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Abstract—In recent years, a common pattern has emerged
where numerical software is designed around a Python interface
calling high-performance kernels written in a lower level lan-
guage. With the advent of general-purpose graphics processing
units (GPUs), many of those kernels now need to be rewritten, a
task which can seem daunting to those new to GPU programming.
Furthermore, developers also need to ensure that their code
will be both portable to future GPU architectures and flexible
enough to evolve with their needs. Higher-level approaches that
abstract away system architecture details may meet these needs,
with some assumed performance trade-off, and in recent years
several such frameworks have been proposed or developed. This
paper is a side-by-side comparative case study of using two
such higher-level frameworks, JAX and OpenMP target offload,
to produce straightforward and portable code while achieving
good GPU performance in a real science application. JAX is
a Python library that allows us to write our kernels in pure
Python, while OpenMP target offload is a directive-based strategy
that integrates seamlessly with our already OpenMP-accelerated
C++ kernels. The science application we consider is TOAST,
a simulation and analysis framework for studying the cosmic
microwave background that is designed to take full advantage
of a supercomputer. We ported a dozen TOAST kernels to both
frameworks in order to compare development cost, run times
and to study whether they can be used to port a given a complex
numerical code.

Index Terms—Graphics processing unit, Application software

I. INTRODUCTION

It is now common for scientific software to be designed
with a high-level, user-friendly interface written in Python that
leverages high-performance kernels written in a lower-level,
compiled language such as C, C++, or Fortran. This structure
enables domain scientists to interact with applications through
a familiar and popular programming language without having
to become experts in high-performance computing (HPC). It
also enables those scientists or developers with the requisite
HPC skills and experience to accelerate these applications by
identifying and acting on opportunities for thread-level par-
allelism and otherwise tuning performance in the lower-level
code. A consequence is that domain scientists who mostly
know Python end up depending on expert HPC software
engineers when they need the application to do something new
at a high level of performance. As an application’s user base
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grows, this creates a bottleneck where science depends on a
typically small team of developers with very specific skills.

The increasing adoption of general-purpose graphics pro-
cessing units (GPUs) in HPC adds further motivation and com-
plexity to this paradigm. GPUs offer lower energy consump-
tion, allowing supercomputers to scale further, and promise
significant performance improvements for those who can har-
ness their potential. However, developers now face the task of
refactoring many of their lower-level high-performance kernels
for GPU architectures, a task even more daunting to those
unfamiliar with GPU programming. Moreover, those scientific
applications must be portable across different and future GPU
architectures, flexible enough to tackle new kinds of problems,
and maintainable by a broader cross-section of scientists and
developers.

To explore these issues, we investigate two alternative
approaches to porting a case-study Python-based HPC science
application to GPU architectures through higher-level frame-
works. One approach sets aside the two-language paradigm
through the adoption of JAX [1] which brings just-in-time
compilation, vectorization, and automatic parallelization to
Python. The other, more traditional approach we consider
is to retain the two-language model but use OpenMP target
offload [2] to port lower-level kernels to GPUs. The goal is to
evaluate the possibility of obtaining good GPU performance
without sacrificing portability and readability, producing ker-
nels that can be maintained and updated by domain experts as
the code evolves.

We used TOAST [3] (Time Ordered Astrophysics Scalable
Tools), a software framework for simulating and processing
timestream data collected by microwave telescopes in order
to measure the Cosmic Microwave Background (CMB), as
our case study application. TOAST provides simulation and
analysis capabilities for experiments like CMB-S4 [4], Simons
Observatory [5] and the associated international CMB research
community including university faculty, early career scientists,
and even students. As such, it is expected to run both on a
laptop, where students might use it, as well as on a supercom-
puter at full scale using MPI [6]. The challenge is to achieve
a balance of both high performance and high productivity.
These competing concerns, and the established preference for



Python among CMB domain scientists, guided the developers
to a hybrid Python/C++ model. TOAST is written in Python
and composed of pipelines that simulate or process data with a
series of kernels, usually written in C++ and parallelized with
OpenMP. CMB scientists who have limited HPC experience
can code custom modules in Python that interface with the
lower-level high-performance C++ kernels. The kernels make
use of linear algebra, fast Fourier transformations and random
number generation, covering a wide range of commonly used
numerical building blocks.

Since TOAST already uses OpenMP to parallelize loops, it
was natural to consider OpenMP target offload [2], a set of
constructs introduced in OpenMP 4.0 [7] and further updated
since. Available in the major C++ compilers (such as Clang [8]
and GCC [9]), OpenMP target offload enables parallelism
on heterogeneous systems and in particular portable GPU
parallelism (the aforementioned compilers support both Nvidia
and AMD hardware). Following the OpenMP philosophy, the
instructions are relatively high level, providing basic building
blocks to control data movement and split work, and intro-
duced into normal C++ code via pragma directives. OpenMP
target offload is of particular interest to us because it integrates
seamlessly with our already OpenMP-accelerated C++ kernels
and requires no additions to the compiler tool chain.

However, as an alternative to the two-language model, we
also explore porting TOAST to JAX [1], a Python library
developed by Google Brain as a building block for deep-
learning frameworks and now seeing wider use in numerical
applications such as molecular dynamics [10], computational
fluid dynamics [11], [12] and ocean simulation [13]. It
provides an array oriented library (similar to NumPy [14])
coupled with a just-in-time compiler to optimize the code for
the hardware available: CPU, GPU (Nvidia as well as AMD)
and more exotic architectures such as TPU. JAX came to our
attention as a way to have a single-source implementation
written in Python (with the associated productivity benefits)
while targeting both CPU and GPU.

In this case study, we focus on a satellite telescope sim-
ulation, as it exercises a wide range of kernels, drawing on
TOAST’s ability to simulate and analyze CMB data across
various scenarios. Our target hardware for this study is
the Perlmutter supercomputer [15]. Equipped with Slingshot
interconnect, 6,159 Nvidia A100 GPUs and approximately
1,500 AMD Milan CPUs with 64 processors each: it can
deliver about 60 petaflops of peak double-precision (FP64)
performance. Through the course of our analysis, we observed
several factors, including the number of lines of code, the
appearance and structure of the code, and the runtime perfor-
mance. We also examined the effects of varying the number of
processes on a single node and assessed the impact on realistic
problem sizes.

