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Abstract—As we enter the exascale computing era, efficiently
utilizing power and optimizing the performance of scientific
applications under power and energy constraints has become
critical and challenging. We propose a low-overhead autotun-
ing framework to autotune performance and energy for vari-
ous hybrid MPI/OpenMP scientific applications at large scales
and to explore the tradeoffs between application runtime and
power/energy for energy efficient application execution, then
use this framework to autotune four ECP proxy applications—
XSBench, AMG, SWFFT, and SW4lite. Our approach uses
Bayesian optimization with a Random Forest surrogate model to
effectively search parameter spaces with up to 6 million different
configurations on two large-scale production systems, Theta at
Argonne National Laboratory and Summit at Oak Ridge National
Laboratory. The experimental results show that our autotuning
framework at large scales has low overhead and achieves good
scalability. Using the proposed autotuning framework to identify
the best configurations, we achieve up to 91.59% performance
improvement, up to 21.2% energy savings, and up to 37.84%
EDP improvement on up to 4,096 nodes.

I. INTRODUCTION

As we enter the exascale computing era, high perfor-
mance, power, and energy management are key design points
and constraints for any next generation of large-scale high-
performance computing (HPC) systems [1]–[3]. Efficiently
utilizing procured power and optimizing the performance of
scientific applications under power and energy constraints
are challenging for several reasons, including dynamic phase
behavior, manufacturing variation, and increasing system-level
heterogeneity. As the complexity of such HPC ecosystems
(hardware stack, software stack, applications) continues to
rise, achieving optimal performance and energy becomes
a challenge. The number of tunable parameters that HPC
users can configure at the system and application levels has
increased significantly, resulting in a dramatically increased
parameter space. Exhaustively evaluating all parameter combi-
nations becomes very time-consuming. Therefore, autotuning
for automatic exploration of the parameter space is desirable.

Autotuning is an approach that explores a search space of
tunable parameter configurations of an application efficiently
executed on an HPC system. Typically, one selects and evalu-
ates a subset of the configurations on the target system and/or

uses analytical models to identify the best implementation
or configuration for performance or energy within a given
computational budget. However, such methods are becoming
too difficult in practice because of the hardware, software,
and the application complexity. Recently, the use of advanced
search methods that adopt mathematical optimization methods
to explore the search space in an intelligent way has received
significant attention in the autotuning community. Such a strat-
egy, however, requires search methods to efficiently navigate
the large parameter search space of possible configurations
in order to avoid a large number of expensive application
runs to determine high-performance configurations or imple-
mentations. In this paper we propose a low-overhead ma-
chine learning (ML)-based autotuning framework to autotune
four hybrid MPI/OpenMP Exascale Computing Project (ECP)
proxy applications [4]—XSBench [5], SWFFT [6], AMG [7],
and SW4lite [8]—to improve their performance, energy, and
energy delay product (EDP) on two large-scale HPC systems:
Theta [9] at Argonne National Laboratory (ANL), and Summit
[10] at Oak Ridge National Laboratory (ORNL).

Traditional autotuning methods are built on heuristics that
derive from automatically tuned BLAS libraries [11], expe-
rience [12]–[14], and model-based methods [15]–[18]. At the
compiler level [19], ML-based methods are used for automatic
tuning of the iterative compilation process [20] and tuning
of compiler-generated code [21], [22]. Autotuning OpenMP
codes has gone beyond loop schedules to look at parallel tasks
and function inlining [23]–[26]. Recent work on leveraging
Bayesian optimization to explore the parameter space search
shows the potential for autotuning on CPU systems [27]–[30]
and on GPU systems [31], [32]. Some recent work has used
machine learning and sophisticated statistical learning methods
to reduce the overhead of autotuning [33]–[36]. Most of these
autotuning frameworks, however, are for autotuning on only a
single or a few compute nodes using only performance as a
metric.

This paper makes the following contributions.
• We propose a low-overhead autotuning framework ytopt

to autotune various hybrid MPI/OpenMP applications at
large scales.
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• We use this ytopt framework to explore the tradeoffs
between application runtime and power/energy for energy
efficient application execution.

• We use this framework to autotune four ECP proxy appli-
cations, namely XSBench, AMG, SWFFT, and SW4lite,
using Bayesian optimization with a Random Forest sur-
rogate model to effectively search parameter spaces with
up to 6 million different configurations.

• We demonstrate the effectiveness of our autotuning
framework to tune the performance, energy, and EDP of
these hybrid MPI/OpenMP applications on up to 4,096
nodes.

• The experimental results show that our proposed autotun-
ing framework at large scales has low overhead and good
scalability, providing the best configuration for the best
performance, energy saving, or EDP. Using the proposed
autotuning framework to identify the best configurations,
we achieve up to 91.59% performance improvement,
up to 21.2% energy savings, and up to 37.84% EDP
improvement on up to 4,096 nodes.

The remainder of this paper is organized as follows. Section
2 discusses the background, challenges, and motivation of
this study. Section 3 describes the systems and four ECP
proxy applications used in this paper. Section 4 proposes our
autotuning frameworks for improving performance and energy
at large scales. Section 5 discusses autotuning mixed pragmas
on a single node. Section 6 presents autotuning performance at
large scales. Section 7 illustrates autotuning energy and EDP
at large scales. Section 8 summarizes this paper.

II. BACKGROUND, CHALLENGES, AND MOTIVATION

Autotuning involves two critical requirements: (1) expres-
sion of a search space of implementations or configurations
and (2) efficient navigation of the search space for identifying
the optimal configuration. To address these two requirements,
researchers have developed a number of autotuning frame-
works that interface with application codes, libraries, and
compilers to generate code variants and measure their per-
formance [12], [16], [27], [28], [37]–[48]. They presented the
expression of a collection of parameters to be tuned and their
corresponding possible values, and they generated possible
configurations that may or may not be valid for evaluation.

