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Development of Artificial Intelligence (AI) models is a 
multistage process that includes data collection, selection, 
labeling and augmentation; feature selection; model training, 
testing and refinement. These stages are organized as directed 
acyclic graphs called ML (machine learning) or AI pipelines and 
are parametrized by hyperparameters that have direct impact on 
end-to-end performance. AI model development is therefore a 
complex optimization problem in high-dimensional space of 
data characteristics and hyperparameters. This space is 
especially complex in “AI for Science” pipelines that often 
include multiple models applied in sequence, or models built 
incrementally as new data is collected. Tools available in the 
industry focus on hyperparameter optimizations for model 
training stages, however, they lack in visibility and optimization 
across all stages, with most notable deficiencies in data 
selection, pre-processing, and model retraining stages. To fill 
this gap, we have been developing a self-learning Data 
Foundation for AI that records lineage, hyperparameters and 
metrics of AI pipeline runs and learns from this metadata to 
optimize subsequent runs. We introduced the Data Foundation 
at 2022 SMC Conference [1] and describe here new capabilities. 

 

Figure 1: Self-Learning Data Foundation for AI (highlighted green) 
in AI software stack 

First, we present the Federated Common Metadata Framework,  
a core component that enables metadata management in 
distributed AI pipelines. Second, we show examples of Data 
Foundation intelligence that i) recommends AI model and initial 
hyperparameter seeds for a given task to reduce AI model 
training time; and ii) assists with energy and carbon footprint 
tracking and optimization for AI pipelines. We conclude with 
the discussion of future work.  

A. Federated Common Metadata Framework 

Complex AI pipelines often run in distributed environments 
across different sites spanning HPC computing facility (e.g., for 
model training, retraining, coupling to HPC simulations, etc.), 
edge (e.g., AI inference, monitoring, active learning, etc.) and 
cloud (e.g., cloud bursting). Multiple teams may collaborate on 
model development, each responsible for different stages or 
covering different subspaces of hyperparameter optimization 
space. We developed Common Metadata Framework (CMF) to 
enable management of artifacts (intermediate data, models) and 
metadata alongside pipeline code with Git-like simplicity [1]. 
CMF has been extended here to support distributed pipelines 
(see Figure 2). It enables tracking and storing metadata and data 
locally at each site, and distribution of metadata subsets that are 
merged with metadata from other sites to provide lineage and 
provenance tracking. It decouples the data management from 
the metadata management, enabling to share only the required 
data when needed, reducing data movement and ensuring data 
privacy. This is enabled by i) hierarchical organization of 
pipeline metadata facilitating insertion to the appropriate 
branch in the distributed pipeline lineage tree, ii) a mechanism 
to index artifacts allowing to merge pipeline lineage trees and 
metadata from independently executed steps based on 
input/output artifacts, iii) independent management of metadata 
and data allowing to keep the data local while sharing metadata, 
and, iv) peer-to-peer model to facilitate merging of metadata 
and lineage at any site without need for central coordinator. In 
the paper we will discuss how Federated CMF enables pipeline 
reproducibility and incremental improvement of results after 
fine-tuning AI models at the edge. We use a high energy 
physics particle trajectory reconstruction pipeline example that 
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involves progressive filtering of points on a common trajectory 
by multiple AI models.  

B. AI model and hyperparameter recommendation 

As we mentioned previously, the process of developing AI 
models involves the search of pipeline stages’ hyperparameters 
(e.g., selecting model architectures, strategies for data selection 
and pre-processing, optimization algorithms). This requires 
significant human effort, compute resources, and energy. In 
previous work we demonstrated how Data Foundation for AI 
learns from previous runs of a pipeline to optimize the pipeline 
and reduce this effort [1]. In this work we extend the Data 
Foundation intelligence to utilize a-priori knowledge and 
metadata captured from executions of hundreds of different 
pipelines to recommend a small set of models and 
hyperparameters best fitting for a given task and dataset. These 
recommendations can be used as a seed (good known 
configurations) for AutoML methods such as neural 
architecture search (NAS) and Bayesian hyperparameter search 
to accelerate model development. Central to our architecture 
(see Figure 3) is an evaluator that transforms the universe of 
ML pipeline metadata into a knowledge graph. Unique tasks 
represented by nodes are connected by edges if and only if they 
meet a similarity threshold employing carefully designed 
similarity metric based on task categories, modalities, and 
dataset characteristics. We will demonstrate the benefits by 
considering examples in two domains: AIOps (anomaly 
detection for time-series data) and Telco (churn prediction). For 
the latter, we achieved 1.5 to 12x speedup in model 
development for different use cases as compared with baseline 
(Bayesian search without seed configurations). 
 

 
Figure 3: Knowledge-infused AI model and hyperparameter recommender 

system 

C. AI pipeline energy & carbon footprint analysis and 

optimization 

Accurate reporting of carbon footprint in distributed AI 
pipelines enables researchers to implement targeted energy-
efficient optimizations. Carbon cost should be computed at the 
time of the experiment rather post fitting, as it is found that 
estimating carbon footprint post executions results in inaccurate 
results [2] Federated CMF tackles this problem by measuring 
the system metrics automatically at the time of execution and 
taking into consideration PUE of the data center and renewable 
energy in the grid, to provide the cost of execution 
automatically at the end of the experiment cycle. Further, since 
Federated CMF can track various stages in a pipeline across 
different geographies and teams, it can track the cumulative 
carbon footprint of a pipeline from the pre-processing stage to 
the inference and retraining stages. This end-to-end 
observability enables evaluation of various trade-offs like 
energy efficiency at training vs energy efficiency at inference 
and cost of retraining. The long-term vision into various trade-
offs enables Federated CMF to accelerate research in 
optimizing pipelines for energy efficiency.  

D. Future Work 

We will discuss future research directions towards reducing 
model development effort and increasing model trust by 
intelligent data selection and metalearning from historical 
experience. 
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Figure 2: Federated Common Metadata Framework 
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