Command Purpose

cray mpiexec Launch

cray aprun Launch

cray pals apps signal Signal the application

cray pals apps list Gather information about all applications

cray pals apps describe <apid> Gather information about a single application

cray pals apps files Transfer files to compute nodes

cray pals apps tools Run helper processes on compute nodes

cray pals --help View the help page

Environment Variable Purpose

PALS_APID Unique application identifier

PALS_RANKID Application rank identifier

PALS_DEPTH Number of CPUs per rank for the application

PALS_NODEID Application relative node identifier

• Combines functionality of Cray XC system’s
compute node cleanup, node health, and RUR
(Resource Usage and Reporting)

• General purpose job and application prologue and
epilogue task runner
• Configuration
• Compute node cleanup
• Node health testing

• ATOM is only called by PALS and WLMs
• ATOM REST API is not exposed on the network

• Users cannot call ATOM APIs directly

APPLICATION TASK ORCHESTRATION AND MANAGEMENT (ATOM)

313CUG 2022

Compute Node

WLM

Parallel
Application

Launch
Service
(PALS)

ATOM

CUG 2022 314

• Allows integration with PALS or the WLM compute node daemon
• Runs a task at a given time

• ATOM service or daemon start-up
• Job start or end by WLM Daemon
• Application start or end by PALS

• Does something if that task fails or succeeds
• Extensible and configurable by the customer

• New tasks added by dropping in a new task configuration file
• Runs tasks in lexical order, so sites can choose ordering

• Tasks can be disabled or enabled by site administrator or user
• Site administrator can force some tasks to run or not permit others to be enabled

• ATOM: compute node daemon runs tasks in the configured order

WHY ATOM?

• Any executable action that is run at a specified
time
• “On this event, run this script and if it fails, do this”
• “On this event, run this script and if it succeeds, do

this”
• Command can be inline commands or executed

(Python/shell/binaries)
• Executed in filename lexical order

• ATOM daemon startup
• Initialize Boot FreeMem

• Compute node cleanup
• Clear VM/Lustre cache
• Compact memory

• Node health
• Free memory check

• Reporting
• Task stats

WHAT IS A TASK?

315CUG 2022

010_bootfreemem_init
{

"name": “bootfreemem_init",
"description": "Initialize /proc/boot_freemem",
"onSuccess": [],
"onFailure": [],
"events": ["startup"],
"timeout": 2,
"command": ["/bin/sh", "-c", "echo 1 >/proc/boot_freemem"],
"enabled": true,
"userControl": false

}

CUG 2022 316

• All tasks and actions run kept in a database only during a job or application’s lifespan
• Task details available through “tasks” endpoint

• All associated tasks and actions are deleted when a job or application is deleted!
• Tasks are considered successful if they exit with 0 exit status before their timeout period has elapsed
• In compute node image, /etc/sysconfig/atomd contains configurable variables which control file

locations and settings for ATOM daemon

ATOM ARCHITECTURE AND COMPONENTS

WLM/PALS
Daemon

ATOM
Daemon

http

ATOM only listens on a
local UNIX socket on
compute nodes

exec Task exit code ATOM
Daemon

Failure
Action

Success
Action

success

failure

CUG 2022 317

• File names must begin with three decimal digits
• Files are executed in numerical order
• Configuration changes done via customizing the node image or via post-boot node personalization using Ansible

JSON object with the following keys:

ATOM TASK CONFIGURATION FILE

Key Type Required Description

name String Yes Unique task name

description String No Human-readable task description

onSuccess Array No List of action names to take upon successful completion

onFailure Array No List of action names to take upon failure

events Array Yes List of times to run this task (startup, jobStart, jobEnd, appStart, appEnd,
action)

timeout Number No Task timeout in seconds

command Array Yes Task argv array

enabled Boolean No Enable/disable task by default

userControl Boolean No If true, allow users to enable/disable this task

CUG 2022 318

nid001000# ls -1 /etc/atom.d
010_bootfreemem_init.cfg
020_clear_lustre_caches.cfg
020_clear_lustre_caches_job.cfg
025_clean_tmpdirs.cfg
030_clear_vm_cache.cfg
040_compact_memory.cfg
040_compact_memory_job.cfg
090_hugepages_test.cfg
100_freemem_test.cfg
110_zeropage_test.cfg
120_pals_test.cfg
150_filesystem_test.cfg
200_energy_end.cfg
200_energy_start.cfg
800_admindown.cfg
850_reboot.cfg
900_panic.cfg
999_hello_atom.cfg