The first section of this paper introduces TOAST and
outlines the requirements that guided our study. Sections Two
and Three focus on the OpenMP target offload and JAX ports,
respectively, discussing their advantages, drawbacks, and the
efforts made to overcome their limitations. In Section Four, we

cover the porting of the codebase, and finally, in Section Five,
we examine the performance of the resulting implementations.

II. THE TOAST CODEBASE

TOAST [3] (Time Ordered Astrophysics Scalable Tools) is a
software framework for simulating and processing time stream
data collected by telescopes to estimate the Cosmic Microwave
Background (CMB), which consists of faint, primordial pho-
tons created in the Big Bang. Fluctuations in the observed
temperature and polarization of CMB photons encode funda-
mental parameters of cosmology and physics, making CMB
measurements a valuable tool for cosmologists. To measure
these exceedingly tiny fluctuations, CMB experiments gather,
manage, analyze, and simulate enormous volumes of multi-
frequency time-stream telescope data. This has made HPC
essential to manage the exponential growth in CMB data
volumes. TOAST provides simulation and analysis capabili-
ties for experiments like the proposed “Stage 4” experiment
CMB-S4 [4] and the associated international CMB research
community.

A typical TOAST simulation workflow includes the follow-
ing steps:

1) Simulate the telescope scanning, involving the tele-
scope’s position and orientation (boresight) as a function
of time.

2) Simulate detector time streams acquired during telescope
scanning, which may comprise sky signal, instrumental
noise, and/or instrumental systematics. Modern tele-
scopes host tens of thousands of detectors recording
time-ordered data as the telescope scans the sky.

3) Reduce the time streams into pixelized sky maps, in-
volving noise mitigation through a process called de-
striping [16], and solving for intensity and polarization
in each of the observed sky pixels.

A. The TOAST codebase

TOAST is a large Python software framework used to
develop workflows (Python programs) for simulating and
reducing CMB data. Workflows are composed of pipelines that
call sequences operators one after the other on subsets of data.
It is distributed using MPI at the pipeline level, meaning that
we can ignore MPI while porting individual operators.

Each operator calls one or more computation kernels writ-
ten in C++, parallelized with OpenMP and bound to Python us-
ing pybind11 [17]. This means that the computation-intensive
operations are compartmentalized and can be replaced one at a
time. These kernels make use of a wide variety of numerical
components including linear algebra, fast Fourier transform
and random number generation.

Our immediate goal is to replace enough of the kernels so
that the dominant pipelines can run a sequence of operators
with intermediate data kept on the GPU. Furthermore, the
code should still be able to run on the CPU depending on
the hardware available to the user. For the satellite simulation
considered here, there are two large pipelines run for each
iteration of a conjugate gradient solver. Our eventual goal is to



achieve performance portability across GPU architectures from
the dominant vendors, as well as improved CPU performance
on manycore traditional architectures. The TOAST package
includes hundreds of unit tests and an integrated benchmark
suite. These enable us to test our kernel implementations for
correctness in a variety of use cases and compiler / Python
environments.

B. The test kernels

We ported the following 10 kernels, careful to preserve the
API of the original code, 8 of which will be used in our
benchmark:

e build_noise_weighted - accumulate noise-

weighted timestreams onto a sky map,

e noise_weight —scale timestreams with noise weights,

e pixels_healpix — translate detector pointing angles
into HEALPix [18] pixel numbers,

e pointing_detector — expand boresight pointing
into detector pointing angles,

e scan_map - scan a pixelized
timestream,

e stokes_weights_TI — return a trivial weight vector,

e stokes_weights_IQU — compute detector response
(weight) to intensity (I) and linear polarization (Q, U) on
the sky at the time of each time sample,

e template_offset_add_to_signal —scan a step-
wise noise offset solution onto a timestream,

o template_offset_project_signal — compute
the dot product between a set of noise offset steps and a
timestream,

o template_offset_apply_diag_precond — ap-
ply a diagonal preconditioner matrix to a noise offset
problem (a sparse linear system).

sky map onto a

C. GPU computing in Python

Previous studies on hybrid language codes have demon-
strated the feasibility and benefits of porting Python applica-
tions to GPUs. For example, the DESI project [19] ported its
Python-based data processing pipeline to run on GPU devices,
achieving a 20x improvement in per-node throughput com-
pared to a CPU-only implementation. Another notable case
is the PyFR project [20], a high-performance CFD framework
that uses code-generation for solving problems on unstructured
grids, targeting clusters of CPUs and NVIDIA GPUs.

Looking at previous studies and available libraries, we found
four main options to write GPU code in Python:

1) Using off-the-shelf kernels: When considering porting
a codebase to GPU, a common approach is to use off-the-
shelf kernels provided by libraries such as CuPy [21] and
RAPIDS [22]. CuPy provides an interface designed to be
as similar as possible to NumPy [14] and SciPy [23] while
supporting both NVIDIA and AMD GPUs (with experimen-
tal ROCm support). RAPIDS, built on CUDA, offers GPU-
accelerated data science workflows, allowing the replacement
of Pandas [24] with RAPIDS CuDF and Scikit-learn [25] with
RAPIDS CuML.

The primary advantage of using off-the-shelf kernels is
their ease of use and suitability for cases where the required
functionality is already available. However, there are some
drawbacks: the inability to write custom kernels tailored to
specific needs and potential performance losses due to the allo-
cation of intermediate values and increased data transfer. These
limitations may lead to suboptimal performance compared to
a fully optimized, custom-built GPU kernel.

2) Writing a kernel in a low-level language: Another
approach for porting a codebase to GPU is to write a kernel
in a low-level language, such as CUDA [26], OpenCL [27],
HIP [28], SYCL [29], or OpenMP target offload [2], and
then link it to Python. Libraries like PyOpenCL [30] or
PyCuda [30] can be employed to establish the connection
between the kernel and the Python code.

This method offers perfect control of performance and
allows developers to fine-tune their code for optimal results.
However, there are several downsides: it is difficult to reuse
numerical building blocks (such as random number genera-
tors, fast Fourier transform and linear algebra), it requires a
significant level of expertise to write performant and correct
code, and compiling and linking the result into Python can
be challenging. Additionally, some of these options lack
portability across different hardware architectures.

