Data Mobility in the HPC World

HPE

Torben Kling Petersen, PhD Distinguished Technologist

Data Mobility – Setting the stage

What it ISN'T ...

- A well-defined product
- A deliverable with a plan of record
- Something being actively developed

What it is ...

- Data Mobility is a concept with a goal to create a reference architecture for data movement, data insight and long-term data curation
- A mapping of software components available internally or externally
- Customer information gathering

Data Mobility – a definition ..

Movement

- Policy based data migration between file systems, sites or systems
- Scalable architectur to handleExaBytes of data and billions of files

Transformation

Tiering

Archiving

- Data modicifations as part of workflows
- Changing file formats and packaging
- Compression, containerisation, de-duplication
- Data movement within a single name space (e.g. CDS/DLM/etc.)
- Just in time data availability from ANY tier
- Support for complex workflows including data gathering from any data storage system
- HSM
- Incremental backups
- Multiple backends including off-site locations

POSSIBLE TIERED STORAGE SOLUTIONS (ON PREM OR OFF ...)

Dynamic Cloudlike Management and Provisioning

Archive

Existing (partial) solutions

Across the core data mobility

Komprise – Analyze, mobilize and monetize file and object data. Via Subscription, managed through a global file system, the Komprise Cloud File System.

Across the cloud data mobility

Aparavi - Identify, Classify, optimize and move unstructured data. Cloud-based user experience. Spectra Vail – Multi-cloud data management, object-based global data store.

Edge, Core, Cloud data mobility

Cohesity – SW defined on virtual or physical, or as a Service in the cloud. Cloning for test/dev, snapshot integration with HPE arrays, NAS integration with SmartFiles.

Ctera – Global file system. Cloud-based SaaS distributed file storage solution incorporating unstructured data management. Store, access, share and protect files.

Edge to core data mobility

Globus – SaaS, non-profit service. Enabled via the cloud, secure transfers for research data. Focus on collaboration across sites and institutions. Supports user definable workflows "Flows"

Data Mobility Key Services

Key Components

• Metadata

- Centralized
- Extended (manually, machine assisted, AI)
- Comprehensive map and consolidate all monitored name spaces
- User (including end user) and API accessible
- Federated with locality index
- Data movement
 - Includes Tiering, copying, and archiving
 - Dynamic and scalable
 - Parallel where possible
 - Controlled (guaranteed movement of file) and using checksums
 - Interruptible with automatic clean-up
 - Secure (possibly encrypted data in flight)

- Monitoring
 - Done, planned and inflight
 - Statistics
 - Consolidated reporting
- Security
 - Auditing
 - Encrypting
 - Secure delete

Common Metadata Framework (CMF) architecture

- Tracking Data, Metadata, Code
 - Also tracking versioned data
- GIT like experience for metadata
- Global View of all metadata
- Extensible and modular
- CMF components:
 - Metadata library/query engine
 - CMF Local Client synchronizing metadata
 - CMF central server
 - single instance or distributed
 - Optimized central repository for code, metadata and data

Common Metadata Framework									
Public API Logging	Public API								
Distribut									
			Optimization						
Metadata Store (MLMD / MLflow)	Artifact store	GIT	Engine						
Query Cache Layer (Graph database)	(DVC / Other)	GH							
Public API	Query Engi	าย							
Common Metadata Framework components Existing open source components etc									

AI and ML workflows

- Model optimization intelligence
 - Parameter recommendation
 - Model recommendation
- Data centric intelligence
 - Data selection, gradation, caching
 - Data search, processing, augmentation
- Computational steering
 - Integration with HPC simulation environment
 - Looking for collaboration opportunities
- Experiment steering
- Does this data flow and data movement make sense?

Data Foundation benefits for an Example Science Workflow

Automate Control of Experiments or Simulations Towards Data with Highest Value

The Metadata challenge - Example

- Using Semantic Data Management
 - Hierarchical data locality -> metadata identification.
 - E.g.,

```
# fs: ../12345/20230509/1200/24/0/T/...
```

• Using an API to "translate" locality to unique metadata information.

metadata header: date: 2023-05-09, location: 12345, time: 12.00, step: 24, parameter: T, level: 0
Data payload:Field data [array of doubles]GRIB2
Observations [numerical and non-numerical]Grid partitions

• ECMWF have been using this since 1975 and has mor than 400 PiB stored in this format.

