LA-UR-23-23879

Approved for public release; distribution is unlimited.

Title: HPC Cluster CI/CD Image Build Pipelining

Author(s): Cotton, Travis Bradley

Intended for: Cray User Group, 2023-05-07/2023-05-11 (Helsinki, Finland)
Issued: 2023-04-17 (Rev.1) (Draft)

NATIONAL LABORATORY

% Los Alamos



1% Los Alamos NYSE

NATIONAL LABORATORY National Nuclear Security Administration

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.



HPC Cluster CI/CD Image Build Pipelining

1% Cotton
HPC at LANL
Los Alamos National Laboratory
Los Alamos, USA
trcotton@lanl.gov

Abstract—Building images for HPC clusters tends to be a
monolithic process, requiring complete rebuilds when new pack-
ages or configurations are added to them or updating existing im-
ages. It is also generally a manual process, heavily involving a sys-
tem administrator and system-specific custom tooling. Rebuilding
images from scratch can be time consuming and updating existing
images can introduce unwanted/unexpected changes to produc-
tion systems. These problems can be mitigated by using existing
container models, creating and layering images to create the final
“production”-ready results. This allows for rapid turnaround
and a guarantee that existing layers remain unchanged while
safely updating others. We can then leverage this layer-based
image building to allow for a more automated process using
Continuous Integration/Continuous Delivery (CI/CD) pipelines.
Leveraging standard tools for configuration management and
version control combined with the OCI standard of layer-based
image building and CI/CD pipelines, we can create an automated
and even distributed image building workflow while still being
customizable for specific sites and systems.

Index Terms—CIl/CD, pipeline, image building

I. INTRODUCTION

Los Alamos National Laboratory (LANL) has significant
HPC resources including generic clusters and HPE Cray EX
systems utilizing the CSM system management environment.
The image building technology described below is being
developed to deal with the increasingly complex environments
and are intended for deployment in CSM and generic cluster
environments. In this paper, we will discuss the two major
pieces of CI/CD image building; the tools required for building
images in layers, and a pipeline configuration to automate
these builds. Linking these two pieces together can create
a flexible and portable cluster image building process that
can have a myriad of positive effects when managing a
complicated set of clusters.

II. LAYERED IMAGE BUILDING

The core piece of this workflow is the ability to build cluster
images in pieces, or layers. A layer can be defined as a distinct
part of an image that can be created from a combination of a
parent layer and the configurations that define this layer. The
parent layer in this context can either be a hard dependency, a
way to manage distinctness between layers, or an ease-of-use
practice for a site specific reason. An example of a parent-child
layered configuration can be seen in Fig. 1. The configuration
step just provides the content for this layer, which can be as
simple as a list of packages to install or a more complicated
set of operations like configuring files and templating.

Fig. 1. =
Layer Dependency Example.

A. Tools in Use

This kind of workflow naturally lends itself to leverage a
container-based build. Being able to import a previous layer
as the parent, and then modify the current layer are all things
container technologies can already do. There are a number
of implementations like Docker [1] or Podman [2] that can
import from a perviously built container image, but in this
workflow we will be using a dockerfile-less approach, so our
tool of choice is Buildah [3]. Buildah can easily spin up a
container on the fly, using an existing image (i.e. the parent)
or a scratch container. We can then leverage this container
as a starting point when configuring the target layer. Once
configuration is complete, the target can be exported into a
number of formats.

Configuring a layer can be a generic operation, ranging from
installing base packages to setting configuration files, which
can be specific to the kind of layer the target is. If the idea
is to build a “base” layer, one which all future layers import
from, then a simple package install into a scratch container can
accomplish this. An example using the DNF package manager
and the Buildah command line tools can be seen in Listing 1.
If something more complicated is needed, then a configuration
management tool can also be used.