OpenMP target offload is of particular interest to us because
it maintains a relatively high level of abstraction and produces
portable code. Plus, since OpenMP kernels are already part of
the codebase, the linking work is completed, and developers
mainly need to add the device code to enable GPU accelera-
tion.

3) Writing a kernel in Python: For a more accessible
approach to writing GPU kernels, Python-based options such
as Numba [31] (applying their JIT compiler to a low-level
CUDA-like syntax), Taichi [32] (focussing on graphics), and
Triton [33] (offering a unique low-level syntax, diverging from
the CUDA model) can be used.

One significant advantage of these options is the ability
to maintain a full Python codebase, which simplifies code
management and reduces the learning curve for developers.
This streamlined approach can lead to a more maintainable
and accessible codebase, particularly for those with a strong
Python background. However, those options have in common
the fact that they drop down to a very low-level syntax,
which is a loss for accessibility, and they provide limited
(or non-existent) support for libraries and common numerical
operations.

4) Using a Deep-Learning library: Leveraging deep learn-
ing libraries such as PyTorch [34], TensorFlow [35], or
JAX [1] is an attractive solution as it is convenient, modern,
and well-documented approach to writing GPU kernels. Fur-
thermore, these libraries offer great support for most numerical
building blocks, including linear algebra, random numbers,
solvers, fast Fourier transforms, and complex numbers, which
can result in an ergonomic and easy-to-use Python kernel.

However, deep learning libraries are often disappointing
when used for straight numerical computations as they opti-



mize for training speed and come with a large overhead mostly
due to gradient computation and intermediate values.

JAX is an exception in this regard, as it builds on code
transformation and JIT compilation. Letting us avoid gradient
computation costs when we are not using the functionality and
simplifying intermediate values at compile time. This makes
it an attractive solution for GPU kernel development.

After considering various options for GPU kernel develop-
ment, we decided to evaluate JAX and OpenMP target offload
as the most promising candidates for our needs. OpenMP
target offload holds significant appeal due to its seamless
integration with our existing OpenMP-accelerated C++ ker-
nels and the absence of any additional compiler tool chain
requirements. On the other hand, JAX presents an opportunity
to maintain a single-source implementation in Python, which
can provide productivity benefits while targeting both CPU
and GPU platforms. By exploring these two approaches, we
aim to find a balance between performance, portability, and
ease of development in our codebase.

III. OPENMP TARGET OFFLOAD

The OpenMP specification [36] has supported a mechanism
for offloading data or computation to “target” computing
devices, such as accelerators and GPUs, since version 4.0.
As TOAST already utilizes OpenMP for CPU parallelism,
considering OpenMP target offload for porting TOAST to
GPUs was a natural choice.

A. Design

To use OpenMP target offload, compute-intensive code
kernels are labeled with directives (#pragma omp target
in C++) and enclosed in a structured block. Upon execution,
instructions in the code region are mapped to the target device
and executed. “Clauses” in the OpenMP directive allow control
over various aspects such as execution, data privacy, and
synchronization.

As demonstrated in other case studies [37], OpenMP target
offload is particularly attractive because it is designed to
abstract hardware details, enabling the same code to execute
across multiple target devices without modification. Further-
more, it can be combined with vendor-optimized GPU libraries
for BLAS, FFT, and other operations by passing device
memory pointers directly as their input.

B. OpenMP Target Offload Limitations

Although OpenMP target offload theoretically enables de-
velopers to port existing compiled code with minimal changes
and achieve performance gains across devices, such effortless
porting is only possible for simply structured and compute-
intensive code. Allocating device memory and moving large
buffers can be slow, and porting modular (unfused) lightweight
kernels requires careful data movement management outside
individual kernel blocks.

Although some compiler implementations (e.g. LLVM) do
attempt to use asynchronous data movement and kernel sub-
mission internally, achieving good overlap of kernel submis-
sion and execution often requires manually specifying data
dependencies. Advanced OpenMP techniques can push the
limits of currently available compiler support, but real-world
examples of such patterns are scarce.

C. The Porting Process

TOAST’s existing codebase contains OpenMP threaded
blocks in C++ for the most expensive parts of a typical
workflow. TOAST data simulation and processing operators
are intentionally modular and lightweight, allowing science
domain experts with minimal coding experience to drop-in
customizations for particular tasks while leveraging the rest of
the framework. When moving these kernels to target offload,
maintaining modularity was a goal.

TOAST Operator classes track required data in-
puts and outputs. A C++ singleton class was imple-
mented to manage device memory buffers allocated with
omp_target_alloc () and their host memory counter-
parts. This class provides methods for host-to-device and
device-to-host updates, creating, deleting and zeroing device
memory, and other helper functions. Higher-level TOAST
code (Pipeline class) can then use operator dependency
information to move data to/from the device after a sequence
of lightweight kernels. Furthermore, the largest memory ob-
jects (containing detector timestreams) support buffer re-use,
enabling repeated execution of kernel sequences for different
inputs while re-using intermediate data objects.

Because we are not yet using explicit data dependencies
inside kernel sequences, each sequence of kernels is submitted
to the default CUDA context and each kernel is run syn-
chronously, waiting for its completion before running the next
kernel. To simulate the performance that would be obtained
with asynchronous kernel dispatch, we are relying on multiple
MPI processes submitting kernels to each GPU concurrently.
Initially this over-subscription failed to improve performance.
This was due to the default behavior of the CUDA driver
which context-switches between processes, putting a ceiling
of one process per device on the performance. This was fixed
by introducing NVIDIA Multi-Process Service (MPS) [38],
automatically allocating a single set of storage and scheduling
resources on each device and funnels kernel submission from
multiple processes. Using MPS, we were able to effectively
oversubscribe the GPUs keep scaling our performance propor-
tionally with the number of process (see section VI-A).

The TOAST package already contained a compiled Python
extension using OpenMP threading. For OpenMP target of-
fload, additions were made to the build system to enable
target offload support at compile time when using a supported
compiler. After evaluating several compilers (NVIDIA NVC,
Clang, ROCmCC, GCC), we settled on NVIDIA NVC as it has
good support on Perlmutter and covers all of the functionalities
we needed for our kernels.