Two kinds of expressions of search space exist: vector
space and tree space. Most autotuning frameworks present
the search space in a vector space, that is, a fixed number
of parameter knobs; these frameworks include OpenTuner
[38], CLTune [42], HalideTuner [40], Orio [37], KernelTuner
[44], ATF [41], [49], ytopt [27], [28], [46], GPTune [29],
and Bliss [30]. The successor of HalideTuner [50] uses tree
search to avoid the limitation of a vector search space but
uses beam search to explore the space. ProTuner [45] further
improves Halide schedule autotuning by replacing beam search
with Monte Carlo tree search. The loop autotuner in Telamon
also uses Monte Carlo tree search [51]. In the tradition of
Halide, every level needs an assigned strategy, and a schedule
where not all loops have an assigned strategy is considered

incomplete. The viability of autotuning the search space for
loop transformations was demonstrated; the approach involves
the straightforward representation as either a tree or a directed
acyclic graph using mctree [47], [48], [52], and every loop is
considered sequential until a pragma is added.

We classify autotuning frameworks into four categories: (1)
enumerate all possible parameter configurations, reject invalid
ones, and evaluate the valid ones [47]; (2) enumerate only valid
configurations [41], [49]; (3) sample from the set of possible
configurations, and reject invalid ones [23], [37], [39] during
the search; and (4) sample only valid configurations, and
search over them [27], [28]. The ytopt autotuning framework
belongs to Category 4, which overcomes the ineffectiveness
of Category 3 by generating valid samples and addresses
the limitations of Categories 1 and 2, where enumerating all
possible configurations can be computationally expensive for
large number of parameters. However, the ytopt framework
autotuned the applications only on a single computer node.
Can we extend the ytopt framework to autotune MPI/OpenMP
scientific applications at large scales so that we can identify
the best configuration for running these applications on large-
scale HPC systems efficiently? This is the main motivation of
our work in this paper.

Kruse and Finkel [53] implemented a prototype of user-
directed loop transformations using LLVM Clang [54] and
Polly [55] with additional loop transformation pragmas such
as loop reversal, loop interchange, tiling, and array packing
in the ECP SOLLVE project [56]. Multiple pragmas can be
composed even to the same loop and every transformation
addresses different and often contradicting concerns, such as
maximizing parallelism, spatial and temporal memory locality,
but minimizing bandwidth and overhead. Hence there is a need
to determine how to efficiently combine them to optimize an
application.

In our recent work [27], [28] an autotuning framework
ytopt was developed to leverage Bayesian optimization with
four supervised machine learning methods—Random Forests,
Gaussian Process Regression, Extra Trees, or Gradient-boosted
Regression Trees—to explore the search space and identify
more-promising regions, and we found the Random Forests
performed the best. This autotuning framework was used to
identify the optimal combination of the Clang loop pragma
parameters, with the aim of improving the performance of six
PolyBench benchmarks [57] and tuning the hyperparameters
of a deep learning application MNIST on a single compute
node.

Most of autotuning frameworks mentioned above were for
autotuning on a single or a few compute nodes. Recently,
new autotuning frameworks are emerging for multi-node au-
totuning. For example, GPtune [29] autotuned some MPI
applications on up to 64 nodes with 2,048 cores with multitask
learning using MPI, and Bayesian optimization was applied to
increase the energy efficiency of a GPU cluster system [31].
Current large-scale HPC systems such as Theta [9] at ANL and
Summit [10] at ORNL have complex system architectures and
software stacks with many tunable parameters that may affect
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the system performance and energy. How can we identify
the best combination of these parameters for the best system
performance or the lowest system energy consumption? Appli-
cation developers and users often rely on these systems with
the default configurations setup by the vendors to run their
applications. How efficiently are these applications executed?
Can we develop a low-overhead framework to autotune large-
scale applications for performance and energy on large-scale
HPC production systems such as Summit and Theta?

The answer to these questions is ”Yes, we can.” Specifically,
in this paper we demonstrate a new state of practice by
applying autotuning approach to optimize performance and
energy of hybrid MPI/OpenMP scientific applications on up
to 4,096 nodes on these systems.

III. SYSTEMS AND ECP PROXY APPLICATIONS

In this section we discuss the HPC system platforms and
four ECP proxy applications [4] used in our experiments.

We conduct our experiments on the Cray XC40 Theta [9] of
approximately 12 petaflops peak performance at Argonne Na-
tional Laboratory and the IBM Power9 heterogeneous system
Summit [10] of approximately 200 petaflops peak performance
at Oak Ridge National Laboratory. In this section, we briefly
describe their specifications shown in Table I.

Theta: Theta has 4,392 Cray XC40 nodes. Each node has
64 compute cores (one Intel Xeon Phi Knights Landing (KNL)
7230 with the thermal design power (TDP) of 215 W), shared
L2 cache of 32 MB (1 MB L2 cache shared by two cores),
16 GB of high-bandwidth in-package memory Multi-Channel
DRAM (MCDRAM), 192 GB of DDR4 RAM, and a 128
GB SSD. MCDRAM can be configured as a shared last level
cache L3 (cache mode) or as a distinct NUMA node memory
(flat mode) in or somewhere in between. The default memory
mode is the cache mode. The Cray XC40 system uses the Cray
Aries dragonfly network with user access to a Lustre parallel
file system with 10 PB of capacity and 210 GB/s bandwidth.

In this work, we use GEOPM [58] to measure node energy
consumption on Theta. The power sampling rate used is
approximately 2 samples per second (default). We conduct
all autotuning experiments in performance and energy with
the cache mode. The compilers on Theta are CrayPE 2.6.5
(default) and clang 14 installed [56]. The aprun command
is used to specify to ALPS (Application Level Placement
Scheduler) the resources and placement parameters needed for
the application at application launch on Theta.

