
May 7, 2023
Jeff Hudson

HPE Cray Programming
Environment

Testing Overview

Confidential | Authorized

Comprehensive set of tools for developing, porting, debugging, and tuning of HPC applications on
HPE & HPE Cray systems

HPE Cray Programming Environment

3rd party HPE—authored HPE Added-value to 3rd party

Debugging

Valgrind for HPC
Memory debugging at scale

Tool for Abnormal Termination
Processing

Manage core files at scale

GDB for HPC
Parallelized gdb for HPC

Setup & Runtime

Environment Setup

Modules/Lmod

Tool Enablement
(for Spack, CMake, EasyBuild, etc)

Development

Optimized Libraries

LAPACK & ScaLAPACK

LibSci (BLAS)

FFTW

LibSci_ACC

Iterative Refinementt Toolkit

NetCDF HDF5

I/O Libraries

Programming Languages

C

Programming Environments

Compiling Environment

GNU

NVIDIA HPC SDK

Intel Programming Environment

AMD Programming Environment

OpenMP | OpenACC (Fortran)

AMD ROCm HIP | NVIDIA CUDA

UPC | Fortran co-arrays

HPE Cray MPI

SHMEM

Programming Models

Python

Comparative Debugger
Compare two versions of an application

Fortran C++

R

Performance Analysis Tool
(PAT)

Whole program performance analysis,
exposing wide set of indicators, identifying
bottlenecks and automatically generating

suggestions to improve performance.

Performance Analysis &
Optimization

Visualization Tool
Complements text reports with summary of

performance data in graphs and charts,
allowing users to drill down and resolve

issues

Code Parallelization Assistant
Reveal hidden potential of an application

via code restructuring

Supported systems:

• HPE Cray EX
• HPE Apollo
• HPE ProLiant DL

Global Arrays
Stack Trace Analysis Tool

Stack tracing at scale

TotalView DDT

Sanitizers for HPC
Detects memory and thread errors

2

Layers of Testing

HPE Cray Programming Environment

Unit Functional and
Regression

Integration Black Box/App and
Performance

• Automated
• Product Specific

Unit level testing
• Written by

Developers
• Simple “sanity”

Testing
• Some products

leverage 3rd party
software tests

• Automated
• Product focused, but

will test product
interfaces

• Written by Developer
and Testers

• Accounts for OS,
ENV, Arch, etc.

• Performed on real
HW and virtual
environments

• Automated and
Manual mix

• Highly dependent
on HW/SW stack

• Performed on real
HW

• Automated and
Manual mix

• Teams analyze
benchmark /
application metrics

• Verify series of
applications for
regressions

3

Unit and Functional/Regression Testing

Combinations
• HPE Cray Products have many architecture, accelerator, OS, and other possible combinations
• Limited testing across these combinations due to hardware/time restrictions
• Separate Builds for

• OS distro (SLES/COS and RHEL)
• OS version (SLES SP3, SLES SP4, etc.)
• Arch (x86 and aarch64)
• Release, Debug, and other environment combinations

Testing
• Unit tests run per Commit in build pipelines orchestrated by a Jenkins server

• Number/types of tests vary per CPE product

• Static Code analysis with Linters and Sonar Qube

• Security and vulnerability scanning with Snyk, ClamAV, and in-house scanning tools

• Unit tests limited to single node/instance, while Functional/Regression testing will include multi-node tests.

4

Integration Testing

Combinations
• Limited to currently supported and some future system configurations due to hardware/time restrictions
• Separate test deployments for different OS and system management environments
• Integration testing of CPE is also done by HPE Cray QA teams (including Recipe testing)

Testing
• CPE team testing is focused on tool interoperability, user environment, and general compatibility (dependency modeling)

• Mix of automated and manual testing, which includes installing on internal test systems that emulate customer environments

• Other HPE Cray teams, which depend on the Cray Programming Environment, have their own integration test suites (COS, CSM,
HPCM, SlingShot, etc.)

• Testing includes 3rd party software integration

5

Black Box and Performance Testing

Combinations

• Testing mostly limited to representative customer cluster system configurations

Testing

• Testing run by two teams: Performance and Application Engineering

• Testing leverages a mixture of manual SW installations and automated daily/biweekly installations

• Several engineers and application SMEs support this effort

• Semi-automated regression process with gating focused on high-priority blocker and performance issues

• Example benchmarks and applications would be SPEC, WRF, GROMACS, etc.