IV. THE JAX LIBRARY

JAX [1] is a Python library that provides a high level
interface designed to be as similar as possible to NumPy [14]
and SciPy [23] (similarly to CuPy [21]) coupled with a JIT
compiler to fuse kernels and elide intermediate results. It is
available for CPU, GPU (both Nvidia and an experimental
support for AMD) and some deep-learning focused alternative
architectures (TPU and specialized hardware). JAX is purpose-
fully high-level, it restricts the freedom of the developer (see
section IV-B) but, in exchange, separates the semantics of the
code (left to the developer) from its optimization (left to the
compiler).

A. Design

JAX requires kernels to be pure and statically composed
meaning that they do not have side effects and that the
computation can be expressed as a static data dependency
graph whose nodes are taken from a set of primitives.

To do so, it provides a set of primitives as well as NumPy-
and SciPy-like interfaces. One can write a program using those
operations and they will run individually, as CuPy operations
would. However, one can also JIT-compile a function written
using JAX primitives. When a JIT compiled function is called,
it is traced then transcribed into the “High Level Operations”
(HLO) intermediate representation' to be compiled by the
XLA [39] compiler which will then run it on the target
architecture (as seen on figure 1). Subsequent runs will reuse
the compiled function.

ﬂ n Compiling and
Tracing

JAX XLA optimizations

CPU
GPU
TPU

Fig. 1. JAX workflow.

Due to its NumPy and SciPy interface, it comes with out-
of-the-box support for linear algebra, fast Fourier transform
and random number generation (plus library support for MPI
via the MPI4jax library [40]) all of which are used within
TOAST.

B. JAX specific limitations

The assumption that the functions are pure and statically
composed introduces four strong limitations when writing JAX
code, some of which mattered to us as we are starting from
an existing codebase and striving to preserve the API of the
existing kernels:

!Interestingly, this representation encapsulates information on the shape of
the inputs and intermediate results meaning that the compiler can work with
full knowledge of the size of the tensors in play. In theory, this means that
the compiler could pick different loops to be parallelized depending on the
problem size.

1) Purity: Having all operation be pure means that common
operations such as updating an element of an array in place
are forbidden (as it would be, by definition, a side effect). JAX
provides alternative operations that create a new updated array,
such as x.at [idx] .set (y), that cover most use cases.

However, all of our kernels have output arguments that
should be modified in place. To preserve the kernel API
we had introduced a MutableJaxArray class that boxes
a JAX array such that one can read and set slices of data
as one would with a NumPy array. Internally, our kernels
pass the data inside the MutableJaxArray to pure JIT
compiled functions (using the donate_argnums option to
reuse memory when possible) that produce an output that is
then put back into the MutableJaxArray.

2) Conditional: Traced values are considered unknown at
tracing time, meaning that one cannot have a conditional
dependence on a value that will be traced.

JAX provide some primitives as well as the possibility to
mark an input as static (considered constant across calls to
the function and thus elided at tracing time) to deal with this
limitation.

In practice we have never felt strongly impacted by the
particular limitation.

3) Loops: The fact that conditionals cannot depend on
traced values also restricts the looping behavior but, similarly
to conditionals, JAX comes with primitives to work around
it and, in practice, it has not been a direct problem for us
(see IV-B4).

However, one needs to be aware of the fact that JAX will
unroll loops whose number of iterations is known at tracing
time. While easily avoided, this can lead to large accidental
increase of the compilation time (which is not desirable as the
compilation happens while the program is running).

4) Static array shapes: JAX expects to be able to know all
array shapes at tracing time, meaning that an array size cannot
be a function of data. For example, a programmer cannot pass
the beginning and end of an interval to extract it into a kernel.
This presented a problem to us as a large number of our kernels
consist of a loop over irregularly sized intervals

The simplest fix is to JIT only the body of the loop (where
the shape is known). This gave us adequate performance but
meant that some JAX operations would be performed outside
of a JIT compiled section, where they are significantly more
expensive, and that we would be less likely to saturate the
GPU with computation.

A better fix is to introduce padding and/or masking or to find
a way to make an array size deducible from statically known
elements. We thus decided to introduce a JaxIntervals
type that can be built from arrays of interval starting points,
ending points and a statically known maximum interval size
(meaning that the size of the padded array was known at
tracing time). This type can be used to extract intervals as
a single block, padded to the maximum interval size (using
either values from the array being sliced or user-provided
values when it matters to the subsequent algorithm), and
to update several intervals at once with new data (masking



data that is out of the interval). While this increased code
complexity, it also reduced our computing time significantly.

C. The porting process

The port was done in two steps, first from C++ to NumPy,
staying as close as possible to the original. Then, exploiting
the similarity between NumPy and JAX, from NumPy to JAX
turning loops into calls to vmap or xmap (vectorizing the
loop body, see section V-B and Appendix B for an example)
and removing side effects. Thorough the process, we used the
extensive unit tests available in the codebase to validate our
work after each step.

Interestingly, MPS was not needed to use several process per
device efficiently with JAX (contrary to OpenMP Offload as
seen in section III-C). Likely because JAX uses the NVIDIA
Collective Communication Library (NCCL) [41] natively to
deal with multi-device connections. The one modification we
did in order to oversubscribe devices smoothly is to deactivate
device memory preallocation. By default, JAX will preallocate
most of the device memory when started in order to construct
a memory pool but, it can results in out of memory errors if
one is not careful with allocation size when several processes
share the sane device. Deactivating the preallocation was the,
recommended, easiest way to deal with the problem and
our measurements shown no performance degradation (likely
because we batch most of our allocations at the beginning and
end of the pipelines).

Overall, writing the JAX code felt very productive, its use
of interfaces designed to be as close as possible to NumPy
made it extremely easy to find help implementing functionality
(one can search for help implementing any functionality in
NumPy first) and the design of the library let us focus
on the semantics of the operations and readability of the
implementation, knowing that the compiler would be able to
deal with missed optimization and wasteful copies.

On the flip side, this meant that there was very little
scope for optimization inside a JIT compiled function, as
optimization ends up pushed to the interface. If a JIT compiled
function does not perform as fast as desired, the main fixes
are pushing more operations into the JIT compiled section (to
remove inefficiencies at the interface), trying to keep the data
on GPU or trying to reduce data movement. The interface
between the JIT compiled function and the rest of the code is
where we found all of our performance bugs.

Overall we found it easy to deal with loops and conditionals
and, while it took some workarounds to deal with dynamic
shapes and mutability, the port was mostly straightforward.
Furthermore, it is our belief that, had the code been designed
with JAX in mind from the beginning, most of those work-
arounds could have been avoided.