Once this new container is up and running, Ansible or
a similar configuration management application can be run
against it. We will be using Ansible in our case and specifi-



#!/bin/bash

CNAME=$ (buildah from scratch)
MDIR=$ (buildah mount $CNAME)

dnf ——installroot=$MDIR groupinstall
buildah umount $MDIR

buildah commit ——rm $CNAME my_base_image

base

Listing 1. Buildah cmdline example.

cally, we will be using the python libraries Ansible provides.
This will allow us to programmatically run Ansible against
our containers. We can dynamically add the layer container to
our inventory, with any Ansible grouping we wish to employ,
along with the Buildah connection plugin [4]. The Buildah
connection plugin will replace the default SSH behavior An-
sible uses so that we can treat the layer containers as Ansible
hosts. Any playbooks configured with the layer container as
a host, or any groups the layer container has been added to,
will now configure the layer container.

You can continue to build more layers from previous layers
until you have a final image. There are many possibilities once
you have a final container image, one of which is to mount
this container and leverage Squashfs to package up the image.
Squashfs images are very versatile and can be used in many
booting schemes. Since these are container images, it will also
be possible to push to an external registry, making built cluster
images available for future use.

An import piece of the containerized image build is the abil-
ity to build layers as a non-root user. This can be accomplished
in a single podman instance or a kubernetes deployment. The
non-root user is built into the builder container image and
some capabilities are needed, namely the cap_setuid=ep and
cap_setgid=ep for the newuidmap and newgidmap commands
respectively. These capabilities are set inside the builder con-
tainer image and not the host machine. If you are going to use
a local storage then this will need to be writable by the non-
root user and if you push to a registry the non-root user will
need credentials to do so. Some buildah commands require
the mount command, and this is disabled with AppArmor by
default, so AppArmor will need to be set as unconfined or
a new profile will need to be created. We did not try this
with selinux, but a similar workaround may be needed. A
final necessity is using the buildah unshare command for all
container operations. The functionality of buildah unshare is
to run commands under a new namespace allowing mounts as
a non-root user inside the builder container. This is the current
setup for building cluster image layers as a non-root user,
but there may be other options for minimizing capabilities
and restricting UID and GID mappings that we have not
yet explored. Many of these capabilities and exceptions are
workarounds for installing packages and other traditional priv-
ileged operations, but further configurations can be explored
and an excellent starting point can be seen in [8].

IITI. CI PIPELINE

The pipeline aspect of this project is the most versatile piece
of CI/CD image building. There are many, many CI runner op-

stages:
- full
- layerl
- layer2

inventory-job:
stage: full
script:
- image-build base
- image-build layerl
- image-build layer2
rules:
- if:
changes:
- inventory/#*x*

$CI_MERGE_REQUEST_ID

layerl-job:
stage: layerl
script:
- image-build layerl
- image-build layer2
rules:
- if:
changes:
- < list of layer 1 roles >

$CI_MERGE_REQUEST_ID

layer2-job:
stage: layer2
script:
- image-build layer2
rules:
- if:
changes:
- < list of layer 2 roles >

$CI_MERGE_REQUEST_ID

Listing 2. Single Repository Pipeline Config. A very simple example that will
start an image build pipeline based on where changes occur in the repo. An
inventory change will build the base, layerl, and then layer2, while changes
to layerl files will only build layerl then layer2. Changes to layer2 files will
only build layer2 and import a previously built layerl. The rules here will
only run the pipeline if this is a merge request.

tions for git alone, disregarding other version control systems.
We will focus on using gitlab-runners [5], and hopefully many,
if not all, of the pieces here are translatable to other software
stacks.

A. Pipeline Examples

The most simple example is to have a single repo that
contains all the configurations needed to build cluster images.
This repository will house the Ansible inventory, roles, and
playbooks alongside any configurations needed to build a base
image. In this example a single file with a list of packages and
package repositories (yum, zypper, etc) will define our base
layer. Our pipeline configuration will be a single .gitlab-ci.yml
file inside our image repository as seen in Listing 2. In this
example we have a simple three layer setup: base, layerl, and
layer2. This configuration will key off changes that occur in
specific places, defined in the ‘changes’ stanza. The gitlab CI
pipeline will start the pipeline at the first detected change. We
have to carefully decide here what changes belong in each
layer stanza. If each layer is defined by a playbook, and each
playbook is a list of roles, then we can get our list of changes
directly from the playbooks, but this is not strictly necessary.
Changes to inventory files is more complicated, and in this
example inventory changes will kick off a build starting from
the base layer.