6

Future

Testing
• Uniform CI/CD/CT pipelines leveraging GitHub Actions and quality gates
• Better integration of test frameworks like reframe and avocado for use in later stages of CI/CD/CT pipelines
• Provide earlier releases for 3rd party integration testing
• Augment our benchmarking and application level automated testing, targeting customer interests.

Release Management
• Working towards a mechanism to release separate product packages (e.g., Cray Compiler, Perf Tools, Debuggers, etc.)

• Container Releases

• More robust quality metrics and gating processes

• Improved dependency tracking

7

Abhinav Thota

athota@iu.edu

Regression Testing at Indiana
University with ReFrame

Research Technologies is a division of University Information Technology Services
and a center in the Pervasive Technology Institute at Indiana University.

Background
• Regression testing is a routine need, but more important when

launching a new system

• Cron based and custom scripted regression testing a decade ago; tried
out ReFrame and Pavilion (https://pavilion2.readthedocs.io/en/latest/,
LANL) in 2021

• Picked ReFrame based on ease of setting up initial tests and the
existence of responsive support through its Slack channel; they are
both closely matched and comparable though

• Uses Python and installs easily (pip install reframe)
• Well documented (https://reframe-

hpc.readthedocs.io/en/stable/started.html)
• Has good examples and tutorials (https://reframe-

hpc.readthedocs.io/en/stable/tutorial_basics.html)
• Has a user support Slack channel (reframetalk.slack.com) where people

are very responsive to questions
• ReFrame workflow:

ReFrame Highlights

• Many of our tests were created by extending examples that were available online

• Multiple system configurations can be created/supported in the same framework

• ReFrame handles the job submission
• We can run tests on every node with a single command, for example:
reframe -C config.py -c tests/HPLSingleNode.py -J partition=general \

--system bigred200:general --prgenv='cray$' -r --keep-stage-files \

--save-log-files --output ./output --distribute="idle" --stage ./stage \

--report-file ./reports/bigred200_HPL_report_$(date -d "today" +"%Y%m%d%H%M").json \

--timestamp=%FT-%H-%M

The –distribute=“idle” option creates a job for every idle node in Big Red200’s general partition

Building Tests

Learning Curve
• It took at least a couple of weeks to get going

• There is a lot to understand; often must hunt for the errors because it is not obvious from on screen output

• Adding new tests took some work initially

• Timeline:

• Started testing in July 2021

• Monthly tests starting March of 2022 on Big Red 200 (went into production in April 2022)

• What we are running:

• OSU Micro Benchmarks (pt2pt latency and collective alltoall)

• Stream

• IOR (main Lustre filesystem)

• HPL (Fall 2022)

Regression Test
Dashboard
• We have been publishing the

results to an internal
PositConnect based
dashboard

• Overall, there is a learning
curve, but things are smooth
now

Questions?

CSCS Site Presentation

PE Updates and Testing BOF

Eirini Koutsaniti, Guilherme Peretti-Pezzi, CSCS

May 07, 2023

CUG 2023

ReFrame: a python framework for regression and performance testing

▪ Designed and developed by a small team in CSCS back in 2016

▪ First public release in May 2017 on Github

▪ https://github.com/reframe-hpc/reframe

▪ 47 contributors, 88 forks, 176 stars

▪ 82 releases

▪ Used by both academic institutions and industry around the world for testing and

benchmarking their clusters

▪ Key features:

▪ High-level tests written in Python

▪ Portability across HPC system platforms: support for multiple job schedulers, launchers, build

systems, module systems, container engines, etc

▪ Comprehensive reports and reproducible methods

▪ Easy integration in CI/CD workflows

CUG23 | PE Updates and Testing BOF 2

https://github.com/reframe-hpc/reframe

Future directions and outlook for the framework

▪ Encourage collaboration among sites and HPE

▪ Expand the test libraries

▪ Increase the exchange of tests between sites

▪ Explore the prospects of integrating ReFrame in the validation of PEs

▪ Explore the possibility of federated CI/CD pipelines with visibility of test results

▪ Continue improving the framework

CUG23 | PE Updates and Testing BOF 3

Use cases at CSCS

▪ Production systems currently running ReFrame tests

▪ XC

▪ Piz Daint (P100 + Broadwell partition)

▪ CS-Storm

▪ Tsa & Arolla (V100 + Skylake, MeteoSwiss)

▪ Shasta

▪ Eiger (AMD Rome)

▪ Other vClusters on Alps (Shasta)

▪ Currently 17 vClusters are instantiated

▪ Dev & Prod

▪ For example

▪ Tasna & Balfrin (A100, MeteoSwiss)

▪ Clariden (A100 + MI250X)

CUG23 | PE Updates and Testing BOF 4

Future plans: testing at image creation pipeline (GitLab)

CUG23 | PE Updates and Testing BOF

ReFrame test image

Deploy image

5

Thank you for your attention.