Summit: Summit has 4,608 IBM Power System AC922
nodes. Each node contains two IBM POWER9 processors
with 42 cores and six NVIDIA Volta V100 accelerators. Each
node has 512 GB of DDR4 memory for use by the POWER9
processors and 96 GB of high-bandwidth memory (HBM2) for
use by the accelerators. Additionally, each node has 1.6 TB of
nonvolatile memory that can be used as a burst buffer. Summit
is connected to an IBM Spectrum Scale filesystem providing
250 PB of storage capacity with a peak write speed of 2.5
TB/s. For each Summit node, the TDP of each Volta GPU is
300 W, and the TDP of each Power9 is 190 W. The power

TABLE I: System Platform Specifications and Tools

consumption of each Summit node is 2,200 W. Although we
use the NVIDIA System Management Interface (nvidia-smi)
[59] to measure power consumption for each GPU, the power
measurement for IBM Power9 is not available to the public.
Therefore, we autotune only performance of HPC applications
on Summit. The compilers on Summit are gcc 9.1.0 (default)
and nvhpc 21.3. The jsrun command is used for managing an
allocation that is provided by an external resource manager
within IBM Job Step Manager (JSM) software package on
Summit.

A. ECP Proxy Applications

In this section we discuss four hybrid MPI/OpenMP ECP
proxy applications for our experiments: XSBench [5], SWFFT
[6], AMG [7], and SW4lite [8].

1) Weak-Scaling Applications: We discuss the three weak-
scaling ECP proxy applications XSBench, SWFFT, and AMG.

XSBench [5] is a mini-app representing a key computational
kernel of the Monte Carlo neutron transport algorithm and
represents the continuous energy macroscopic neutron cross
section lookup kernel. It serves as a lightweight stand-in for
full neutron transport applications like OpenMC [60]. This
code provides a much simpler and more transparent platform
for determining performance benefits resulting from a given
hardware feature or software optimization. XSBench provides
an MPI mode which runs the same code on all MPI ranks
simultaneously with no decomposition across ranks of any
kind, and all ranks accomplish the same work. It is an em-
barrassingly parallel implementation. It supports history-based
transport (default): parallelism is expressed over independent
particle histories, with each particle being simulated in a
serial fashion from birth to death; and event-based transport:
parallelism is instead expressed over different collision (or
”event”) types. XSBench is the hybrid MPI/OpenMP code
written in C and supports OpenMP offload. The OpenMP of-
fload implementation only supports the event-based transport.
The problem size is large as default.

SWFFT [6] is to test the Hardware Accelerated Cosmology
Code (HACC) 3D distributed memory discrete fast Fourier
transform (FFT) with one forward FFT and one backward
FFT. It assumes that global grid will originally be distributed
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between MPI ranks using a 3D Cartesian communicator. That
data needs to be re-distributed to three 2D pencil distributions
in turn in order to compute the double-precision FFTs along
each dimension. SWFFT is the hybrid MPI/OpenMP code
written in C++ and C and requires the cubic number of
MPI ranks and FFTW3 (double precision, OpenMP version)
installed. We configure it as weak scaling case. The problem
size is 4096x4096x4096 for 4096 MPI ranks. We also set the
number of run tests 2.

AMG [7] a parallel algebraic multigrid solver for linear
systems arising from problems on unstructured grids and
builds linear systems for various 3-dimensional problems.
Parallelism is achieved by data decomposition. AMG achieves
this decomposition by simply subdividing the grid into logical
X x Y x Z (in 3D) chunks of equal size. It is the hybrid
MPI/OpenMP code written in C. The problem size is the 3D
Laplace problem ”-laplace -n 100 100 100 -P X Y Z”. This
will generate a problem with 1,000,000 grid points per MPI
process with a domain of the size 100*X x 100*Y x 100*Z.

2) Strong-Scaling Application: SW4lite [8] is a bare bone
version of SW4 [61], [62] (Seismic Waves, 4th order accuracy)
intended for testing performance in a few important numerical
kernels of SW4. SW4 implements substantial capabilities for
3-D seismic modeling with a free surface condition on the
top boundary, absorbing super-grid conditions on the far-field
boundaries, and an arbitrary number of point force and/or point
moment tensor source terms. It uses a fourth order in space
and time finite-difference discretization of the elastic wave
equations in displacement formulation. The large problem
LOH.1-h50 is from the SCEC (Southern California Earthquake
Center) test suite [63]. It sets up a grid with a spacing h (=50)
over a domain (X x Y x Z) 30000 x 30000 x 17000. It will run
from time t=0 to t=9. The material properties are given by the
block commands. They describe a layer on top of a half-space
in the z-direction. A single moment point source is used with
the time dependency being the Gaussian function. SW4lite is
the hybrid MPI/OpenMP code written in C++ and Fortran90.
In [64], performance and energy of SW4lite were optimized
for the improved version. We use the improved version to
define the parameter space for autotuning.

3) Compiling Time for Each Application: Table II shows
the average compiling time (in seconds) for each ECP proxy
application on Theta and Summit. We measured the compiling
time for each application five times to get the average compil-
ing time. We observe that the compiling time for SW4lite is
162.066 s on Theta and 58 s on Summit. This really impacts
the autotuning wall-clock time in Step 4 shown in Figure 1.
Because of loading the NVidia nvhpc module to compile the
XSBench OpenMP offload version for using GPUs on Summit,
it takes 4.645 s, which is much larger than that on Theta.

TABLE II: Compiling time (s) on Theta and Summit

System XSBench SWFFT AMG SW4lite
Theta 2.021 3.494 2.825 162.066

Summit 4.645 3.781 2.757 58.000

IV. PROPOSED AUTOTUNING FRAMEWORKS IN
PERFORMANCE OR ENERGY AT LARGE SCALES

In this section we extend the ytopt autotuning framework to
autotune the hybrid MPI/OpenMP applications at large scales
on the ANL Theta and ORNL Summit using the metrics
such as performance, energy, and EDP, where the application
runtime is the primary performance metric; energy consump-
tion captures the tradeoff between the application runtime and
power consumption; and EDP captures the tradeoff between
the application runtime and energy consumption.

A. Framework for Autotuning Performance at Large Scales

Figure 1 presents the framework for autotuning various
hybrid MPI/OpenMP applications in performance. The appli-
cation runtime is the primary metric. We analyze an appli-
cation code to identify the important tunable application and
system parameters (OpenMP environment variables) to define
the parameter space using ConfigSpace [65] package. We use
the tunable parameters to parameterize an application code
as a code mold. ytopt starts with the user-defined parameter
space, the code mold, and user-defined interface that specifies
how to evaluate the code mold with a particular parameter
configuration.

