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Abstract—Although containers provide many operational ad-
vantages including flexibility, portability and reproducibility, a
fully containerized ecosystem for HPC systems does not yet exist.
To date, containers in HPC typically require both substantial
user expertise and additional container and job configuration. In
this paper, we argue that a fully containerized HPC platform is
compelling for both HPC administrators and users, offer ideas for
what this platform might look like, and identify gaps that must be
addressed to move from current state of the art to this containers
everywhere approach. Additionally, we will discuss enabling core
functionality, including communicating with the Slurm scheduler,
using custom user-designed images, and using tracing/debuggers
inside containers. We argue that to achieve the greatest benefit
for both HPC administrators and users a model is needed that
will enable both novice users, who have not yet adopted container
technologies, as well as expert users who have already embraced
containers. The aspiration of this work is to move towards a
model in which all users can reap the benefits of working in a
containerized environment without being an expert in containers
or without even knowing that they are inside of one.

Index Terms—Containers, High-Performance Computing

I. INTRODUCTION AND BACKGROUND

The advent of Linux containers has resulted in a ma-
jor paradigm shift in software development and deployment
architectures. They have also made inroads into the High
Performance Computing (HPC) community. Today, use of
containers positively impacts many aspects of HPC systems,
on both the administrator and user side. For example, at
NERSC, containers improve operational efficiency and are
used to deploy critical services on the Perlmutter supercom-
puter [1], including the Slurm batch scheduler, system and
network monitoring, and an image gateway for user container
images. For users, container runtimes are available and used
at many research computing facilities, including Singularity
[2] at OLCF, Singularity, Charliecloud, and Podman at Sandia
[3], Charliecloud at LANL [4], Sarus at ETH Zurich [5],
and Shifter [6] and Podman-HPC [7] at NERSC. It is well-
demonstrated that containerized HPC workloads achieve good

performance with virtually no overhead [3], [8]. For certain
types of workloads, containers can even outperform bare-
metal jobs by eliminating metadata contention when using
interpreted languages with libraries on shared filesystems
[6]. Users also take advantage of containers for increased
productivity by bundling and sharing the runtime dependencies
of a shared HPC workload with collaborators and by insulating
their workloads from system software changes. Despite the
many benefits already realized, we believe that containers can
provide even more flexibility and advantages for HPC when
given a more central role in system design and functionality.

For those used to working with bare-metal systems, thinking
in a container-centric way can feel somewhat alien. At first
glance, using containers seems to add substantial complexity
for little payoff. However, containers have powerful properties
including process isolation and portability. When used as
the fundamental system building block, containers can create
resilient and flexible systems, as has been demonstrated by
the commercial cloud over the last decade. Although there
has been growing interest in containers within the HPC com-
munity, we have been relatively slow to embrace a container-
based system.

The idea of deeper container integration is not unique in
the HPC community- other work is ongoing in this area. The
HPC system integrator Hewlett Packard Enterprise (HPE) is
envisioning container-based approaches, both on the system
administrator side with their User Access Instances (UAIs)
[9] and the user side via their EX Urika Capsules framework
[10]. HPE has also begun considering how they can package
and distribute their programming environment via container,
including how to handle licenses for proprietary software
included in their current system stack.

In this paper we will argue for a containers everywhere
system strategy in which containers are the fundamental
building block of an HPC system. We examine the benefits
such a system could bring to HPC administrators, system



staff, users with existing container expertise, and novice users.
We take a realistic look at the requirements such a system
would have and discuss the technical work needed to enable
this vision. We project several milestones for implementing
these ideas, starting from a minimum viable product and
ending at the so-called ”kitchen sink” model which includes
all possible functionality. Finally, we will discuss notable
technical challenges and open questions related to achieving
a containers everywhere vision.

II. DESIGN REQUIREMENTS

A containers everywhere strategy for operating an HPC
system would necessarily touch many aspects of the system
and have many stakeholders. In this section we develop
design requirements for such a scheme. First, stakeholders
are identified. Next, we outline potential motivations for each
category of stakeholder. Third, we outline several example use
cases for a containers everywhere approach. Last, we arrive
at a list of several attributes and develop example milestone
targets that we would expect a containers everywhere road
map to have.