V. PORTING THE TOAST CODEBASE
A. Framework-Agnostic Modifications

To ensure flexibility in our codebase and facilitate testing of
new GPU technologies, we developed a framework-agnostic

approach. This method introduces additional layers of indi-
rection but offers the advantage of allowing easy extension to
future accelerators, a crucial guarantee for long-running CMB
projects.

1) Abstraction Layers: We designed a runtime dispatch
system over kernels, enabling the selection of specific im-
plementations for the entire code, individual pipelines, and
kernels. Additionally, we created an abstraction layer for
memory operations, including allocation, deallocation, and
data transfer between devices. This layer allows us to manage
data movement within our pipeline in a framework-agnostic
manner.

2) Hybrid Pipelines: Each operator includes information
regarding GPU support and a list of input and output data
it handles. This information allows us to implement data
movement logic within our pipeline. By default, all GPU-
enabled operators are executed on the GPU. When an operator
is called, we ensure that the required data is in the correct
location (GPU or CPU). At the end of the pipeline, the final
output is transferred back to the CPU, and any leftover data
on the GPU is deleted.

This approach enables transparent handling of various
TOAST looping patterns (looping on detectors, then operators;
on operators, then detectors; on specific detectors only, etc.).
Additionally, it allows us to easily run only a subset of
operators on the GPU for testing and debugging purposes.
Lastly, it significantly reduces data movement compared to
the naive approach of transferring data to/from the GPU
whenever a GPU kernel is called (something that both JAX
and OpenMP Target Offload are able to do). In early tests,
this optimization resulted in a 40% speedup compared to a
naive implementation (confirming the well-known fact that
data movement is expensive).

3) Profiling: TOAST already included support for collect-
ing coarse timing information of functions (including gather-
ing that information across an MPI job) through the use of
a custom python decorator. This timing information can then
be dumped to a CSV file. We expanded on this functionality
with a script that merges several CSV files into a comparative
spreadsheet. This has been a tremendously useful and simple
tool to identify operations where our updated code spent a
suspect amount of time, allowing us to address performance
issues effectively.

B. Example kernel

The stokes_weights_IQU kernel is a good example of
the patterns found and used in the port.

Appendix A shows the OpenMP target offload version of the
code, omitting the code relevant to binding C++ to Python, the
CPU version of the code (a duplicate of the main loop without
the #fpragma omp target pragmas) and some edge cases
(also omitted from the JAX code). It consists of a loop over
detectors, intervals and samples within intervals. The loop
body (stokes_weights_IQU_inner) extracts a piece of
data using some indexing information, computes a result then
stores it in an output variable (weights).



1) OpenMP target offload: The OpenMP target offload
parallelization is fairly straightforward, we get pointers to the
device data, then parallelize a triply nested loop with pragmas.
The first two loops are distributed over GPU teams while the
inner loop is parallelized directly, as one would do on CPU.

2) JAX: The JAX port of the code (Appendix B)
might seem less intuitive but it illustrates several lay-
ers of indirection present in all our JAX kernels.
The stokes_weights_IQU_inner function is a fairly
straightforward port that reads nearly identical to our NumPy
implementation. It is parallelized over detectors, intervals
and samples using jax.xmap, vectorizing the loop body
over the loop axes (a common pattern in JAX code). The
function is called by a stokes_weights_IQU_interval
function whose sole purpose is to extract and update intervals
into a padded representation, using our JaxIntervals
class. This is JIT-compiled using jax.jit, specifying that
some inputs are static (such as the maximum size of the
intervals) and that JAX is allowed to recycle the memory
of the output parameter. Finally, stokes_weights_IQU
is our outer layer, reproducing the C++ interface. It uses
MutableJaxArray.to_array to insure that all inputs are
JAX or NumPy array (this is only needed when calling the
JAX kernels on CPU, to deal with TOAST specific datatypes
such as MPIShared arrays that deal with distributed data).

C. Analysis

Compared to our original OpenMP (CPU) kernels, JAX
kernels are on average 1.2 times shorter while OpenMP target
offload are on average 1.8 times longer’ as illustrated in
figure 2.
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Fig. 2. Number of lines of code per kernel.

The OpenMP target offload code shares inner function and
dependencies with the original code. Thus, all additional lines
of code inside kernels are due to the duplication of the
main loops and addition of the GPU specific pragmas and
statements. This means, as a very rough rule of thumb, that
the GPU specific logic took almost as many lines of code as

2Measured with cloc v1.82 [42], not counting empty lines and com-
ments.

the actual inner function (doing the numerical computations
inside our loops).

Meanwhile, the fact that the JAX code is shorter than our
original code, despite producing code that is both CPU and
GPU compatible and adding various layers of indirection, boils
down to JAX letting use a NumPy like syntax and high level
operations in Python. This leads to a large number of code
simplifications such as the fact that we do not have to compute
indices within multidimensional array manually.

Furthermore, looking at the code that is not a kernel
(seen in the difference between the two bars of figure 3)
we see that the JAX code used to implement dependencies
and GPU operations is significantly (3 times) shorter than the
corresponding OpenMP target offload code. This is explained
by the fact that we both require less dependencies (being able
to reuse Python libraries) and are implementing the logic in a
higher level language.

B Linesof code [ Lines of kernel code

3000

2000

Lines of code

1000

JAX OpenMP CPU  OpenMP Target Offload

Fig. 3. Number of lines of code per implementation. Lines of kernel code is
the number of lines used strictly in the kernel implementations while Lines
of code includes the dependencies of the kernels and the accelerator (data
movement, GPU related types, etc.) related code.

VI. RESULTS

The following measurements were made on GPU nodes of
the Perlmutter supercomputer. Each GPU node is equipped
with four 40 GB NVIDIA A100 GPUs, with 256 GB of CPU
memory, and a single AMD Milan CPU with 64 processors.

Measurements have been made on various problem sizes
of a satellite telescope simulation. This benchmark workflow
simulates the characteristic scanning motion of a space-based
CMB telescope and uses a typical instrument configuration
with a couple thousand detectors observing a simulated sky.
The data from each detector includes simulated signal from
the sky, simulated realistic noise, and other typical features of
the detector response:

o medium size — for all the single node runs, which uses

5 x 10° samples (roughly one terabyte of data)

o large size — for the 8 nodes run, which uses 5 x 100

samples (roughly ten terabytes of data)



The runtime includes everything from the time needed
to load the data to the time needed to export the outputs,
including the JIT compiling time for the JAX version of the
code and the MPI communication cost.