The search method within ytopt uses Bayesian optimization,
where a dynamically updated Random Forest surrogate model
that learns the relationship between the configurations and
the performance metric, is used to balance exploration and
exploitation of the search space. In the exploration phase,
the search evaluates parameter configurations that improve
the quality of the surrogate model, and in the exploitation
phase, the search evaluates parameter configurations that are
closer to the previously found high-performing parameter
configurations. The balance is achieved through the use of
the lower confidence bound (LCB) acquisition function that
uses the surrogate models’ predicted values of the unevaluated
parameter configurations and the corresponding uncertainty
values. The LCB acquisition function is defined in Equation 1.
For the unevaluated parameter configuration xi

M , the trained
model M is used to predict a point estimate (mean value)
µ(xi

M ) and standard deviation σ(xi
M ).

aLCB(x
i
M ) = µ(xi

M )− κσ(xi
M ) (1)

where κ ≥ 0 is a user-defined parameter that controls the
tradeoff between exploration and exploitation. When κ = 0
for pure exploitation, a configuration with the lowest mean
value is selected. When κ is set to a large value (> 1.96) for
pure exploration, a configuration with large predictive variance
is selected. The default value κ of is 1.96. Then the model M
is updated with this selected configuration.

The iterative phase of the proposed autotuning framework
in performance has the following steps:

Step1 Bayesian optimization selects a parameter configuration
for evaluation.

Step2 The code mold is configured with the selected configu-
ration to generate a new code.
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Step3 Based on the value of the number of threads in the con-
figuration, the number of nodes reserved and the number
of MPI ranks, aprun/jsrun command line for launching
the application on the compute nodes is generated.

Step4 The new code is compiled with other codes needed to
generate an executable.

Step5 The generated aprun/jsrun command line is executed
to evaluate the application with the selected parameter
configuration; the resulting application runtime is sent
back to the search and recorded in the performance
database.

Steps 1–5 are repeated until the maximum number of
code evaluations or the wall-clock time is exhausted for the
autotuning run.

In the rest of this paper, the term ytopt processing time
includes the time spent in the parameter space search, building
the surrogate model, processing the selected configuration
to generate a new code and the aprun/jsrun command line,
compiling the new code, launching the application, and storing
the configuration and performance in the performance database
(except the application runtime). We use the term ytopt
overhead to stand for the ytopt processing time minus the
application compiling time.

Fig. 1: Framework for Autotuning Performance

ytopt supports various application-tunable parameters,
which impact the application performance but keep the pro-
gram correctness. The application-tunable parameters can be
defined as variables, pragmas, pragma clauses, a statement, or
a function (piece of code). The combinations of these param-
eters with their ranges of values form a parameter space. This
requires some knowledge about the applications and underly-
ing systems. For instance, we define ”#pragma omp parallel
for” as a parameter before a loop to check how the application
performance is affected with and without it. Table III presents
the parameter space for the four ECP proxy applications used
in our experiments, where system param. stands for system
parameters; application param. stands for unique application
parameters because some of them are used repeatedly in the
application code; and space size stands for the number of
configurations for the parameter space. The system parameters
in this paper mainly focus on OpenMP runtime environment
variables [66]: OMP NUM THREADS, OMP PLACES,
OMP PROC BIND, OMP SCHEDULE, and the additional
OMP TARGET OFFLOAD.

The selected application parameters which may impact
performance for each application are described as follows. The
two unique application parameters for XSBench are block size
and additional ”#pragma omp parallel for.” The five unique
application parameters for XSBench-mixed (mixed Clang loop
pragmas and OpenMP pragmas) are block size, Clang loop
unrolling full, ”#pragma omp parallel for,” and two tile sizes
for 2D loop tiling. The four unique application parameters
for XSBench-offload are simd, device clause, schedule for
the OpenMP target pragmas, and ”#pragma omp parallel
for.” The one unique application parameter for SWFFT is
”MPI Barrier(CartComm);”. The three unique application pa-
rameters for AMG are ”#pragma unroll(3),” ”#pragma un-
roll(6),” and ”#pragma omp parallel for.” The four unique
application parameters for SW4lite are “#pragma unroll (6),”
”#pragma omp parallel for,” ”#pragma omp for nowait,” and
”MPI Barrier(MPI COMM WORLD);”. Overall, we use the
parameter spaces with up to 6,272,640 configurations for our
experiments.

TABLE III: Parameter Space for Each Application

ECP Proxy Apps System param. Application param. Space size
XSBench 4 env. variables 2 51,840

XSBench-mixed 4 env. variables 5 6,272,640
XSBench-offload 5 env. variables 4 181,440

SWFFT 4 env. variables 1 1,080
AMG 4 env. variables 3 552,960

SW4lite 4 env. variables 4 2,211,840

B. Framework for Autotuning Energy and EDP at Large
Scales

Efficiently utilizing the procured power and optimizing
the performance of scientific applications under power and
energy constraints are important challenges in HPC. The HPC
PowerStack [1], [2], [67]—a global consortium of laboratories,
vendors, and universities—has highlighted a design shift to-
ward standardization of the HPC power-management software
stack. This enables seamless integration of software solutions
for managing the energy/power consumption of large-scale
HPC systems. Based on the state of the art of the components
available in the community for power and energy management
[68]–[75], a hierarchical strawman PowerStack design [2] was
proposed to manage power and energy at three levels of granu-
larity: system level, job level, and node level. This implies the
need to put in place the following incrementally: (1) define
policies that govern site-level requirements, a power-aware
system Resource Manager (RM) / job scheduler, a power-
aware job-level manager, and a power-aware node manager;
(2) define the interfaces between these layers to translate
objectives at each layer into actionable items at the adjacent
lower layer; and (3) drive end-to-end optimizations across
different layers of the PowerStack.

In order to address these requirements, our recent work [3]
(a) surveyed the high-level objectives of the existing layer-
specific tuning approaches at the different layers: system (i.e.,
cluster), job / application, and node, (b) defined the tunable
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parameters at each layer, and (c) proposed and discussed how
to autotune the combination of different parameters at the
distinct layers (parameter space) for an optimal solution (the
smallest runtime or the lowest energy) under a system power
cap.