ReFrame on ARCHER2
Juan F. R. Herrera, EPCC

PEAD, 7th May 2023

www.archer2.ac.uk

http://www.archer2.ac.uk/

Reusing this material

EPCC, The University of Edinburgh 2

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

This means you are free to copy and redistribute the material and adapt and build on the material under the
following terms: You must give appropriate credit, provide a link to the license and indicate if changes were made. If

you adapt or build on the material, you must distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission before reusing these
images.

https://creativecommons.org/licenses/by-nc-sa/4.0/

Partners

EPCC, The University of Edinburgh 3

• UK’s National Supercomputing
Service

• HPE EX Supercomputer

• 5,860 compute nodes, a total of
750,080 CPU cores

• Compute nodes:
• Two AMD Zen2 (Rome) EPYC

7742 64-core at 2.25 GHz

• 256 GB (standard nodes) or
512 GB (high-memory nodes)

• Two 100 Gbps Slingshot
interfaces

• HPE Slingshot 10 interconnect

4

ARCHER2

EPCC, The University of Edinburgh

➢3x ClusterStor L300 Lustre
file systems, each 3.6 PB

➢1 PB ClusterStor E1000F
solid state storage

➢4x NetApp FAS8200A file
systems, 1 PB total

5EPCC, The University of Edinburgh

ARCHER2 storage

ARCHER2 Service

• Comprehensive support for users from
experts at EPCC and HPE

• Extensive training programme that is
free to researchers
• Wide range of courses from entry level to

advanced

• Support to employ Research Software
Engineers to improve codes
• These can be RSEs in the community or

provided by EPCC

• Outreach and engagement with the
public and wider research community

EPCC, The University of Edinburgh 6EPCC, The University of Edinburgh

ReFrame on ARCHER2

• ReFrame is a framework for writing system regression tests and
benchmarks, targeted to HPC systems.

• We run the test suite weekly. This allows us to identify any changes in
behaviour on the system that may impact users.

• We also want to use this periodic testing to measure performance
variability, but this part is still work in progress.

• GitHub repository: https://github.com/EPCCed/epcc-reframe

module load reframe

module load epcc-reframe

epcc-reframe -r

EPCC, The University of Edinburgh 7

https://github.com/EPCCed/epcc-reframe

ReFrame tests

• Login and compute nodes

• Three environments: PrgEnv-cray, PrgEnv-gnu, and PrgEnv-amd

• Tests:
• Compilation

• MPI / Interconnectivity: subset of OSU Micro-Benchmarks
https://mvapich.cse.ohio-state.edu/benchmarks/

• Core affinity

• Apps: CASTEP, CP2K, GROMACS, LAMMPS

EPCC, The University of Edinburgh 8

https://mvapich.cse.ohio-state.edu/benchmarks/

ARCHER2 software upgrade

• We are currently undergoing a major software upgrade:
• Cray OS (COS) 2.0.46 -> 21.04

• Slingshot interconnect system software (SS) 1.6.0 -> 2.0.2

• Cray Programming Environment (CPE) 21.04 -> 22.12

• The upgrade has been successfully tested on the ARCHER2 TDS:
• The ARCHER2 Test and Development System (TDS) is a small system used for

testing changes before they are rolled out onto the full ARCHER2 system.

• 8 compute nodes.

• ReFrame is used to test that the updated system is functional and
identify any changes in behaviour of compilers, scheduler, etc.

• Further info: https://docs.archer2.ac.uk/faq/upgrade-2023/

EPCC, The University of Edinburgh 9

https://docs.archer2.ac.uk/faq/upgrade-2023/

Other HPC systems at EPCC

We plan to use ReFrame on other HPC systems hosted at EPCC such as
Cirrus, a Tier-2 system: https://www.cirrus.ac.uk/

EPCC, The University of Edinburgh 10

https://www.cirrus.ac.uk/

EPCC, The University of Edinburgh 11

• Website: https://www.archer2.ac.uk/

• Twitter: @ARCHER2_HPC

Kiitos (thank you)

https://www.archer2.ac.uk/
https://twitter.com/ARCHER2_HPC