A. Number of process

Figure 4 gives us the evolution of the runtime when in-
creasing the number of processes. Note that the number of
threads per process is decreased proportionally as we increase
the number of processes: we go from one process using 64
threads to 64 processes using one thread each.

® JAX @ OpenMP CPU OpenMP Target Ofload
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6,000.00s

4,000.00s

Runtime (seconds)

2,000.00s

‘\\'\,_

1 5 10 50

0.00s
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Fig. 4. Runtime as a function of the number of processes, running the medium
problem size on 1 node.

The OpenMP CPU runtime decreases proportionally to the
number of process. While one might expect that it would stay
constant (as the CPU processing power stays constant, threads
decrease being balanced out by process increase), the decrease
is explained by the fact that a large number of operations are
serial within a process and are parallelized by the addition of
more processes at the price of increased memory use.

The JAX plot shows a similar behavior (note that it does not
fit on GPU memory when running with one and 64 processes).
Interestingly, it shows a 2x speedup up to 8 processes (two
process per GPU), demonstrating a benefit to oversubscribing
the GPUs. The speedup then slowly decreases to 1.7x (16
processes) then 1.4x (32 processes) as we progressively lose
the oversubscription benefit.

OpenMP target offload starts slightly faster than OpenMP
CPU for up to 4 processes (about 1.1x times faster) but it
plateaus slower than OpenMP CPU, reaching a speedup of
1.5x (16 processes) then 1.8x (32) processes, at which point
it becomes faster than JAX. This i slikely a sign that, while
OpenMP target offload does not make the kernels as fast as
JAX (as seen in the section VI-B), it has a lower overhead
(JAX overhead includes JIT compiling and check if a given
function has already been compiled for a given problem size)
which benefits it as the work get spread between processes.

We will use 16 process as our default for the rest of this
study as it is the default in most TOAST simulations.

B. Full benchmark

Figure 5 illustrates a run with a realistic problem size (about
10 terabytes of data spread over 8 nodes, using 16 process
per node). We see about similar behavior as when running a
smaller problem on one node and 16 processes: compared to
the CPU reference, JAX is 1.67x times faster and OpenMP
target offload is 1.47x times faster.
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Fig. 5. Runtime as a function of the kernel implementation, running the large
problem size on 8 node, with 16 processes per node.

Examining per-kernel performance (figure 6), we see
that JAX goes from a slight speed up (as low as
1.3x times faster for offset_add_to_signal, a ker-
nel doing very little computation) to 12x and 42x
speedups on some of the kernels that were most ex-
pensive to run on CPU (stokes_weights_IQU and
offset_project_signal respectively). This is in line
with the idea that we benefit further when we are able to
push more work onto the GPU (something confirmed by
the fact that we see benefits to oversubscribing the GPU).
pixels_healpix is the expensive kernel that benefits least
(a 9x speedup), this was however expected as this kernel has a
lot of branches, with dozen of variables declared per branches,
something which is known to be expensive on GPU.

Looking at OpenMP target offload, we see that it
is slower than our CPU baseline (1.9x times slower
on average) on all but the three most computation-
ally expensive kernels: stokes_weights_IQU (1.6x
times faster), pixels_healpix (2.3x times faster) and
offset_project_signal (10x times faster). Interest-
ingly, those kernels are expensive enough to make OpenMP
target offload faster than our CPU baseline.

Finally, while data movement to and from the device is
expensive, our pipelining infrastructure seems to be doing
a good job at minimizing this cost as most of the data
operations barely register on the plot. One noticeable exception
is accel_data_create (which allocates GPU memory
and moves data from host to device) being significantly slower
with JAX, taking about 15% of the JAX runtime. Looking into
it, we found a divergence in behavior between both of our
implementations (the OpenMP target offload implementation



recycles existing buffers, setting them to 0) which, we believe,
is fixable.

accel_data_create :
accel_data_delete
accel_data_reset
accel_data_update_device
accel_data_update_host
build_noise_weighted
noise_weight
offset_add_to_signal

offset_project_signal

pixels_healpix
pointing_detector

scan_map

stokes_weights_IQU
|

0.00s 50.00s 100.00s 150.00s

B JAX [ OpenMP CPU OpenMP Target Offload

Fig. 6. Total runtime for each kernel, running the medium problem size with
16 processes on 1 node. accel_data functions represent data movement
operations happening out of the kernels.

VII. DISCUSSION

Our experience has left us with the belief that high-level
frameworks can fulfill a niche in the Pareto front by commit-
ting to very high-level abstractions. OpenMP Target Offload,
occupying a somewhat intermediate position, appears to be
limited in its ability to provide access to low-level function-
alities that could result in improved performance, while still
granting enough leeway for performance pitfalls. We believe
it is best used on codebases with large preexisting OpenMP
kernels, as it allows for progressive updates to existing code
and can serves as a gateway to GPU computing. With further
effort, we might be able to achieve parity with the JAX
implementation. However, making the code run correctly and
performantly has proven to be time-consuming, especially
given the sparse compiler support, documentation, and usage
examples currently available.

On the other hand, we found JAX’s concept of imposing
restrictions on users to empower its compiler to be surprisingly
beneficial. These constraints did not prove problematic, even
when preserving the idioms of an existing mutability-oriented
codebase, and the JAX compiler excelled at generating per-
formant GPU code, with delegating larger portions of the
code to it consistently improving performance. This approach
enabled us to write efficient GPU code very productively, with
performance challenges primarily arising at the interface with
the JIT and during data conversion. JAX feels particularly well
suited for new Python projects which can be designed around
it: focusing on immutability and static sizes, opening the door
to code simplifications and JIT compiling as many things as
possible.

Despite the advantages of working with JAX, we encoun-
tered two noticeable drawbacks that are worth mentioning.
First, JAX’s CPU performance is roughly comparable to

single-threaded C++, making it too slow to run most of our
benchmarks with JAX CPU. Consequently, for our application,
we cannot currently rely on JAX for CPU runs. Second, JAX
splits the code into ad hoc internal kernels that are difficult
to map back to the JIT compiled function. This impedes the
use of conventional tools like Nsight [43], which could have
provided us with valuable per kernel information, such as
roofline plots, to analyze the JAX accelerated code.