Based on our previous work on autotuning the performance,
power, and energy of applications and systems [3], [27],
[28], [76], we propose a high-level end-to-end PowerStack
autotuning framework for HPC systems shown in Figure 2.
This diagram shows the interactions among four layers: system
level, job level, node level, and application level. To the best
of our knowledge, however, a practical end-to-end autotuning
component is still lacking that targets all four layers for the
optimal solution.

Fig. 2: PowerStack End-to-End Autotuning Framework

Our aim is to develop a practical framework to autotune all
four layers of the PowerStack so that we can have a better
understanding of the tunable parameters at each layer and
interaction interfaces between layers and can identify poten-
tial new requirements in order to achieve energy efficiency.
The process of autotuning in the layers (a) typically targets
energy as the primary metric, (b) complies with the operating
power constraint imposed on the layer, and (c) attempts to
improve the management and orchestration of the available
control parameters that affect the application and/or hardware
performance. For the proposed framework, we integrate the
existing job constraint-aware power/energy optimizer GEOPM
(Global Extensible Open Power Manager) [58], [74] at the job
and node levels and the ytopt autotuning framework at the
application level.

Fig. 3: High-Level Overview of GEOPM [1]

GEOPM [58], [74] is a community-driven, cross-platform,
open source, job-level power management framework. It pro-
vides multiple interfaces to enable interoperability with exter-
nal HPC software components such as enabling job schedulers
and resource managers to drive job-aware system-wide power
efficiency improvements in Figure 3. GEOPM enables control
and monitoring of hardware/software knobs across multiple
platforms and architectures such as leveraging multiple power
and performance knobs like Intel’s hardware power-limiting
capability (RAPL [77]) for achieved CPU frequency and in-
structions retired. Because the latest version of GEOPM (1.x)
is installed on Theta but is not available on Summit because
of special privilege requirement to access the low-level msr
(model specific registers) counters and the power measurement
of Power9 is not available to the public on Summit, Figure
4 shows the proposed framework for autotuning energy and
EDP of various hybrid MPI/OpenMP applications on Theta.
The average node energy consumed by the application is the
primary metric.

Fig. 4: Framework for Autotuning Energy
This energy autotuning framework is similar to the perfor-

mance framework with the five steps in Figure 1. Steps 1 and
2 are the same. There are some differences in Steps 3, 4, and
5. The GEOPM job launch script, geopmlaunch [74], queries
and uses the OMP NUM THREADS environment variable
to choose affinity masks for each process. The principal job
of geopmlaunch to aprun is to set explicit per-process CPU
affinity masks that will optimize performance while enabling
the GEOPM controller thread to run on a core isolated from
the cores used by the primary application. The geopmlaunch
enables the GEOPM library to interpose on MPI using the
PMPI interface through the LD PRELOAD mechanism for
unmodified binaries.

The iterative phase of the proposed autotuning framework
in energy has the following steps:

Steps Steps 1 and 2 are the same as shown in Figure 1.
Step3 ytopt sets the OMP NUM THREADS environment vari-

able, and generates the aprun command line for applica-
tion launch.

Step4 The dynamic linking is required with the -dynamic flag
for the compiling.

Step5 ytopt uses the geopmlaunch to launch the aprun com-
mand line with the options ”--geopm-ctl=pthread,” which
launches the controller as an extra pthread per node, and
”--geopm-report=gm.report,” which creates the summary
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report file gm.report about performance, power, and en-
ergy for each node to evaluate the application with the
configuration. ytopt processes the summary report file
from GEOPM to record the average node energy in the
performance database.

Steps 1–5 are repeated until the maximum number of code
evaluations or the wall-clock time for the run on Theta.

V. AUTOTUNING MIXED PRAGMAS ON A SINGLE NODE

In this section we apply the proposed framework in Figure
1 to autotune XSBench with mixed pragmas on a single node
of Theta and Summit. We use its OpenMP version on Theta
and its OpenMP offload version on Summit.

A. On Theta

We modify the OpenMP version of XSBench by adding
more OpenMP pragmas and Clang loop optimization pragmas,
such as loop unrolling and tiling [53]. We integrate the new
OpenMP pragmas with Clang loop pragmas as parameters
to autotune the XSBench and to make sure that the result
is verified. Note that we use the clang-14 compiler from
SOLLVE LLVM [56] to compile the original and the mixed
XSBench on Theta.

We use 9 parameters to define the following parameter
space. The system runtime parameters are OMP NUM
THREADS, OMP PLACES, OMP PROC BIND, and

OMP SCHEDULE; the unique application parameters are
block size for OpenMP dynamic schedule, Clang loop
unrolling full, additional OpenMP parallel for, and two tile
sizes for 2D loop tiling for a double nested loop (because this
loop fails when parallelizing it in OpenMP). Because each
Theta node has 64 cores with up to 4 threads per core, we
choose 10 choices for OMP NUM THREADS in the range
of 4 to 256 threads. The OpenMP specification includes many
environment variables related to program execution [66]. For
the OMP PLACES, there are three options: cores (threads
are allowed to float on cores), threads (threads are bound to
specific logical processors), and sockets (threads are allowed
to float on sockets). For the OMP PROC BIND, there are
also three options: close (threads placed consecutively), spread
(threads spread equally on hardware), and master (threads
placed on master to enhance locality). OMP SCHEDULE
allows specifying the schedule type (static, dynamic, or auto)
with the default chunk size. For the block size (default 100
from the original code), we choose 12 choices in the range
from 10 to 400. For the unrolling and additional OpenMP
parallel for (4 in total), each has two choices with or without
it. For two tile sizes for 2D loop tiling, we choose 11 choices
in the range from 2 to 1,024 for each dimension. Therefore,
the parameter space with total different configurations is
270*5808*4 =6,272,640, as shown in Table III.

Figure 5a shows the autotuning of the mixed pragmas
version of XSBench (history based) on a single node, where
wall-clock time stands for the time from the start of the
autotuning to its end; the red line stands for the baseline
runtime (3.31 s for the original code using 64 threads); and

the blue line stands for the autotuning process over time.
We achieve the best performance 3.262 s, and the search
reaches the good region of the parameter space over time.
Figure 5c shows the ytopt overhead for each evaluation during
the autotuning. The overhead is less than 65 s for the large
parameter space.