A. Stakeholders

We believe that the impacts of containers broadly fall into
one of two stakeholder bins: HPC operators and HPC users.
Within the HPC operator category, we distinguish between
administrators with rootful privileges and center staff who
provide software or services but do not have root access to the
system. It is additionally useful to distinguish between HPC
users who have experience with containers and containerized
development and HPC users who are relative novices with con-
tainers. We are left with four primary stakeholder categories:

• HPC Admin - An HPC administrator
• HPC Staff Member - An HPC systems engineer providing

services, software, or other support
• Experienced Container User - An HPC user who is

experienced with the use of containers
• Novice Container User - An HPC User who is a novice

with the use of containers
In the remainder of this paper, and especially in this

requirements section, we consider these perspectives.

B. Motivations

Several motivations are present to adopt a containers every-
where strategy for operating an HPC center. In their current
state of adoption, containers already bring significant advan-
tages to the HPC space, but we argue that many benefits are
not being fully realized without the full integration of container
orchestration as a primary operational tool. Below we highlight
several areas in which containers have unrealized potential for
HPC operation.

1) Motivations for HPC Users: A containers everywhere
approach creates advantages for users experienced with con-
tainers and for container novices alike. Users are already
realizing benefits of using containers within batch jobs at many
HPC centers. At NERSC in 2022, 857 unique users launched

Shifter containers out of 5292 unique users who ran a batch
job. This number is trending up from previous years.

a) User Control: Although using containers allows users
control over the software runtime of their workloads, bring-
ing custom packages into the development environment can
continue to be challenging for users. The programming en-
vironment in HPC centers is often a collaborative effort
managed by a menagerie of tools, including package managers
like conda and spack, modules, and PATH management.
Packaging the programming environment in containers would
not only allow HPC administrators to decouple packaging
from deployment, but also allows users more customization
via user provided images. Beyond custom packages, users can
also run processes inside containers as root, which may enable
use of some software which is otherwise difficult to provide
on a multiuser system. Users who wish to isolate themselves
from system software updates can use containers to provide a
stable development and runtime environment.

b) Enhanced User Collaborations: Enabling users to
build custom programming and development environments
provides opportunities for small teams or large collaborations
to easily share software and custom tools, overcoming a major
barrier of providing their teams with a uniform software
environment. It also enables developers of common software
packages like cp2k [11] to prioritize distributing official con-
tainers rather than trying to curate installation instructions for
a wide array of HPC systems.

c) Containers Democratized: A more integrated con-
tainers everywhere approach has the ability to present the
containerized environment in a way that “feels like” a tra-
ditional bare-metal HPC environment. This would provide
some of the advantages of containers, such as process isolation
and environment reproducibility to users who are novices in
container technology, while experienced container developers
could leverage substantially more flexibility. Some novice
users might not even realize they are using containers.

2) Motivations for HPC Operators: From the perspective
of a systems administrator or staff member at an HPC center,
many of the common advantages of containers and container
orchestration apply and are discussed below.

a) Decoupling System Management and User Environ-
ment Management: One chief benefit of moving towards a
containers everywhere approach is that it allows the decou-
pling of system management from the user environments.
Additional staff and even users can help to manage and
curate the user environment by providing container images.
Container versions can move at their own natural cadence and
no longer need to be tethered to major system updates that
may require outages. This also means critical updates to the
base system OS that may be needed for security or stability
reasons can move more nimbly with less risk to disrupting the
user environment. This would greatly reduce the burden placed
on the system staff and allow responsibilities for maintaining
the user environment to be more distributed.

b) System resilience and robustness: Container orches-
tration provides significant advantages to system resilience



and operational robustness. Using declarative orchestration
for critical services has the potential to improve up-time by
automatically rescheduling failed instances based on program-
matic health checks. In particular applications which have been
designed as a collection of microservices, individual microser-
vice components can fail or be restarted without bringing
down the entire service. Having a container orchestration
layer would also provide a means of removing hardware and
having services automatically rescheduled onto other cluster
resources, making rolling maintenances easier to carry out.

c) Testing and deployment: Containerizing software at
both the system level and in the programming environment
makes it easier to do integration tests before committing to
upgrade the entire HPC system to new software versions.
Rather than relying on filesystem paths and per-application
configurations to choose software versions for testing, a small
subset of the supercomputer can test new versions in contain-
ers, and easily revert to the latest stable versions after testing
is complete. Dynamically allocating resources to test versions
in containers this way would reduce the need for standalone
development and staging hardware, and allow more resources
to be allocated to the main user system. Common integral
components of an HPC system such as batch schedulers,
monitoring, and global configurations can be handled with this
treatment.