Finally, for all implementations, we found that effective
profiling tools are invaluable for performance optimization.
We used custom, ad-hoc tools and decorators to compare
various code variants on an operation-by-operation basis, and
this proved to be the most significant productivity boost
throughout the project.

VIII. CONCLUSION

In this case study, we investigated the porting of 10 kernels
from OpenMP CPU to JAX and OpenMP target offload,
analyzing the performance of the resulting application.

We observed a 1.47x times speedup on a realistic benchmark
when using OpenMP target offload, getting individual kernels
— in particular the most compute intensive ones — to run
up to 10x times faster. The kernel code shares logic with
the preexisting kernels, resulting in a codebase about 1.8
times longer than the reference while staying fairly straight-
forward to read by someone used to OpenMP and the original
codebase. Overall, we believe that current compiler support
and documentation for OpenMP target offload are insufficient
(something also discussed in [37]), making the technology
challenging to use to its full potential, despite OpenMP’s
strong presence in shared memory parallelism and its extensive
user base.

On the other hand, JAX, a relatively new technology,
provided a 1.67x times speedup and accelerated individual
kernels by up to 42x times. The resulting code, despite con-
taining several layers of indirection, is 1.2 times shorter than
the reference, primarily due to Python and the NumPy API
being higher-level than C++ (simplifying loop bodies). While
JAX’s CPU backend needs further development for JAX to
become a comprehensive solution, it allowed us to concentrate
on semantics and readability within JIT compiled sections,
delegating performance considerations to the interface and data
movements.

In the short term, we are interested in fixing the
accel_data_create JAX performance and further explor-
ing the optimization of the OpenMP target offload backend to
determine the performance ceiling of each implementation. In
the longer term, if JAX’s CPU backend becomes competitive
with OpenMP CPU, it would be worthwhile to attempt a com-
plete removal of C++ dependencies from TOAST, simplifying
the codebase and transforming it into a Python-only appli-
cation. Moreover, we have not yet explored JAX’s automatic
differentiation capabilities, but since one of TOAST’s purposes
is experiment design and optimization, differentiating the code
to fit specific experimental parameters could prove valuable.



From a design perspective, we believe that JAX’s array-
oriented approach, applied to pure and statically composed
functions compiled with a JIT compiler, represents a promising
paradigm for GPU computing in terms of both productivity
and performance of the resulting application.
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APPENDIX

A. OpenMP target offload implementation of the stokes_weights_IQU operator.

*

/
Compute

@param
@param
@param
@param
@param
@param
@param

(size
@param
@param
@param

B A

{

* % % % %

@return
*/

void stoke

double

the Stokes weights for one (detector, interval, sample).

cal A constant to apply to the pointing weights.

quat_index Pointer to the array of detector quaternion indices (size n_det).
weight_index Pointer to the array of weight indices (size n_det).

quats Pointer to the array of detector quaternions (size ???+n_samp#*4).

hwp Pointer to the array of HWP angles (size n_samp).

epsilon Pointer to the array of cross polar responses (size n_det).

weights Pointer to the array of flat packed detector weights for the specified mode
n_det#*n_samp+3) .

isamp The current sample index.

n_samp Total number of samples.

idet The current detector index.

None (the result is put in weights).

s_weights_TIQU_inner (
cal,

int32_t const * quat_index,
int32_t const * weight_index,

double
double
double
double

const * quats,
const * hwp,
const * epsilon,
* weights,

int64_t isamp,
int64_t n_samp,

const
const
double
int32_

double
double

int64_-
quater
quater

double
double

double
double
double

off =
weight
weight
weight

VAT

int64_t idet
double xaxis[3] = {1.0, 0.0, 0.0};
double zaxis[3] = {0.0, 0.0, 1.0};
eta = (1.0 - epsilonfidet]) / (1.0 + epsilon[idet]);
t g_indx = quat_index[idet];
int32_t w_indx = weight_index[idet];
dir[3];
orient[3];

t off = (g_indx * 4 % n_samp) + 4 % isamp;

nion_rotate (& (quats[off]), zaxis, dir);
nion_rotate (& (quats[off]), xaxis, orient);
y = orient[0] * dir[l] - orient[l] % dir[O0];
x = orient[0] » (-dir[2] = dir[0]) +
orient[1l] * (-dir([2] » dir[l]) +
orient[2] » (dir[0] * dir[0] + dir([1l] =% dir[1l]);

ang = 2.0 *« (atan2(y, x) + 2.0 % hwp[isamp]);
cang = cos (ang) ;
sang = sin(ang);

(w_indx = 3 % n_samp) + 3 % isamp;

sloff] = cal;
s[off + 1] = cang * eta * cal;
s[off + 2] = sang * eta * cal;

* Compute the Stokes weights for the "IQU" mode.

*
* @param

quat_index Pointer to the array of detector quaternion indices (size n_det).



62 * @param quats Pointer to the array of detector quaternions (size ???+n_sampx*4).

63 * @param weight_index Pointer to the array of weight indices (size n_det).

@param weights Pointer to the array of flat packed detector weights for the specified mode
(size n_det+n_samp*3) .

*

64

-
65 * @param hwp Pointer to the array of HWP angles (size n_samp).
66 * @param epsilon Pointer to the array of cross polar responses (size n_det).
67 * @param cal A constant to apply to the pointing weights.
68 * @param intervals Pointer to the array of intervals to modify (size n_view).
69 * @param n_det Total number of detectors.

70 * @param n_samp Total number of samples.

71 * @param n_view Total number of intervals/views.

72 *

73 * @return None (the result is put in weights).