The next example is more complicated but still relatively
easy. In this case the base, the inventory, and each layer are
housed in a separate repository. The idea is similar, but now
we need to tie the layers together in the desired order. This is




stages:
- build

base-build:
stage: build
script:
- build-image base
rules:
- if:
changes:
- inventory/«*«

$SCI_MERGE_REQUEST_ID

trigger—-next-layer:

stage: build
rules:
- if: $CI_MERGE_REQUEST_ID
trigger:
project: ’/imgbuild-project/layerl’
needs:

- Jjob: base-build

Listing 3. Inventory Repo Change. A change to our inventory will kick off
a full rebuild. In this case the inventory is a separate repository, but can still
trigger downstream layers with the ’trigger’ keyword. If no changes to the
inventory directory, or any subdirectories or files occur, then the pipeline will
not start an image build.

done with the ‘trigger’ keyword, which will start the next layer
build if changes are detected in the current layer. See Listing 3
as an example for an inventory change and Listing 4 for an
example of a change in a layer. In the inventory example,
we again make the assumption that a change in the inventory
implies a complete pipeline rebuild. In the layer example, the
build stanza will only run if the specified changes occur, but
now will trigger the next layer if any changes are detected.
If no changes are made then nothing will be triggered. The
current layer will also need to be able to run if it is triggered
by a parent pipeline, which is accomplished in the ‘when’
keyword. There are several pre-filled gitlab variables available
for use [6].

B. Automated Pipeline Generation

As can be seen by our so-called simple examples, setting
up a CI pipeline can be a complicated endeavor and requires
careful thought. It is possible to manually create pipelines
for each cluster image type but the implementation of them
will depend on the structure of the git repositories where
image layers are built and configured from. There are many
other even more complicated ways to organize cluster image
configurations and all these would require a separate pipeline
schema, which is the kind of rigidity we would like to avoid.
Our solution to this is to create an automated workflow that can
handle many types of repository setups while still maintaining
the layered image build approach.

The first step is to auto-generate the pipeline. Instead of
writing each step of the pipeline manually we generate it
based on a configuration file that defines how a layer inherits
from a parent and where it gets its configuration data from.
We can think of our cluster images as being defined by
a directed acyclic graph (DAG), where the nodes are our
defined layers and edges define the parent-child relationship.
For the implementation of our DAG we use the python library
networkx [7]. This allows us to “attach” information to each
node, like repository data, image types, which playbook to use
for this layer, etc. These DAGs are defined in a simple YAML

stages:
- build

build-merge-request:
stage: build
script:
- build-image layerl
rules:
- if:
changes:
- < list of layerl roles >

$CI_MERGE_REQUEST_ID

build-pipeline-trigger:

stage: build
script:
- build-image layerl
rules:
- if: ’$CI_PIPELINE_SOURCE == "pipeline"
trigger—job:
stage: build
rules:
- if: $CI_MERGE_REQUEST_ID
- if: ’"$CI_PIPELINE_SOURCE == "pipeline"
trigger:
project: ’/imgbuild-project/layer2’
needs:
- job: build-merge-request
optional: true
- job: build-pipeline-trigger
optional: true

Listing 4. Layer Repo Change. Similar to the Inventory repository, our Layerl
repository will start on a merge request but additionally it will also start if
triggered from another pipeline. If triggered from another pipeline we no
longer care whether files have changed or not since the parent layer is assumed
to have been updated. Once, and only if, the Layerl build succeeds will we
trigger Layer2.

inventory:
path: ’cluster-inventory’
cluster_name: ’'clusterA’

cluster_name_short: ’ca’
my-fav-os:
image_types:
- {type: ’'base’, firstlayer: True, children: ["hsn’]}
hsn:
repo: "hsn-config’
image_types:
- { type: ’'base’, groups: ['HSN’], pb: ’"hsn.yml’,
<+ children: [’compute’,’uan’]}
compute:
repo: ’'compute-config’
image_types:
- { type: ’compute’, groups: [’Compute’], pb: ’comp.yml
«— ', children: [’slurm’]}
uan:
repo: ’'uan-config’
image_types:
- { type: ’uan’, groups: ['UAN’], pb: ’‘uan.yml’,
< children: [’slurm’]}
slurm:
repo: ’slurm-config’
image_types:
- { type: ’compute’, groups: [’Compute’], pb: ’"slurm.
— yml’}
- { type: ’'uan’, groups: ['UAN’], pb: ’'slurm.yml’}