ATOM TASK CONFIGURATION FILES

Example task, no actual action

• Compact fragmented memory at end of every application and job
so hugepage allocations remain efficient
nid000001# cat
/etc/atom.d/040_compact_memory.cfg
{

"name": "compact_memory",
"description": "Compact fragmented memory to

allow better hugepages allocation",
"onSuccess": [],
"onFailure": [],
"events": ["appEnd", "jobEnd"],
"timeout": 30,
"command":

["/opt/cray/atom/sbin/compact_memory.py"],
"enabled": true,
"userControl": true

}

• Execution files are in /opt/cray/atom/sbin and are
referenced in the “command” field
• Test for zero page memory corruption at job end
nid001000# cat /etc/atom.d/110_zeropage_test.cfg
{

"name": "zeropage_test",

"description": "Check for zero page memory
corruption",

"onSuccess": [],
"onFailure": ["admindown"],
"events": ["jobEnd"],
"timeout": 5,
"command": ["/opt/cray/atom/sbin/zeropage"],
"enabled": true,

"userControl": false,
"exclusive": false

}

ATOM TASK EXECUTION FILES

319CUG 2022

CUG 2022 320

• ATOM configuration is done by CFS, so add or change data in VCS (git)
• Configuration settings can be used to specify directory paths

– atom_filesystems
– list of directory paths mounted on all compute nodes to check at application and job end time

– atom_tmpdirs
– list of directory paths to be cleaned up at job end time

• Create the group_vars/all/atom.yml file in the pbs-config-management or slurm-config- management git
repository

• Edit and populate it with the desired settings. For example:
atom_filesystems:
- "/scratch"

atom_tmpdirs:
- "/tmp"
- "/var/tmp"
- "/dev/shm"

• Can override or add new ATOM configuration files or tasks
roles/atom/files/config/
roles/atom/files/tasks/

CFS CONFIGURATION FOR ATOM

CRAY PROGRAMMING ENVIRONMENT

CUG 2022 321

Essential toolset for HPC organizations developing HPC code in-house.
HPE CRAY PROGRAMMING ENVIRONMENT

CUG 2022 322

Fully integrated software suite with compilers, tools,
and libraries designed to increase programmer
productivity, application scalability, and performance.

Complete
toolchain

Scalable

ProgrammableCross
platform

Holistic
support

From HPC experts
for HPC experts

Application
information

Queries for
application

optimization

Compiler
information

Performance
analysis

Export/import
program
analyses

Debug
information

HPE Cray Programming Environment
COMPREHENSIVE TOOLCHAIN

CUG 2022 323

Software

Application Development
• C/C++ and Fortran compilers

• I/O, scientific, and math libraries
• HPE Cray MPI
• Machine learning plug-ins

Performance analysis and
Optimization tools
• Whole program profiling

and visualization
• HPC optimization tool for

scale, parallelization, memory usage,
bandwidth

Debugging
• Stack tracing at scale

• Parallelized gbp for scale
• Compare two versions

of an application

• Manage core files at scale
• Memory debugging at scale

CUG 2022 324

• CPE is installed into images which are projected via CPS/DVS to nodes
• CPE layer in CFS sets which images to use

• Multiple versions can be installed for cpe-base, aocc (AMD Optimizing Compiler), ARM Forge, Intel oneAPI
• In VCS, cpe-config-management has pe_deploy.yml Ansible playbook

– Default version of each tool will be from the first image in the list
• Environment setup with one of these choices

• Modules and Modulefiles
– CPE Environment Modules enables users to modify their environment dynamically by using modulefiles
– The module command provides a user interface to the Modules package
– The module command system interprets modulefiles, which contain Tool Command Language (Tcl) code, and dynamically

modifies shell environment variables such as PATH and MANPATH
– Can be adjusted in cpe-config-management in roles/cray-.pe_deploy/files