d) Versioning software and services: Beyond just inte-
gration testing, using containers has advantages for packag-
ing and versioning software and scripts provided by HPC
operators. Using containers and container orchestration for
versioning allows packaging not just the software version
but also the configuration details, runtime environment, and
deployment details into static images and markdown language
files for easy reproducibility and tracking. Complex software
developed or customized at an HPC site, such as Jupyter,
Globus, or web-portals, stand to gain the most from leveraging
containers for versioning and deployment in this way.

e) Synergy with cloud infrastructure: A significant ad-
vantage of using a container orchestration framework, such as
Kubernetes, underneath system software and services would
be synergy with cloud container platforms. This would enable
us to leverage a great deal of existing software, infrastructure,
practices, and standards without needing to reinvent the wheel.
Possibilities include being able to burst to the cloud, and
deploying HPC-like clusters in the cloud for prototyping and
testing new software and architecture.

C. Use Cases

To help provide direction and test different design concerts
we have outlined several use cases that should be supported by
the containers everywhere approach. The use cases specifically
reference the stakeholders outlined in Section II-A.

Many of the use cases presented would generally be achiev-
able with any HPC system today, but are still listed here as a
container-based system must also satisfy them. Other use cases
detailed here are aspirational- they are most likely possible to
achieve using containers but would be not be feasible without

signficant effort using existing tools. Underlying these use
cases is the principle that users should be able to choose from
a spectrum of options that requires little to no experience with
containers, but enables users to unlock flexibility and control
as they gain expertise.

1) Interactive Login: A Novice Container User wants to
easily gain access to the HPC center by logging in to an
interactive session. In this case, the user will need a behind-
the-scenes mechanism which decides what environment to
place them in, and what aspects of their environment are
ephemeral or persistent. Typical examples of interactive login
would be via SSH, a remote desktop client, or a web portal
like Jupyter.

2) Routine File Editing: Once in an interactive session a
Novice Container User wants to edit some simulation source
code files. They must have access to persistent storage or
shared filesystem containing their files, as well as text editing
tools.

3) Code Building: After editing source code, a Novice
Container User wants to compile their HPC application using
traditional compilers and approaches. They require access to
a compiler and appropriate libraries for their programming
model. This could require contact with a license server for
proprietary compilers.

4) Running a Compiled Application: After compiling their
application, a Novice Container User wants to run it and
get results. They may want to run interactively or launch a
batch job. The Novice Container User will need a way to
interact with a scheduler and provide the parameters of their
job in a simple script or specification, as well as specifying
or inheriting sensible defaults for the runtime environment.

5) Debugging and Performance Analysis: After a job runs,
a Novice Container User sees an error in the results or unde-
sirable performance. They would like to carry out traditional
runtime inspection techniques, such as attached debugging, in-
strumented performance analysis, or stack tracing, to improve
their code.

6) Running a Metadata-intensive Application: A Novice
Container User has an analysis routine written in large Python
package like AstroPy or PyTorch, and would like to run
it in parallel at potentially very large scales in an efficient
way. They will need a mechanism to ensure that the required
subpackage metadata are available to all the workers in the job
without filesystem contention being a significant bottleneck.

7) Sharing Data Collaboratively: A Novice Container User
wants to share simulation results or other data with colleagues.
Their containerized session must have some means to share
filesystem access and user identity with their collaborators.

8) Composing A Development Environment: A Novice
Container User wants to recompile their code using a different
compiler. Progressively more advanced users should have the
ability to compose environments that contain precisely the
versions of tools and libraries they desire. Ideally this should
not require learning advanced container development methods.

9) Sharing A Composed Development Environment: An
Experienced Container User who has composed their own



TABLE I
EXAMPLE MILESTONE TARGETS FOR containers everywhere

Minimum Viable Simple, Loveable, Complete Kitchen Sink

Minimal impact to Novice Container User Users may customize login env containers User specified resource access control
Secure: all user containers in user namespaces Containers-in-containers Kubernetes-in-Kubernetes
Default login and development env in container User env/system software containers decoupled Fully containerized system software
Compute jobs in containers Service Plane (Staff Accessible) Service Plane (User Accessible)
Session management

tailored development environment wants to formalize using
the same set of tools across a research collaboration. They
require the ability to version and save the set of tools they
are using, and to distribute it in a way that is accessible to
colleagues, and would like to do so in a container.