Listing 5. Image Layer DAG definition. A layer can have multiple children
and multiple image types.

file, an example can be seen in Listing 5. This example is
a very simple layer dependency DAG, but a graph shown in
Fig. 2 maps out what a CFS-like DAG might look like. Each
layer has a repository defined but there is no restriction on
layers having the same repository source. On one extreme end
you can have a single repository for every layer, and on the
opposite extreme have a separate repository for layer.




Fig. 2. =
CFS-like DAG. This is the logic the automated pipeline
generator will use when building the pipeline out. The flow
of the actual pipeline will depend on the changes attempted
and the child-parent dependency illustrated here

slingshot-config

cos-config

sma-config

uan-config

local-config

The next step is to write the pipeline based on the changes
made to a layer’s configuration repository. This is harder than
it may seem at first. A layer is defined by a playbook, roles,
and the inventory associated with the layer. The inventory
data can come from a combined source (for all systems) or a
separate repository for each system at a site. When a change
occurs in a role, we can find where to start the pipeline by
searching through each image type’s playbook(s), looking for
matches between changes made and the roles/tasks defined in
the playbook(s). If a match is found, then we can start the build
chain at the target layer. This is relatively easy especially when
compared to changes in inventory data. Inventory changes are
much harder to map to not only a specific layer, but a layer
for a specific image type. To accomplish this we need a way

# t = target layer, G = graph, c
InventoryCheck (target , G, changed_files ,
for cf in changed_files
variables = getVariablesInFile (cf)
roles = getRoles(t.playbooks)
for v in variables

layer_list)

found = False
for r in roles
found = lookupVar(v, r)
if found == True
layer_list.append(target)
children = getChildren(target)

if len(children) > 0 and not found
for ¢ in children

inventoryCheck (c, G, changed_files)

# read in layer DAG
G = digraph(my_layer_config.yaml)

# start from root of DAG
target = "root”
# get a list of changed files

changed_files = read (”changes. git”)
# empty list to hold layere matches
layer_list=[]

InventoryCheck (target , G,

changed_files, layer_list)

Listing 6. Pseudo code for finding variables in roles listed in a playbook.While
not a full example, this should illustrate the idea of mapping inventory changes
to a layer by moving through the dependency DAG and searching playbooks
associated with each layer.

to map inventory variables to the roles defined in a layer’s
playbook(s). See Listing 6 for the pseudo-code for finding a
variable in the roles listed in a playbook. Inventory changes are
mapped to roles by reading in the changed files, and for each
variable contained in changed files, searching each role defined
in a layer playbook. If a match is found, then all downstream
layers can imply the need to be rebuilt and the build can start
with the current layer. If no matches are found in the current
layer, then we search the next layer in the DAG. Since a layer
can contain configurations for multiple image types it can be
possible for a build chain to get created only for a specific
image type, while other types do not get rebuilt. In its current
form, inventory changes may result in unneeded image builds
as we key off file changes, and any variables in a changed
file may induce an image build. We currently do not key off
explicit variable changes in a file.

Using this information the staging repo will build out the
pipeline automatically starting from the first layer affected by
the changes made in the originating repository. This is done
by traversing the DAG and searching for matches between
changed files and files that define a layer. In the roles case,
each node in the DAG is a layer and has an attached list
of playbooks, so we search the roles/tasks defined in the
playbooks for changes. For an inventory change we must map
the variables in the changed files to roles in the playbooks,
and if a match is found we start with the earliest layer in
the DAG. If a change occurs that only affects a single image
type, Compute for example, then our pipeline will only build
a Compute type image starting from the earliest affected layer,




Fig. 3. =
Single image type pipeline visualized. The change occurred
in the COS layer, affects the Compute type image, and so
the pipeline start in this layer for this image type. No other
image types were affected and so are not rebuilt. This is
visualized oval-dotted layers not being built, while the boxed
layers are the target rebuilds.