– cray-pe-configuration.csh and cray-pe-configuration.sh

• Lmod
– Lua-based module system that loads and unloads modulefiles, handles path variables, and manages library and header files
– Hierarchical, manages module dependencies and ensures any module a user has access to is compatible with other loaded

modules

CPE CONFIGURATION

ANALYTICS AND AI

CUG 2022 325

CUG 2022 326

• HPE Cray EX Urika has analytics and AI components for performing big data and deep learning tasks
• These components run in Docker containers, which are orchestrated via Kubernetes on compute nodes
• Analytics and AI applications are used through either UAN or UAI

• Supported Analytics and AI Frameworks
• Apache™ Spark™ - Spark is a general data processing framework that simplifies developing big data applications

– Provides the means for executing batch, streaming, and interactive analytics jobs
– Both core Spark components and severalSpark ecosystem components

• Dask Distributed - Dask Distributed is a centrally managed, distributed, dynamic task scheduler
– It coordinates several worker processes spread across multiple machines and the concurrent requests of several clients

• PyTorch™ - PyTorch is an open source optimized tensor library and deep learning framework for Python
– Designed to be deeply integrated into Python

• TensorFlow™ - TensorFlow is a software library for dataflow programming across a range of tasks
– A Math library, which is also used for machine learning applications, such as neural networks

ANALYTICS AND AI

CUG 2022 327

• Configuration done via CFS
• Uses modules environment for

each user inside their UAI pod
• Requires new compute node image

customized to enable Kubernetes
on compute nodes

• Installation and configuration in
HPE Cray EX Urika Analytics
Applications Guide S-8027

ANALYTICS PROGRAMMING ENVIRONMENT COMPONENTS

Component Documentation Source

Apache® Maven https://maven.apache.org

Apache® Spark™ https://spark.apache.org/

Chapel https://chapel-lang.org/docs/

Dask Distributed https://docs.dask.org/

Kibana https://www.elastic.co/products/kibana

ksonnet https://ksonnet.io

OpenJDK https://openjdk.java.net

Python https://python.org

PyTorch https://pytorch.org

R https://www.r-project.org

SBT https://www.scala-sbt.org

TensorFlow https://www.tensorflow.org/

CUG 2022 328

ORCHESTRATION AND SCHEDULING

UAI or UAN
(kubectl)

UAI or UAN
(srun or qsub)

Compute
(e,g, k8s compute planeCompute

(e,g, k8s compute planeCompute
(e,g, k8s compute planeCompute

(scheduler exec)

Compute
(e,g, k8s compute plane)Compute

(e,g, k8s compute plane)Compute
(e,g, k8s compute plane)Compute

(K8s compute plane)

Compute
(e,g, k8s control plane)Compute

(e,g, k8s control plane)Compute
(K8s control plane)

Lustre

P0

P1

Bare
Compute Node Linux

Container
Compute Node Linux++

HPE CRAY EX SYSTEM OVERVIEW
MANAGEMENT SERVICES
WHAT IS HAPPENING ON MY SYSTEM?
MANAGING USER ENVIRONMENTS
RESOURCES

CUG 2022 329

CUG 2022

• Documentation
• Open Source Software
• Training
• Related Presentations

RESOURCES

330

CUG 2022 331

• HPE Cray EX System Software Getting Started Guide S-8000
• HPE Cray System Management (CSM) Markdown

• https://github.com/Cray-HPE/docs-csm/tree/release/1.0
• HPE Cray System Management (CSM) HTML

• https://cray-hpe.github.io/docs-csm/en-10/
• HPE Cray EX System HPC Firmware Pack Installation Guide S-8037
• HPE Cray EX System Admin Toolkit Guide S-8031
• HPE Cray EX System Diagnostic Utility Installation Guide S-8034
• HPE Cray EX System System Monitoring Application Installation Guide S-8030
• HPE SUSE Linux Enterprise Operating System Installation Guide S-8028
• HPE Slingshot Release Notes
• HPE Slingshot Operations Guide
• HPE Cray Operating System Installation Guide CSM on HPE Cray EX Systems S-8025
• HPE Cray User Access Node Software Installation Guide S-8032
• HPE Cray Programming Environment Installation Guide: CSM on HPE Cray EX S-8003
• HPE Cray EX Urika Analytics Applications Guide S-8027

DOCUMENTATION - INSTALLATION

https://github.com/Cray-HPE/docs-csm/tree/release/1.0
https://cray-hpe.github.io/docs-csm/en-10/