10) Persistent Complex Services: An Experienced Con-
tainer User wants to run a custom, complex, multi-process
service to help with a data processing pipeline, or automate
HPC work on the receipt of new data. They require a frame-
work for easily launching this service, monitoring it once its
running, and stopping or restarting it when necessary, and they
would like to use Helm so they can easily redeploy the service
in other places, including the public cloud.

11) Custom-building a HPC Runtime Environment: An
Experienced Container User has very specific performance
requirements and wants to install specific versions of HPC
libraries, such as MPI and libfabric. They need access to a
performant filesystem and a way to distribute these versions
to the workers in their batch job. They would like to install
their specific library versions in a container, so they can use
it reliably when needed and revert back to the default HPC
center environment otherwise.

12) Advanced Resource and Access Control: An Experi-
enced Container User wants to build complex access control
tooling into their collaborative environment. The user collab-
oration has irreplaceable data, and only specific jobs should
have write access to this filesystem area while other arbitrary
jobs may have read only access. The user would like to restrict
write access to only automatically triggered jobs using pre-
tested routines to avoid any accidental loss of data. Similarly,
the Experienced Container User may want to use network-
based controls to ensure that any services or APIs are protected
from external access or can only be accessed by properly
authorized clients.

13) High-Availability During Cluster Maintenance: An
HPC Admin wants to restart or update a core system service
with a rolling deploy, with the goal of having improved avail-
ability on the system by avoiding a system-wide maintenance.
This requires a way to control and orchestrate deployment of
the service, such that it can pushed to nodes in the system as
they become empty or available.

14) Sandboxing System Update Tests: An HPC Admin
wants to test updated system software on the production
system without using a dedicated staging system or a dedicated
maintenance window for the production system. Their goal

is to avoid downtime and to provide as much hardware as
possible to the production system when tests are not being
carried out.

15) Sandboxing Non-Administrative Staff: A busy HPC Ad-
min wants to sandbox a section of the production system for an
HPC Staff Member to safely experiment with untested system
software. The time of the HPC Admin is often in demand,
and they would like to share responsibilities with a much
larger pool of staff members without risking the integrity of the
production system by granting full administrative privileges.

16) Update a Staff Provided Service or Software Package:
An HPC Staff Member wants to provide a new library or
service level software in the user development environment,
without any possible disruptions to existing user sessions, and
without deprecating prior versions. Examples of such software
or services might include a new Python base image, a new
database client base image, or a new compiler base image.
Ideally, this build and version release process could be done
at any time, completely separate from its deployment and from
system maintenance.

17) Troubleshoot a User Session: An HPC Staff Member
has received a ticket from a Novice Container User and
wants to help troubleshoot the user’s problem. The HPC Staff
Member requires access to the user’s environment and current
session to inspect what is going on.

D. Design Milestone Targets
The use cases outlined in subsection II-C motivate specific

design requirements for a containers everywhere HPC strategy.
We group these design features by priority into three sequential
milestone targets: (1) the Minimum Viable Product (MVP),
which is the minimum implementation that would technically
function, (2) the Simple, Loveable, Complete (SLC) product,
which is the minimum implementation beyond the MVP,
which users would actually use and adopt, and (3) the “Kitchen
Sink” (KS) target, which goes beyond the SLC to include nice-
to-have features and other aspirations. Design requirements are
shown, sorted by milestone target, in Table I.

Despite anticipated growing pains with the operational
refactor represented by a containers everywhere approach,
achieving functional parity is a basic requirement of what
we propose. We recognize the need to avoid disrupting the
current functioning workflows of HPC users, and so mini-
mizing negative functional impact is a key constraint on our
design. Similarly, any changes in the HPC control plane must
provide operational feature parity. Another core concern is



that the containers everywhere approach cannot introduce any
significant new security risks. To achieve this, we anticipate
all user containers will be operated in user namespaces, which
disallow administrative kernel capabilities and grant equivalent
filesystem and execution permissions to what a user would
have in the bare-metal multiuser system.