(a) history-based (b) event based

(c) history based (d) event based

Fig. 5: Autotuning the Mixed-Pragmas Version of XSBench
on a Theta Node

Figure 5b shows autotuning the mixed-pragmas version of
XSBench (event based) on a single node. We observe the
best performance 3.339 s (the baseline: 3.395 s for using
64 threads), and the search reaches the good region of the
parameter space over time. Figure 5d shows the ytopt overhead
for each evaluation over time. The overhead is between 49 s
and 69.2 s for the large parameter space. We observe that the
ytopt overhead for the first evaluation is the largest because
it also includes setting the ytopt conda environment. Overall,
the ytopt overhead is less than 70 s.

B. On Summit

We use the OpenMP offload version of XSBench to autotune
the application on a Summit node. We integrate the additional
OpenMP pragmas with some clauses as parameters to autotune
the XSBench and to make sure that the result is verified.
The OpenMP offload version supports only the event-based
simulation. In the rest of this paper, we use XSBench with
the event-based simulation for our experiments.

We use 9 parameters to define the following
parameter space. The system runtime parameters are
OMP NUM THREADS, OMP PLACES, OMP PROC
BIND, OMP SCHEDULE, and OMP TARGET OFFLOAD;
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the unique application parameters are additional “#pragma
omp parallel for”, simd, device, and schedule clauses. Because
each Summit node has 42 cores with up to 4 threads per
core, we choose 10 choices for OMP NUM THREADS in
the range from 4 to 168 threads. OMP TARGET OFFLOAD
affects the behavior of execution on host and device including
host fallback and provides three options: DEFAULT (try to
execute on a GPU; if a supported GPU is not available,
fall back to the host), DISABLED (do not execute on the
GPU even if one is available; execute on the host), and
MANDATORY (execute on a GPU or terminate the program).
The simd clause is to create a team of threads to execute the
loop in parallel using SIMD instructions. The device clause
is to evaluate an assigned non-negative integer value less than
the value of omp get num devices() (6 devices on a Summit
node). schedule(static,1) for the OpenMP target pragmas
is for memory access coalescing; scheduling a chunk size
of 1 for each thread allows consecutive threads to access
consecutive global memory locations. We choose six chunk
sizes in the range from 1 to 32, adding one of them or
without adding one as the total 7 choices for the parameter
schedule. Therefore, the parameter space with all the different
configurations is 810*56*4=181,440, as shown in Table III.

Figure 6 shows the autotuning of the OpenMP offload
version of XSBench (event based) on a single Summit node
using 6 GPUs. We observe the best performance 2.138 s (the
baseline: 2.20 s for using 6 GPUs and 168 threads), and the
search reaches the good region of the parameter space over
time in Figure 6a. Figure 6b shows the ytopt overhead for
each evaluation during the autotuning. It is less than 24 s.
This is much faster than on Theta.

(a) Application runtime (b) ytopt overhead

Fig. 6: Autotuning OpenMP Offload Version of XSBench
(Event Based) on a Summit Node

VI. AUTOTUNING PERFORMANCE AT LARGE SCALES

In this section we apply the proposed framework in Figure 1
to autotune the performance of four ECP proxy applications—
XSBench, AMG, SWFFT, and SW4lit—on both Theta and
Summit. To launch an application to compute nodes, Theta
uses aprun, and Summit uses jsrun. The processor core on both
Theta and Summit supports the simultaneous multithreading
(SMT) level of 4 as default so that the number of threads
per node is supported up to 256 on Theta and up to 168 on

Summit. In Step 3 shown in Figure 1, based on the value
of the number of threads from the selected configuration, the
number of nodes reserved, and the number of MPI ranks, ytopt
generates the aprun/jsrun command line for application launch
on compute nodes. For instance, we reserve 4,096 nodes with
one MPI rank per node to run an application on Theta and
Summit.

On Theta we use the following algorithm to generate an
aprun command line.

OMP_NUM_THREADS=n
if (n <= 64) {
aprun -n 4096 -N 1 -cc depth -d n -j 1 application
} else { if (n <= 128) {
aprun -n 4096 -N 1 -cc depth -d n/2 -j 2 application
} else { if (n <= 192) {

aprun -n 4096 -N 1 -cc depth -d n/3 -j 3 application
} else {

aprun -n 4096 -N 1 -cc depth -d n/4 -j 4 application
}

}
}

When we choose the number of threads n for each case, we
make sure that n/2, n/3, or n/4 is integer on Theta. Then we
use the algorithm to set the proper number of threads per core
to generate the aprun command line.

On Summit we use the following algorithm to generate
the jsrun command line. When the application uses 6 GPUs
per node for the hybrid MPI/OpenMP offload application
XSBench, we use the algorithm.

OMP_NUM_THREADS=n
jsrun -n4096 -a6 -g6 -c42 -bpacked:n/4 -dpacked application

When we choose the number of threads n, we make sure
that n/4 is an integer because of the SMT level of 4 as default
on Summit. We set one MPI rank per GPU and 42 cores per
node for threads.

When the application uses only CPUs per node without any
GPU for the hybrid MPI/OpenMP applications AMG, SWFFT,
and SW4lite, we use the following algorithm to set one MPI
rank per node and 42 cores per node for threads.

OMP_NUM_THREADS=n
jsrun -n4096 -a1 -g0 -c42 -bpacked:n/4 -dpacked application

For measuring the baseline performance for each application
with a given problem size, we set the number of threads to
64 (which results in the best performance) on Theta and 168
threads (which also results in the best performance) on Summit
to run the application under the default system configuration
five times. Then we use the smallest application runtime as the
baseline for the application. Notice that because of the limited
node-hour allocations on Theta and Summit for our projects,
we had to set most of the wall-clock times for autotuning runs
at half an hour (1800 s). This limits the number of evaluations
for different configurations during the autotuning.