Base-OS

................ Il

’ slingshot-config-compute

cos-config-compute

A 4

sma-config-compute

7

slurm-config-compute

A 4

local-config-compute

COS in this case Fig. 3. If a change occurs that affects both
Compute and Application_UAN, say a Slurm package update,
then the pipeline will build both image types as seen in Fig. 4.
Figures Fig. 3 and Fig. 4 visualize what the pipeline will look
like after processing the changes made and how they affect our
dependency DAG, so it is possible to have a single node graph
if the changes only affect the very last layer of an image.

IV. OBSERVATIONS AND BENEFITS

Building images in layers, and a clever schema for orga-
nizing layers, can have a number of useful benefits. It is not
uncommon for a site to have multiple systems which share
many of the same features including the OS release, software
stack(s), libraries, etc. A layered build approach allows us
the ability to share layers across multiple systems which can
reduce the time it takes to push out changes to production
systems and forces consistency across systems.

A. Turnaround Time

Changes made to image configurations no longer require a
full rebuild, depending on what kind of change is made. A
change to the last layer of a specific image will not require
rebuilds of parent layers and will not require rebuilds of
different image types if those changes do not have an effect on
those layers. So it is possible to make a change that updates

Fig. 4. =
Multiple image type pipeline visualized. The change
occurred in the Slurm layer and affects multiple image types.
In this example the two affected image types were compute
and UAN type images. The pipeline will not rebuild
unaffected layers, represented by the dotted-oval shapes,
while the Slurm layer for each image type will be rebuilt
and all downstream layers.

slurm-config-UAN

" sma-config-compute

""" )

slurm-config-compute

Y
local-config-UAN

A 4

local-config-compute

a compute type image, rebuild the image starting from only
the changed layer, and leave all the parent layers unchanged.
This can speed up the time it takes to push out changes.

Another type of change is a product change. For example
a Slingshot update will have an effect on downstream layers,
but may not require a full image rebuild. The CI pipeline
will detect the change and only rebuild the Slingshot layer
and all downstream layers, leaving previous layers unchanged,
but it will rebuild all image types that use slingshot without
administrator intervention.

Some changes will require full rebuilds. Kernel updates and
security fixes are generally done in the base OS layer, but
because of the CI pipeline this can be done automatically and
for all systems simultaneously.

B. Portability and Scalability

It has been the practice, at least at LANL, to build images
for each cluster. While it is true that different systems have
different configurations, at some level these systems share
many of the same properties. Because the CI image build
pipeline is containerized, it should be possible to build layers
outside a cluster’s management plane and share these layers
between systems. Another use case is to build production
images on a testbed, validate changes, and then push images



Fig. 5. =
CFS full layer dependency. A stripped down example of the
layer dependencies of one of our local test systems. The
node names are mapped as (config repo)-(image type).

slingshot-application slingshot-compute

local-compute

to a production system, without having to rebuild images for
production systems.

The CI image build pipeline is also scalable. The only
limitation is on how many gitlab-runners are available for
configuring layers, and because the image layer build is
containerized, this can be done in a variety of ways. A single
Podman container can only build a single layer at a time, but a
Kubernetes deployment of many instances of the image builder
can build as many layers simultaneously as there are image
builder pods.

C. Consistency, Validation, and Security

Because layers are not rebuilt unless changes are made or a
parent is updated, there is a forced consistency to the CI image
build pipeline. Layers known to be in a good state will not
change or get updated erroneously and any attempted changes
will always be validated because the pipeline will catch these
changes. Validating changes through the pipeline will prevent
user error and prevent untested changes, from the image build
perspective, from reaching production systems.

This of course requires some administration on the gitlab
servers to prevent push to production branches and gitlab CI
configs to trigger the pipeline on the desired action (i.e. merge
requests). But if configured correctly no unanticipated changes
should go unvalidated or skip the image build pipeline.