When considering use cases from the four stakeholder roles,
we are assuming different functionality depending on context
in the HPC system. It is useful to consider four spaces:

1) HPC System Administrative Control Plane
2) User-facing Login and Development Environment
3) Compute Allocations
4) Non-privileged Service/Workflow Plane

Some additional design targets emerge when considering these
spaces. For example, the decision point to use containers in
the Administrative Control Plane is separate from the other
spaces, since the control plane is already isolated in most HPC
deployments. The idea of a non-privileged service/workflow
plane naturally emerges from Kubernetes, but is optional, and
not something typically integrated with a production HPC
system today. A containerized login environment means that
the user may not be able to infer the host they are on,
and strongly implies the need for user sessions and session
management. The necessity to manipulate compute jobs or
service deployments from the login environment implies a
containers-in-containers scheme if all spaces are containerized.
Having conceptual separation of these spaces is important for
identifying appropriate progressive steps in an implementation
road map.

In the next section, we discuss possible implementation
schemes to approach these design target milestones.

III. IMPLEMENTATION

In the previous section we laid out some of the attributes
and use cases a containers everywhere should support. In
this section, we describe some of the components, tools, and
software artifacts that are needed to support this vision.

A. Curated User Development Environment

A fully-containerized user experience requires that there
are container images that encapsulate the user environment,
providing the tools and libraries for the user to interact with
the system. We expect that some of these images would
mimic existing non-containerized user environments so that
early adopters could easily transition to the new model.
NERSC is already exploring managing user environments
with containers. There is also prior work and tools that
could play a role, for example, the E4S SDK provides one
sample environment [12]. HPE has also developed prototype
containerized environments (Capsules) but has not yet made
these a full product [10].

B. Composable Images

In addition to curated environments, we envision tools that
allow users to easily compose images. Existing software pack-
age managers such as Conda/Mamba, Spack and Easybuild

could play a role. Ideally, users should be able to easily
express which tools, software and versions they require and
the compose tools should help to instantiate an appropriate
environment. Mechanisms could be through manifests, GUIs
or wizards.

This is also a pragmatic concern, as very large container
images are more difficult to move, store, and load, so it is
undesirable to have a large monolithic image with several
software versions. In additional to image composition, in some
cases packages could be dynamically loaded into the container
at run time. Allowing composability at run time would also
allow injecting proprietary vendor software as binaries, with-
out concerns of users redistributing it in images. There are a
number of ways run time injection could be achieved, via OCI
hooks, through container volumes, filesystem mounts, or even
importing software stored in other containers.

C. Image and Session Management

A key component of this architecture is a service or set of
services that assist in managing the list of available images and
defining and managing sessions. The definition of a session
would include aspects such as the image, accessible volumes,
network access, environment variable settings, injection of
libraries for accelerators or interconnects, etc. These could be
defined through a variety of methods including simple YAML
files, web-based GUIs integrated into a user management
system (e.g. NERSC’s Iris system), and command-line based
tools. HPC staff would provide default templates that cover
the most common scenarios and patterns. A session manager
would also assist in instantiating sessions and assist proxy
services in routing connections to the appropriate session. See
Figure 1 for how the session manager fits in the proposed
architecture.

D. Session Proxy Service to Containers

Another key component is a session proxy, or potentially
multiple instances, that manage routing connections to the
appropriate back-end container. Currently, SSH is an extremely
common method of accessing the system and would be the
first client to consume the Session Proxy, however it could
also interface with other login vehicles like remote desktop
sessions, or web portals such as Jupyter.

For connecting SSH sessions, running an SSH daemon in
every user environment container would be impractical and
requires administrative system capabilities. Instead, a session
proxy can catch incoming SSH connections and then request
that a user session be started, and route the incoming user into
the session via a container exec. This is similar to the model
used in ContainerSSH [13] and this could serve as an initial
prototype. But ContainerSSH lacks several important features.
For example, it doesn’t currently support reconnecting to
already running containers. Therefore, this is one area where
we anticipate some development is required. See Figure 1 for
how the session proxy fits in the proposed architecture.



Fig. 1. Diagram of the proposed Session Proxy architecture

E. Jupyter

Recently more users have accessed NERSC via Jupyter than
via SSH. We expect this trend will continue and anticipate
needing to integrate Jupyter with our containers everywhere
vision.

Today, Jupyter users land in a JupyterLab session that is
run on a bare-metal login node, and can run custom Python
kernels, which may or may not be containerized. Using a
containerized python kernel does require some manual config-
uration by the user by manually write a kernelspec file which
specifies their desired image. The image may be custom or off
the shelf. The kernelspec will supply the container name, the
kernel name, and location of the Python binary to Jupyter. In a
containers-first future, it would ideal if these kernelspecs were
automatically generated based on all images in a designated
NERSC registry. This would require some introspection to
locate the Python binary and choose a sensible kernel name.