Figure 7 shows autotuning MPI/OpenMP XSBench with the
large problem size on 1,024 and 4,096 nodes on Theta. Be-
cause XSBench is weak scaling, both the autotuning processes
are similar because of its embarrassingly parallel implemen-
tation of XSBench. We observe that the ytopt search reaches
the good region of the parameter space over time that is close
to that of the baseline. The ytopt overhead is similar to that
in Figure 5d on Theta.
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(a) on 1024 nodes (b) on 4096 nodes

Fig. 7: Autotuning XSBench at Large Scales on Theta

Figure 8 shows autotuning MPI/OpenMP offload XSBench
using 6 GPUs per node and 1 MPI rank per GPU on 4096
nodes on Summit. We observe that the ytopt search gradually
reaches the good region of the parameter space over time
(baseline: . Because of the limited number of evaluations (20),
however, it does not reach the optimal performance yet in
Figure 8a. Figure 8b shows the ytopt overhead during the
entire autotuning. Notice that the first ytopt overhead (111
s) also includes the time spent in setting the ytopt conda
environment and loading the nvhpc module, however, most
of the times are around 60 s. The ytopt overhead is less than
111 s.

(a) on 4096 nodes (b) ytopt overhead

Fig. 8: Autotuning XSBench at Large Scale on Summit

SWFFT is weak scaling. Figure 9 shows autotuning SWFFT
with a problem size of 3D grid 4096x4096x4096 on 4,096
nodes on Summit. We observe that the ytopt search reaches the
good region of the parameter space over time with the smallest
runtime of 7.797 s that is better than the baseline (8.93s)
in Figure 9a. This is 12.69% performance improvement. The
ytopt overhead is shown in Figure 9b, and most of the times are
around 20 s because of the small parameter space for SWFFT.
So the ytopt overhead is less than 50 s.

Figure 10 shows autotuning SWFFT with the same problem
size on 4,096 nodes on Theta. We observe that the ytopt search
reaches the good region of the parameter space over time that
is close to the time of the baseline in Figure 10a. The ytopt
overhead is less than 30 s in Figure 10b.

AMG is weak scaling. Figure 11 shows autotuning of AMG

(a) on 4096 nodes (b) ytopt overhead

Fig. 9: Autotuning SWFFT at Large Scale on Summit

(a) on 4096 nodes (b) ytopt overhead

Fig. 10: Autotuning SWFFT at Large Scale on Theta

on 4,096 nodes on Summit. We use the 3D Laplace problem ”-
laplace -n 100 100 100 -P 16 16 16” as the input, which means
generating a problem with 1,000,000 grid points per MPI rank
with a domain size 1600 x 1600 x 1600 on 4,096 nodes
with 1 MPI rank per node and various numbers of threads
per MPI rank. We observe that the ytopt autotuning reaches
the best configuration with the smallest runtime of 6.734 s,
which is much better than the baseline performance of 8.694
s in Figure 11a. This is a 22.54% performance improvement.
Figure 11b shows the ytopt overhead is less than 45 s.

(a) on 4096 nodes (b) ytopt overhead

Fig. 11: Autotuning AMG at Large Scale on Summit

Figure 12 shows the autotuning of AMG on 4,096 nodes
on Theta. Because of the limited wall-clock time (1800 s),
we see only six evaluations on 4,096 nodes, mainly caused
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by the second very long evaluation (1039.06 s) in Figure 12a.
We find the configuration for the long evaluation includes sys-
tem parameters: 48 threads; OMP PLACES=threads (that are
bound to specific logical processors); OMP PROC BIND=
master (threads placed on master place to enhance locality);
and OMP SCHEDULE=dynamic. We observe that the system
parameter setting mainly causes the long application runtime
because the first 48 cores of 64 cores are used and every two
cores share the L2 cache. Figure 12b still shows that the ytopt
overhead is less than 34 s.

(a) on 4096 nodes (b) ytopt overhead

Fig. 12: Autotuning AMG at Large Scale on Theta

SW4lite with the large problem LOH.1-h50 is strong scaling
so that we can test it on up to 1,024 nodes. Figure 13 shows
autotuning SW4lite on 1,024 nodes on Summit. As described
in Table III, the parameter space size for this application
is 2,211,840. As shown in Figure 13a, at the beginning of
the autotuning, ytopt samples the parameter space randomly
for initial evaluations, then leverages the surrogate model to
balance exploration of the search space and identifies more-
promising parameter configurations using the LCB acquisition
function. We observe that ytopt reaches the best configuration
with the smallest runtime of 7.661 s, which is much better than
the baseline performance of 11.067 s. This is a 30.78% per-
formance improvement. Figure 13b shows the ytopt overhead
is less than 46 s.

(a) on 1024 nodes (b) ytopt overhead

Fig. 13: Autotuning SW4lite at Large Scale on Summit

Figure 14a shows how SW4lite is autotuned on 1,024 nodes
on Theta. We observe that ytopt reaches the best configuration
with the smallest runtime of 14.427 s, which is much better

than the baseline performance of 171.595 s. This is a 91.59%
performance improvement. We achieve the large improvement
because we use the improved version of SW4lite [64] to
define the parameter space for SW4lite with the parameter
MPI Barrier(MPI COMM WORLD). When running SW4lite
on 1,024 nodes to measure the baseline performance, the
compute time is small (around 3 s), but the communication
time increases significantly (around 168 s) on Theta for the
original code. Figure 14b shows the ytopt overhead during the
entire autotuning which is less than 46 s.

(a) on 1024 nodes (b) ytopt overhead

Fig. 14: Autotuning SW4lite at Large Scale on Theta

Overall, we observe that the ytopt overheads for the four
applications are impacted mainly by the systems (for launch-
ing the application on the compute nodes) and application
compiling times (given in Table II). We find that the ytopt
overhead on up to 4,096 nodes on both Theta and Summit is
less than 111 s in Table IV. This shows that our autotuning
framework has low overhead and good scalability because
the ytopt overhead does not increase much for autotuning the
applications on small or large number of nodes.