74 */

75 void stokes_weights_TIQU (

76 int32_t const * quat_index,

7 double const * quats,

78 int32_t const * weight_index,

79 double » weights,

80 double const * hwp,

81 double const * epsilon,

82 double cal,

83 Interval const x intervals,

84 int64_t const n_det,

85 int64_t const n_samp,

86 int64_t const n_view

87 ) |

88 auto & omgr = OmpManager: :get ();

89 int dev = omgr.get_device();

90

91 double * dev_guats = omgr.device_ptr (quats);

%2 double * dev_weights = omgr.device_ptr (weights);

93 Interval * dev_intervals = omgr.device_ptr (intervals);
94 double * dev_hwp = omgr.device_ptr (hwp);

95

96 # pragma omp target data \

97 device (dev) \

98 map (to: \

9 weight_index[0:n_det], \

100 quat_index[0:n_det], \

101 epsilon[0:n_det], \

102 cal, \

103 n_view, \

104 n_det, \

105 n_samp \

106 )

107 {

108 # pragma omp target teams distribute collapse (2) \
109 is_device ptr( \
10 dev._weights, \
I dev_quats, \
112 dev_hwp, \
13 dev_intervals \
114 )

115 for (int64_t idet = 0; idet < n_det; idet++) {

116 for (int64_t iview = 0; iview < n_view; iview++) {
17 # pragma omp parallel

118 {

119 # pragma omp for default (shared)

120 for (int64_t isamp = dev_intervals|[iview].first;
121 isamp <= dev_intervals[iview].last;
122 isamp++) {

123 stokes_weights_IQU_inner (

124 cal,

125 raw_quat_index,

126 raw_weight_index,



127
128
129
130
131
132
133
134
135
136
137
138
139

36

40
41
42
43
44
45
46
47

dev_quats,
dev_hwp,
raw_epsilon,
dev_weights,
isamp,
n_samp,
idet) ;

B. JAX implementation of the stokes_weights_IQU operator.

def stokes_weights_IQU_inner (eps, cal, pin, hwpang) :

mwn

Compute the Stokes weights for one (detector,interval,sample).

Args:
eps (float):
cal (float):

pin (array, floaté4):

hwpang (float

Returns:

The cross polar response.

A constant to apply to the pointing weights.

64) : The HWP angle.

The array of detector quaternions (size 4).

weights (array, floaté64): The detector weights for the specified mode (size 3)

mmn

# applies quaternion rotations

zaxis = jnp.array([0.0, 0.0, 1.01)

dir = quaternion_rotate(pin, zaxis)

xaxis = jnp.array([1.0, 0.0, 0.01])

orient = quaternion_rotate (pin, xaxis)

# computes by and bx

by = orient[0] x dir[l] - orient[1l] % dir[O0]

bx = orient[0] * (-dir[2] * dir([0]) + \
orient[1] * (-dir[2] * dir[1l]) + \
orient[2] * (dir[0] % dir[O0] + dir

# computes detang

detang = 2.0 * (jnp.arctan2(by, bx) + 2.0 * hwpang)

# creates weights
eta = (1.0 - eps)

weights = jnp.array([cal, jnp.cos(detang) = eta * cal,

return weights

# maps over samples,

/ (1.0 + eps)

intervals and detectors

stokes_weights_IQU_inner = jax.xmap (stokes_weights_IQU_inner,

def stokes_weights_IQ

mn

Process all the 1

in_axes=[['detectors'],

fooc

['detectors', '"intervals', 'interval_size', ..

—

1, # cal

quats

jnp.sin(detang) * eta » call)

# epsilon

["intervals', 'interval_size']], # hwp

out_axes=['detectors', 'intervals', 'interval_size', ...

U_interval (quat_index, quats, weight_index,

interval_starts,

ntervals as a block.

interval_ends,

weights, hwp, epsilon,
intervals_max_length) :

-1y

1)

cal,

#



Args:
quat_index (array, int): size n_det
quats (array, double): size ???xn_sampx*4
weight_index (array, int): The indexes of the weights (size n_det)
weights (array, floaté64): The flat packed detectors weights for the specified mode
— (size n_det+n_samp*3)
hwp (array, floaté64): The HWP angles (size n_samp) .
epsilon (array, float): The cross polar response (size n_det).
cal (float): A constant to apply to the pointing weights.
interval_ starts (array, int): size n_view
interval_ends (array, int): size n_view
intervals _max_length (int): maximum length of an interval

Returns:
weights (array, floaté64)

mmwn

# extract interval slices

intervals = JaxIntervals (interval_starts, interval_ends+1l, intervals_max_length) # end+]l
— as the interval is inclusive
quats_interval = JaxIntervals.get (quats, (quat_index,intervals,ALL)) #

— quats[quat_index,intervals, :]

67
68
69
70

94
95
9%
97
98
99

100

101

102

103

104

hwp_interval = JaxIntervals.get (hwp, intervals) # hwp[intervals]

# does the computation
new_weights_interval
hwp_interval)

stokes_weights_IQU_inner (epsilon, quats_interval,

# updates results and returns

# weights[weight_index, intervals, :
JaxIntervals.set (weights,
return weights

= new_welghts_interval

(weight_index, intervals, new_weights_interval)

# jit compiling
stokes_weights_IQU_interval jax.jit (stokes_weights_IQU_interval,
static_argnames=["cal",

donate_argnums=[3])

"intervals_max_length"],
# donating weights

def stokes_weights_IQU_jax (quat_index,
intervals,

weight_index,

Compute the Stokes weights for the "IQU" mode.

size n_det
size ???+n_samp*4
The indexes of the weights (size n_det)
The flat packed detectors weights for the specified mode

quat_index (array,
quats (array,
weight_index (array,
weights (array,
(size n_det#+n_samp*3)
hwp (array,
intervals (array,
epsilon (array,
cal (float):

The HWP angles (size n_samp).

The intervals to modify (size n_view)
The cross polar response (size n_det).

A constant to apply to the pointing weights.

Interval) :

None (the result is put in weights).

# prepares inputs

intervals_max_length INTERVALS_JAX.compute_max_intervals_length (intervals)

quat_index_input MutableJaxArray.to_array (quat_index)
quats_input = MutableJaxArray.to_array (quats)
weight_index_input = MutableJaxArray.to_array (weight_index)
weights_input = MutableJaxArray.to_array (weights)

hwp_input = MutableJaxArray.to_array (hwp)



109
110

112
113
114
115
116
117
118
119
120
121
122

epsilon_input = MutableJaxArray.to_array (epsilon)

# runs computation
weights[:] = stokes_weights_IQU_interval (
quat_index_input,
quats_input,
weight_index_input,
weights_input,
hwp_input,
epsilon_input,
cal,
intervals.first,
intervals.last,
intervals_max_length)