By integrating the JupyterHub manager with the proposed
Session Proxy, the outer JupyterLab service could also be run
in a container. This would allow users to bring their custom
user environment tools into the Jupyter context. Sample archi-
tecture showing JupyterHub integration with Session Proxy is
shown in Figure 2.

The JupyterHub service is currently being run in NERSC’s
Rancher 2 Kubernetes cluster and is well-suited as a container-
ized service.

F. Batch Integration

Batch integration with containers spans multiple areas and
use cases. One aspect of integration is to provide a seamless
user experience when submitting and running jobs from a
containerized environment. Another is how scheduling and

placement of containerized services are controlled by the
scheduler to ensure optimal resource utilization vs availability.
We will discuss each of these.

1) Seamless User Experience: One major shortcoming to-
day is that NERSC container users are unable to directly
interface with our Slurm scheduler from inside their Shifter or
Podman-HPC containers. This is because the Munge perimeter
needed for secure authentication with the scheduler does not
extend into the running container.

Over the past year or so, SchedMD has been developing
more direct support for containers within Slurm jobs [14].
Using Slurm container support would enable processes inside
the running container to issue srun, sbatch, and similar
commands since Slurm’s OCI scrun solution runs within
the Munge perimeter. One shortcoming of this solution is
that Slurm container support is in its infancy, and does not
support many of the more advanced requirements of HPC
users- e.g. running multiple processes per container in an MPI
application, or being able to use multiple containers per job.

An alternative to relying on container support within the
scheduler itself is working to enable scheduler support within
container runtimes like Podman-HPC. One current way this
can be accomplished at NERSC is with a workaround that
sets up a sidecar container that is meant to proxy the requests
to and from the scheduler [15]. This could be enabled via a
Podman-HPC module, but since in a containers everywhere
future users will land in a container when they log in to the
system, one could argue that this capability to interact with
the scheduler should be always on by default.

Further batch system integration would be required to make
the experience feel seamless, and to allow users to select a
development login environment. The batch executor would



Fig. 2. Diagram of integration of JupyterHub with the proposed Session Proxy architecture

need to track the users session container, and, if no other
image is specified to use, import the current session as the
default batch environment.

2) Orchestration Integration: If using container orchestra-
tion in a user facing way, there is also a broader question of
how to resolve the HPC scheduling paradigm with Kubernetes
[16]. Most batch systems address the problem of resource
scarcity, and attempt to achieve high hardware utilization.
This often results in jobs waiting in a queue. By contrast,
Kubernetes anticipates adequate resources, but is optimized for
deployment, uptime, and resiliency. It expects administrators
to provide appropriate resources for the amount of work at
hand.

G. Containers in Containers

Allowing users to specify custom container images for use
as development or compute environments demands that we

provide container development tools to users. Fortunately,
container-in-container is a well established paradigm. Using
the host kernel from inside a container usually requires expos-
ing a socket inside the container, as well as some configuration
in the outer container.

podman run --cap-add=sys_admin,mknod \
--device=/dev/fuse \
--security-opt label=disable \
-it --rm quay.io/podman/stable /bin/bash

[root /]# podman pull ubuntu
[root /]# podman run ubuntu:latest echo ’hello!’
hello!

This and any other necessary changes can easily be accom-
plished with a container runtime hook that can be triggered
by the session manager any time it launches an interactive



environment for a user.

H. Kubernetes in Kubernetes

More advanced scenarios could require complex hierarchi-
cal orchestration. One example would be allowing users to run
services in a rootless environment like Usernetes, which has
resources allocated to it by a staff or administrator level Kuber-
netes cluster. Similarly, an administrative Kubernetes cluster
could control dynamic allocation of resources to production
and staging instances, while a staff cluster could deploy
software versions within an instance. Such orchestrator-in-
orchestrator tricks might also be useful to resolve scheduling
issues mentioned in III-F.

I. ptrace inside a container

Profiling, tracing, and debugging applications can be chal-
lenging in containers since the container is running in a dif-
ferent namespace and with some default security restrictions.
Depending on the container runtime, it may need to be granted
additional capabilities to enable these kinds of operations.
Let’s take strace as an example, which like gdb, relies on
ptrace. There are two main cases here- (1) using strace
inside of a container and (2) using strace outside of the
container to get information about an application running
inside of the container.