TABLE IV: The maximum ytopt overhead (seconds) for each
application on Theta and Summit

System XSBench-Mixed XSBench SWFFT AMG SW4lite
Theta 70 69 30 34 46

Summit 24 111 50 45 46

VII. AUTOTUNING ENERGY AT LARGE SCALES

In this section we apply the proposed energy autotuning
framework in Figure 4 to autotune the energy and EDP of
four ECP proxy applications—XSBench, AMG, SWFFT, and
SW4lite—on up to 4,096 nodes on Theta. Because energy
consumption captures the tradeoff between the application
runtime and power consumption and EDP captures the tradeoff
between the application runtime and energy consumption, we
use the autotuning framework to explore these tradeoffs for
energy efficient application execution.

For measuring the baseline energy for each application with
a given problem size, we set the number of threads to 64 on
Theta and use GEOPM to run the application under the default
system configuration five times. Then we use the smallest
energy as the baseline for the application.
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For autotuning energy or EDP, after the evaluation of a con-
figuration GEOPM generates the summary report gm.report,
which records the package energy and DRAM energy for each
node; we accumulate these as the node energy. When ytopt
receives the report from GEOPM, it calculates an average node
energy and uses that average energy as the primary metric for
autotuning. Similarly, the average EDP is calculated.

Figure 15 shows using our energy framework to autotune the
energy of the four ECP proxy applications at large scales on
Theta. Figure 15a presents autotuning the energy of XSBench
on 4,096 nodes, where the red line stands for the baseline
node energy of 2494.905J. Using the framework achieves the
lowest energy of 2280.806J. This is an 8.58% energy savings.
Figure 15b shows autotuning the energy of SWFFT on 4,096
nodes. The baseline node energy for SWFFT is 3185.027J.
Using the framework achieves the lowest node energy of
3118.604J. This is a 2.09% energy savings.

(a) XSBench on 4096 nodes (b) SWFFT on 4096 nodes

(c) AMG on 4096 nodes (d) SW4lite on 1024 nodes

Fig. 15: Autotuning Energy at Large Scales on Theta
Figure 15c presents autotuning the energy of AMG on 4,096

nodes. The baseline node energy for AMG is 5642.568J. Using
the framework achieves the lowest node energy of 4566.747J.
This is a 20.88% energy saving. Figure 15d presents auto-
tuning the energy of SW4lite on 1,024 nodes. The baseline
node energy for SW4lite is 8384.034J. Using the framework
achieves the lowest node energy of 6606.233J. This is a
21.20% energy saving. Compared with Figure 14a for SW4lite,
we identified the best configuration (32, ’sockets’ ,’spread’
,’static’, ’ ’, ’ ’ ,’#pragma omp for nowait’ ,’ ’ ) which resulted
in 91.59% performance improvement. The same configuration
also resulted in the 21.20% energy saving because the large
performance improvement led to the energy saving. As we

discussed before, the application runtime for SW4lite on 1024
nodes was dominated by the low power communication for the
baseline, this was why the energy saving percentage is much
less than the performance improvement percentage. Based on
our observation, this is the case for other applications.

Figure 16 shows using our energy framework to autotune
the EDP of the four ECP proxy applications at large scales on
Theta. Figure 16a presents autotuning the energy of XSBench
on 4,096 nodes, where the red line stands for the baseline
node EDP. Using the framework achieves the lowest EDP with
37.84% improvement. Figure 16b shows autotuning the energy
of SWFFT on 4,096 nodes. Using the framework achieves the
lowest EDP with 5.24% improvement. Figure 16c presents
autotuning the energy of AMG on 4,096 nodes. Using the
framework achieves the lowest EDP with 24.13% improve-
ment. Figure 16d presents autotuning the energy of SW4lite
on 1,024 nodes. Using the framework achieves the lowest
EDP with 23.70% improvement. Because EDP is the product
of energy and application runtime, the EDP improvement is
better than the energy improvement shown in Table V. The
best configuration for using EDP as the metric is similar to
that for using energy as metric.

(a) XSBench on 4096 nodes (b) SWFFT on 4096 nodes

(c) AMG on 4096 nodes (d) SW4lite on 1024 nodes

Fig. 16: Autotuning Energy Delay Product at Large Scales on
Theta

Overall, using our energy autotuning framework to identify
the best configurations for the four ECP proxy applications
results in up to 21.2% energy savings and up to 37.84%
improvement in EDP on up to 4,096 nodes shown in Table
V. This aids us in exploring the tradeoffs between application
runtime and power/energy for energy efficient application
execution.
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TABLE V: Improvement percentage (%) for each application
on Theta

Theta XSBench SWFFT AMG SW4lite
Energy 8.58 2.09 20.88 21.20

EDP 37.84 5.24 24.13 23.70

VIII. CONCLUSIONS

In this paper, we proposed the low-overhead autotun-
ing frameworks to autotune four hybrid MPI/OpenMP ECP
proxy applications—XSBench, AMG, SWFFT, and SW4lite—
at large scales and explored the tradeoffs between application
runtime and power/energy for energy efficient application
execution. We used Bayesian optimization with a Random
Forest surrogate model to effectively search the parameter
spaces with up to 6 million different configurations on Theta
and Summit. We used the autotuning framework to explore
the tradeoffs between application runtime and power/energy
for energy efficient application execution. The experimental
results showed that our autotuning framework had low over-
head and good scalability. By using the autotuning framework
to identify the best configuration, we achieved up to 91.59%
performance improvement, up to 21.2% energy savings, and
up to 37.84% EDP improvement on up to 4,096 nodes. The
ytopt autotuning framework is open source and available to
download from the link in [46].

For future work, we will improve the framework overhead
by reducing the application compiling time with pre-compiling
the unchanged code files and setting a proper evaluation
timeout to evaluate more good configurations. Our current
autotuning framework uses Ray [78] to do one evaluation each
time; this affected the effectiveness of identifying the promis-
ing search regions at the beginning of the autotuning. We plan
to extend the framework to do multiple evaluations in parallel
using libensemble [79] to improve the initial effectiveness.
We also plan to add transfer learning and online tuning to
the framework so that it can transfer what it learns from the
applications at a small scale in problem sizes and system sizes
to guide and/or predict the best configurations for autotuning
at large scales.
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