D. Ansible Configuration Structure

The automated pipeline generation should be able to handle
a number of Ansible configuration structures. For example, in
a CFS like structure, image types are very distinct, having
separate repositories for image types and also branching out
very early in the configuration process. This can be seen in
Fig. 5, where the base OS is shared among all image types, the
first layer after the base (slingshot in LANL’s case) branches
by image type and the result is that any future layers must
be distinct by image type, even if they share many of the
same configurations. This can be further exacerbated by having
multiple compute systems, where many of the configurations
are the same, but system distinctness appears in earlier layers
forcing uniqueness in layers where it may not be needed.

Fig. 6. =
Theoretical layer dependency. The idea is to push more
generic, shareable configurations to earlier layers, which
would reduce build times and configuration drift.

An alternative is to push as many similar configurations
as possible to the earlier layers and any specific image type
configurations to later layers. This can have the benefit of
speeding up image builds in cases where the desired changes
are further down the dependency chain and/or specific to an
image type. If we add in multiple systems then it should be
possible to have a generic layer for a node type (i.e. Compute)
and only add system specific configurations on top of the
generic layer. This will make it easier to share configurations
between not only different image types but also between
multiple systems. A theoretical example can be seen in Fig. 6.

In either case, or in future cases, the automated pipeline
should be able to handle a variety of configurations and
structures, and the automated nature of the pipeline can
alleviate many of the annoying aspects of manually building
and configuring cluster images.

V. SUMMARY

An automated pipeline has many advantages, forcing consis-
tency and preventing unanticipated changes to production sys-
tems. The underlying pieces that allow this kind of automation,
leveraging container technology and tools to build images in
layers, and having the ability to import and build off previous
layers reduces the amount of time it takes to push changes
into production while reducing risk. The automated detection
of changes, and where those changes occur, allows images
to build from where said changes have occurred, instead of
completely rebuilding the entire image from scratch. It also
has the advantage of only building specific image types if
changes only affect the respective image type.



Another advantage of the pipeline process is the ability to
“plugin” to external pipelines. These external pipelines can do
a myriad of tasks; like automated testing of images, booting
images on a testbed system to validate changes made, or
regression testing. This allows a plug-n-play set of features
that can be expanded on, can be done locally and however a
site chooses.

Finally, the automated pipeline can be used to generify
the image build process away from a cluster specific task.
Allowing multiple systems to share layers and then further
customize to a specific system later in the build chain. This
will reduce system configuration drift from system to system
and force consistency between multiple systems, which can
affect the time it takes to push out security patches, product
updates, and general system changes.

While this work is in the initial stages, if there is sufficient
community interest it is the goal of this team to release an
open source version of this product.

REFERENCES

[1] Merkel, D., ”"Docker: lightweight linux containers for consistent devel-
opment and deployment’” Linux Journal, vol. 2, 2014.

[2] Heon, Matt et. al, "Podman - : A tool for managing OCI con-
tainers and pods (v1.0 and beyond. Currently at v3.0.1)”, Zenodo.
https://doi.org/10.5281/zenod0.4735634.

[3] DJ. Walsh, N. Dahyabhai, et. al, ”"Buildah - a tool that facili-
tates building Open Container Initiative (OCI) container images”,
https://github.com/containers/buildah/blob/main/README.md

[4] T. Tomecek, ”buildah connection - Inter-
act with an existing buildah container”,
https://docs.ansible.com/ansible/latest/collections/containers/podman/buildah_connection.html.

[5] “GitLab Runner”, https://docs.gitlab.com/runner/.

[6] “Predefined variables reference”, https://docs.gitlab.com/ee/ci/variables/predefined_variables.html

[71 A. A.Hagberg, Daniel A. Schult and Pieter J. Swart, “Exploring network
structure, dynamics, and function using NetworkX”, in Proceedings of
the 7th Python in Science Conference (SciPy2008), Gidel Varoquaux,
Travis Vaught, and Jarrod Millman (Eds), (Pasadena, CA USA), pp.
11-15, Aug 2008

[8] R. Priedhorsky, R.S. Canon, T. Randles, A.J. Younge, “Minimizing
privilege for building HPC containers”, SC "21: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, November 2021 Article No.: 32