The first case is more straightforward than the second,
although it does require that strace is installed in the image.
This suggests that any NERSC base image will need to come
preinstalled with basic profiling, debugging, and tracing tools
like strace. Today with the Shifter container runtime and
also the Podman-HPC container runtime, using strace to
trace an application running inside a container works without
any additional configuration required. Users can additionally
use podman-hpc exec to exec into a running container,
and also issue an strace command. There don’t appear to be
any major technical hurdles in this case. Below is an example
of strace in Shifter and Podman-HPC.

shifter strace \
-e trace=file -f \
-o /tmp/shifter-myapp-trace \
python3 -m myapp $(date +%s)

podman-hpc run --rm \
--volume /tmp:/tmp \
docker.io/myapp:v1.0 \
strace -e trace=file -f \
-o /tmp/podman-myapp-trace \
python3 -m myapp $(date +%s)

The second case will apply in the “container-in-a-container”
scenario and is more challenging. In this case, strace is used
to profile an application running inside another container. For
Podman-HPC, the strace container needs to be started with
the SYS_PTRACE and SYS_ADMIN capabilities and also with
SECCOMP turned off to enable low-level tracing capabilities
in the container. Further, we must start our strace container

using the same pid namespace and network namespace as our
application container.

Starting the application container:

podman-hpc run --rm --name=test3 \
docker.io/myapp:v1.0 \
watch -n1 -x echo "hello"

Running the strace container:

podman-hpc run --rm --volume /tmp:/tmp \
--pid=container:test3 \
--net=container:test3 \
--cap-add sys_admin --cap-add sys_ptrace \
--security-opt=seccomp:unconfined \
docker.io/mystrace:v1.0 \
strace -e trace=file -f \
-o /tmp/podman-test3 -p 1

strace: Process 1 attached

Users will either have to understand how to attach to a
running application container, which requires some expert-
level container knowledge (i.e. namespaces), or we will need to
provide some resources like a wrapper script that automatically
detects a running container to help make this process more
accessible to novice users. If feasible such a wrapper could
also inject debugging and profiling tools, too.

J. Accessing a license server in a container

A containers everywhere future will need to provide a more
straightforward way to support products that require a license
server running in the container. One common example of this
is the use of Intel compilers in a container. This currently
requires working from a pre-created NERSC base image and
creating an SSH connection to the NERSC license server
during the build (when running outside of NERSC). Now that
Podman-HPC is available on NERSC systems configuring this
license server tunnel isn’t required, but it still requires the user
to set up the configuration. An alternative is a multi-stage
build, although novice users may struggle with this relatively
advanced concept.

To help address this, one solution could be to provide a
special --intel module for Podman-HPC that would allow
users to automatically connect to the license server both during
the build and while the container is running. A larger and more
complex solution might be to provide a container building
web-portal where the complexities of connecting to the license
server are hidden from the user. This could potentially be
integrated into CI pipelines.

In addition to Intel compilers, other services that NERSC
that require license servers are Matlab, IDL, and VASP. A
workable solution to enable license managers to communicate
with containers at NERSC is a strict requirement for these
applications.

IV. DISCUSSION AND FUTURE STEPS

In the previous sections we have outlined our vision for
a containers everywhere HPC environment. Here we will



attempt to synthesize these ideas into a roadmap. Fortunately
this vision doesn’t require an all-or-nothing implementation;
in many of the use cases we have outlined, progress can be
made incrementally. Unfortunately the progression will favor
the Experienced Container User over the Novice Container
User at the beginning of this effort, but supporting these users
is still a central tenet of this vision and we will continue to
work with this goal in mind.

In Table II, we outline the use cases we discussed in Section
III, with the exception of “Containers-in-containers”, since
there are no technical hurdles in this area. We split these
implementation goals according to the example milestones we
discussed in Section II with the goal of clarifying the road
map.

There are several notable gaps that are present between what
exists today and what is required in our vision. We will discuss
the most major gaps below.

A. Control Plane Devices

Although a lot of system software can benefit from having
orchestrated deployment, Kubernetes can make it difficult for
software to track and have affinity to specific devices. This
could be problematic for using orchestration with HPC high
speed networks. Other unseen problems could emerge related
to Kubernetes and device management. Kubernetes has the
ability to support additional vendor devices via a Device
Plugin system [17], but this is largely unexplored from the
HPC perspective at NERSC and demands more attention.