CUG 2022 332

• HPE Cray System Management (CSM) Markdown
• https://github.com/Cray-HPE/docs-csm/tree/release/1.0
• https://github.com/Cray-HPE/docs-csm/blob/release/1.0/operations/kubernetes/Kubernetes.md
• https://github.com/Cray-HPE/docs-csm/blob/release/1.0/glossary.md

• HPE Cray System Management (CSM) HTML
• https://cray-hpe.github.io/docs-csm/en-10/

• HPE Cray EX System Admin toolkit Guide S-8031
• HPE Cray EX System Diagnostic Utility Administration Guide S-8035
• HPE Cray EX System Monitoring Application Administration Guide S-8029
• HPE Cray EX Urika Analytics Applications Guide S-8027
• HPE Cray Operating System Administration Guide CSM on HPE Cray EX Systems S-8024
• HPE Cray User Access Node Software Administration Guide S-8033
• HPE Cray System Management Diagnostics Guide S-8038
• HPE Slingshot Operations Guide
• HPE Slingshot Troubleshooting
• HPE Slingshot Hardware Guide
• HPE Cray Programming Environment User Guide: CSM on HPE Cray EX S-8005

DOCUMENTATION - ADMINISTRATION

https://github.com/Cray-HPE/docs-csm/tree/release/1.0
https://github.com/Cray-HPE/docs-csm/blob/release/1.0/operations/kubernetes/Kubernetes.md
https://github.com/Cray-HPE/docs-csm/blob/release/1.0/glossary.md
https://cray-hpe.github.io/docs-csm/en-10/

CUG 2022 333

• https://kubernetes.io/docs/home/
• https://kubernetes.io/docs/reference/kubectl/cheatsheet/
• https://lmgtfy.com/?q=kubernetes+troubleshooting
• https://www.elastic.co/guide/en/kibana/current/index.html
• https://grafana.com/docs/
• https://github.com/aelsabbahy/goss
• http://docs.ansible.com/
• https://kubernetes.io/docs/reference/kubectl/jsonpath/
• https://stedolan.github.io/jq/manual/
• http://www.compciv.org/recipes/cli/jq-for-parsing-json/
• https://osinside.github.io/kiwi/

• CSM
• MIT License
• Github Hosted https://github.com/Cray-HPE
• Community Governance https://github.com/Cray-HPE/community

DOCUMENTATION – OPEN SOURCE TOOLS

https://kubernetes.io/docs/home/
https://lmgtfy.com/?q=kubernetes+troubleshooting
https://www.elastic.co/guide/en/kibana/current/index.html
https://grafana.com/docs/
https://github.com/aelsabbahy/goss
http://docs.ansible.com/
https://kubernetes.io/docs/reference/kubectl/jsonpath/
http://www.compciv.org/recipes/cli/jq-for-parsing-json/
https://osinside.github.io/kiwi/
https://github.com/Cray-HPE
https://github.com/Cray-HPE/community

Where to start?
SUPERCOMPUTING: HPE CRAY EX TRAINING

334

From HPE Edu
http://www.hpe.com/ww/training
• Select HPE Cray EX Series and

ClusterStor Storage
https://education.hpe.com/ww/en/traini
ng/portfolio/servers.html#ServersLearn
ingPathsIntro

http://www.hpe.com/ww/training
https://education.hpe.com/ww/en/training/portfolio/servers.html

CUG 2022 335

• CUG 2022
• HPE Cray EX Shasta 22.03 Cray System Management Overview
• UAIs Come of Age: Hosting Multiple Custom Interactive Login Experiences Without Dedicated Hardware
• Dealing with Metrics Data – Where is it, How to get it, What to do with it?
• Real-Time Machine Learning Analysis of Exascale Integrated Test Failures and Test Coverage

• CUG 2021
• Managing User Access with UAN and UAI
• User and Administrative Access Options for CSM-Based Shasta Systems

• CUG 2020
• Advanced Topics in Configuration Management
• HPE Cray Supercomputers: System User Access; User Access Node or User Access Instance, Which is Right for Me?

• CUG 2019
• Shasta Software Technical Workshop
• Shasta System Management Overview
• Reimagining Image Management in the New Shasta Environment
• Hardware Discovery and Maintenance Workflows in Shasta Systems

RELATED PRESENTATIONS AND PAPERS

harold.longley@hpe.com

THANK YOU

CUG 2022