Data Mobility "Find" example*

<pre># dms_find</pre>	-global -u torben -n "important_file" -v			
fs	path	version	tier	state
[lustre]	/fs1:/lustre/tkp/important_file	4	flash	cur
[lustre]	/fs1:/lustre/tkp/arch/important_file	1	hdd	arch
[scale]	/fs4:/root/tkp/imporant_file	3	hdd	bak
[daos]	/ds1:/ds1/team_x/important_file	4	pmem	cur
[dmf7]	/zws:/objectID=112299	1	hdd	arch
[dmf7]	/tpl1:/index:123456.32	1	tape	compr
[cloud]	/url:aws.com/tkp.63/arch/important_file	2	cloud	arch
#				

BUT how do you list or search a Billion files ??

Existing extended metadata solutions

• iRods

- Open Source !!
- Parallel file system aware
- Scalable extensible metadata
- Mature (been around >15 years)
- Scalable data movement capabilities
- StarFish
 - HPC and data centric computation focused
 - Parallel, multiprotocol data movement
- MediaFlux
 - Scalable to billions of assets (custom database: XODB), support for 100+ PB...
 - Extensible metadata
 - Multi protocol support
- Nodeum
 - Based in EMEA
 - Some HPC focus (collaborations with Juelich, BCS, CSCS, Fenix RI project etc)

Mediaflux

Data Mobility as a Service concept

System components

- User Application
 - Connected to all service managers via an API for the service
- Service Managers
 - Highly available, support continuous operations
 - Federated between Core and edge, core/edge to cloud
- Data Movers
 - Internal/external data movement could utilize compute nodes via SLURM or PBS Pro based controlled jobs
 - -Alternative is using dedicated nodes for greater control.
 - Dedicated data movers for:
 - -Indirect path on premises to accommodate network/security limitations
 - -Edge-to-core for managing long latency, poor transmission quality
 - -Edge/core to cloud for cloud bursting performance

Required end points

• File

- HSM enabled parallel file system
 - Lustre, Spectrum Scale
 - Includes tiering between Flash and HDD based components
- Other POSIX compliant file systems
 - DAOS, CortX, BeeGFS, Ceph, etc.
- NFS
- SMB/CIFS
- Object
 - Vendor solutions
 - Scality, Ceph
 - Cloud Service Providers
 - Amazon, Microsoft, Google
- Device
 - Linear/Tape
 - LTO, IBM TS

Reporting requirements

- Service
 - \circ files moved
 - Success and Failure stats
 - \circ bytes moved
 - o jobs run
 - \circ data rate
 - o User count
- Storage
 - System utilization
 - Utilization trends
- Data
 - Characterization by size, age, owner
 - o Copies
 - Storage space utilized
 - Grouping
 - Compliance hold
 - Classified

Data Mobility Service × +						× -	a ×
← → C @ O A https://128.162.2	236.238/dashboard?site_id=DE HPE MFA SignUp	F456		*	Q Search		໋ ໓ ≡
Data Mobility Service						D	ф <u>А</u>
\equiv Dashboard						Demo Site	~
System Status				Managed Data			
E Filesystems ■ 1 Total	Շ Total	4 Healthy	1 UnHealthy	Analyzed: 5 Filesystems	29.6 GB 83,797 Files		
I⊳ Jobs 5 Active	4 Pending	5 Completed	4 Falled		<1mo 1-3mo 3-6mo	6 mo-1yr ∎>1yr	
Alerts Network Interface eth1 on group Hardware 2021-11-02 15:50 File share rtp-prod-share-dev has Capacity 2021-11-02 15:50	o sjc-array2003 falled Is reached 75% of the hard	quota limit		Metadata Summary			
2021-11-02 15:50 Preview	📦 🧬 📼 📼 🕎 📰 📰	🔀 🖳 📢 📢 📽 🚅 🦪 🎠 💥 🎦 👹	i 🛷 🔞 🖦 📙 🗊 🗐 🍺 🗩 (ity Service 🚯 Data Mobility Servi	⊙ S ice 龄 Data Mobility Service	Putty * R-Desktops * Desktop * 🧱 🥌	88 马。 🚾 👄 📴 🛒 Si 🛛 11: 18 🖬 🚎 🗭 🐨 中 40) 22	:48 AM dnesday 💭 8/2023

Open questions ...

- Do we need "intelligent" tools or is brute force good enough ??
- Are Lustre and/or GPFS running out of steam in the next 5-7 years ??
 - If so, how do we handle the many EB of data and trillions of files ??
- Migrating data to new (and probably) larger file systems ?
 - On day 1, opportunistically or not at all ??
- Data migration tools ??
 - rsync (msrsync, Lustre rsync), PCP, Pftool, Shift-C, Mutils, psync, dsync, UFTP, BBCP etc ??
- Archiving futures?
 - "Tape is dead" (or is it ??)
 - Cloud based cold storage ??
 - Disk based systems (zero watt implementations) ??
- Where do we go from here ??

Thank you

(for listening to a madmans ramblings)

tkp@hpe.com