B. Sharing Across User Namespaces

User namespaces are a key component of secure user-
permission containers running on a multi-user system. But
while isolating users from each other is beneficial in many
situations, it also means users no longer see other users and
filesystem groups, creating a barrier to sharing files on a
common filesystem. A workaround or alternative means of
user data sharing will need to be developed to overcome this.

C. Session Management and Proxying

Services to support session management and routing are one
of the key gaps. While there are some existing implementa-
tions that could be leveraged or extended, these lack the full
set of required features and capabilities.

D. Slurm and Kubernetes integration

The issue of how traditional HPC schedulers like Slurm
will integrate with more cloud-like schedulers like Kubernetes
is still very much an open question. Even SchedMD, the
parent company of Slurm, recently gave a talk where they
are exploring several possibilities [16]. This is a question that
will likely not be solved by NERSC alone but by the larger
community of both vendors and HPC stakeholders.

E. Composable images

Another major hurdle to container adoption among users is
the need to learn a new way of building and and installing
software environments (i.e. containers). This barrier may be
especially high for novice users who are not familiar with
configuring low-level libraries. Providing a web-GUI or yaml-
based composable framework to assist these users in construct-
ing images would likely be extremely helpful for this class
of Novice Container User. Developing the infrastructure to
support this vision though will require technical investment.
Similar tools like NVIDIA’s HPC container-maker exist [18],
although are very vendor-specific and don’t provide any web
interface. Coupling a framework with automatic container
build and push service, perhaps to some official registry, will
also require some development.

V. CONCLUSION

The vision expressed in this paper is admittedly ambitious
and a great deal of technical work will be required to realize
the vision for the containers everywhere blueprint laid out.

It is our hope that by identifying the different types of
stakeholders, identifying the core functionality that must be
supported for each of these stakeholders in a containers
everywhere paradigm, and beginning to explore some of the
technical hurdles that must be addressed to make these ideas
possible, this set of implementationm suggestions and thought
experiments will help concretize the work that will need to be
done in the future. We have sketched out a blueprint to realize
this vision in Table II.

Those skeptical of containers may feel that this paper
describes an awful lot of additional work to achieve an
environment that in some cases is meant to look and feel like
a bare-metal environment. It is our belief that the additional
innovation in pursuit of a containers everywhere future can
help usher in a new, more cloud-like era of HPC, where
we can reap the benefits of more robust systems and user
applications, more easily and broadly-managed HPC systems,
more portable and shareable user environments, and a more
productive HPC experience for both staff and users alike.
Users and administrators of the commercial cloud have already
embraced this containers-first approach- it seems it’s time for
the HPC community to shift our mindset to do the same.
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TABLE II
A PROGRESSIVE ROAD MAP FOR ACHIEVING A containers everywhere SYSTEM PARADIGM.

Feature Minimum Viable Simple, Loveable, Complete Kitchen Sink

Curated User Development Envi-
ronment Provide basic NERSC environment Provide NERSC environment with

profiling, debugging tools

Provide NERSC environment with
advanced tools, including creating
and managing services

Composable Images Provide set of base images users
can FROM

Full web-based container ware-
house

Full web-based container
warehouse including custom
build/upload capability

Image and Session Management Users can leave and return to a ses-
sion, but with manual configuration

Special wrappers/utilities allow
users to seamlessly move between
containers

Web-based tools allow users to tog-
gle between sessions

SSH Sessions to Containers
Users can SSH into a specific con-
tainer, but with manual configura-
tion

Session proxy service helps route
user sessions

Jupyter Users can manually configure a
stock or custom image

Users automatically land in their
chosen image

Batch Integration Users can interact with scheduler
with manual configuration Seamless access to scheduler Integration of both Slurm and

Kubernetes-like scheduling

Kubernetes in Kubernetes Possible for Experienced Con-
tainer User

Wrapper scripts/other utilities
make workflow more accessible

Can be started and managed with
web-based service interface

ptrace inside a container Tracing and debugging is possible
but requires expert knowledge

Tracing and debugging accessible
to Novice Container User facili-
tated by wrapper script or other
utilities

Accessing a license server in a con-
tainer

License server works but requires
expert-level user build and/or con-
figuration

License server accessible within
the container with minimal user
intervention (e.g. using a Podman-
hpc module)

All license servers accessible with-
out user intervention
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