
Power capping of heterogeneous systems
1st Andrew Nieuwsma

HPC, AI, and Labs
Hewlett Packard Enterprise
Minneapolis, United States
andrew.nieuwsma@hpe.com

2nd Dr. rer. nat. Torsten Wilde
HPC, AI, and Labs

Hewlett Packard Enterprise
Munich, Germany

wilde@hpe.com

Abstract—The landscape of HPC is changing rapidly because
of rising energy prices and concerns of increased OPEX, reg-
ulatory concerns around data center sustainability (reduction
of carbon footprint, total power burden on the grid), and the
expected increase in system power consumption as systems get
larger and component power requirements increase. Customers
are asking for solutions that help them manage the changing
landscape. Distributing a system power cap for the different
nodes of a heterogeneous system is challenging. Providing dif-
ferent power distributions based on different allocation policies
is challenging without an automated tool. The System-Power-
Capping tool presented in this paper is part of HPE’s vision
toward holistic system power management software stack. The
tool allows HPE and the customer to set a system power cap and
to allocate node power based on different distribution algorithms
and customer allocation policies, simplifying the process of setting
power caps on a heterogeneous system. This paper presents
experimental results that demonstrate the efficiency of various
distribution algorithms using a customer hardware configuration
as reference. The recursive applicability of the approach (from
data center to an individual node) can potentially help customers
to improve the overall power allocation in the future.

Index Terms—power capping, HPC system management, holis-
tic system power and energy management

I. INTRODUCTION AND BACKGROUND

With the transition into exascale computing, system power
consumption is becoming a more critical component of system
operation to manage. The first Exascale system (called Fron-
tier) at the Oak Ridge National Laboratory (ORNL) consumed
around 21MW when running the Linpack benchmark (number
1 system on the Nov 2022 Top500 list [8]). An analysis of the
previous supercomputing system at ORNL (called Summit)
showed that the systems average power consumption was
around 50% of Linpack power [9]. The difference between
normal operating power consumption and the provisioned
power and cooling capabilities by the facility for a specific
HPC system is becoming an operational concern. One way
to reduce stranded and/or trapped power and cooling capacity
in HPC data center is hardware over-provisioning (installing
more compute nodes than could be operated when running
Linpack) requiring a trusted enforcement of a system power
cap.

Setting a power cap on homogeneous systems in the most
basic way is a relatively straightforward process since all nodes
will get the same power share. With the explosion of different
accelerators and the need for customers to support a wide

variety of workloads as efficiently as possible, heterogeneous
systems will become a standard HPC system architecture. In
addition, node architectures are moving towards heterogeneous
compute devices as well. The implications are that: different
node architectures with different processing components will
have different min/max power boundaries; different power cap
values will have different impacts on node performance; and a
system power cap cannot just be split according to the number
of nodes.

SystemPower =
S∑

i=1

notControllableConsumersi+

N∑
j=1

(BaseNodePowerj +

C∑
k=1

CPUjk +

A∑
l=1

Acceleratorjl)

(1)
With:

•
∑S

i=1 notControllableConsumersi represents the sum
of the power consumption of support infrastructure (e.g.
power distribution, system cooling) and system compo-
nents that either cannot be, or should not be controlled
such as login nodes, network equipment, system manage-
ment controllers, I/O subsystem etc. for which the name
plate power or any alternative safeguard power value is
used.

•
∑N

j=1() represents system components whose power con-
sumption can be controlled (e.g. representing mainly the
compute nodes for an HPC systems)

• BaseNodePowerj represents the sum of all not control-
lable consumers on a node

•
∑C

k=1 CPUjk +
∑A

l=1 Acceleratorjl represent node
components whose power consumption can be controlled
(e.g. individual compute units on the nodes)

The system power consumption can be expressed
as the sum of two terms - Formula (1). One term∑S

i=1 notControllableConsumersi defines the maximum
possible power consumption of consumers that cannot
be controlled and the other

∑N
j=1(BaseNodePowerj +∑C

k=1 CPUjk +
∑A

l=1 Acceleratorjl) defines the sum of the
power consumed by any controllable compute node. Compute
node power is defined as the sum of a fixed base power

Node Type 1 Node Type 2
Node Architecture Homogeneous Heterogeneous
Node Composition 2 CPU, 0 GPU 1 CPU, 4 GPU
Min Power Cap in Watts 350 764
Max Power Cap in Watts 925 2754
Max - Min Power Cap
(Delta) in Watts

575 1990

nodes in system 1536 2560

TABLE I: Example system: heterogeneous hardware power
capping ranges

Total Node Count 4,096
Sum Max 8,471,040 watts
Sum Min 2,493,440 watts

TABLE II: Example system: summary

consumption (which, depending on the compute unit design,
could include memory power but this could change for HBM)
and the power consumption of the different compute units on
the node.

Setting a useful power cap on a heterogeneous system with
heterogeneous nodes is challenging. For example, considering
the power ranges for heterogeneous hardware in Table I, the
standard approach would take a system power cap (represent-
ing the allowed combined power consumption of all compute
nodes in the HPC system), divide it by the number of compute
nodes, and set the uniform power cap on all compute nodes.
As can be seen, depending on the system power cap, there is
a potential of little to no overlap between the allowed node
power ranges for different hardware architectures. It is very
hard to find a ‘universal’ power cap that could be applied
to all hardware in a heterogeneous system. Furthermore, the
likelihood that a uniform node power cap calculated from a
system power cap would fall within the allowed node power
limits becomes smaller the more diverse a heterogeneous HPC
system becomes.

II. EXISTING SOLUTIONS

Current solutions for managing the power and/or energy
consumption of HPC systems are focused on managing only
the “compute nodes” and do not interact with any existing
out-of-band (OOB) power management system. Therefore, it
is challenging to use those solutions to manage any system
level constraints in a trusted manner.

The open source software EAR (Energy Aware Runtime
[1] [2]) is a library for optimizing the energy efficiency of a
job by optimizing the energy efficiency of the nodes of that
job. Currently, most features are aimed towards the support of
Intel CPUs but limited support for AMD CPUs and NVIDIA
GPUs is provided. The main features are: energy accounting,
energy/power control, energy optimization, and active system
power capping. EAR intercepts MPI calls, identifies the outer
loop and tries to compute a signature. It matches this signature
with a time and power model, and depending on specified
energy policy selects a frequency for the loop. EAR provides
very limited functionality for non MPI/openMP workloads

(reporting but not optimization). Currently, EAR does not
support energy optimization together with system level power
management.

GEOPM (Global Extensible Open Power Manager [3] [4])
is an open source framework for exploring power and en-
ergy optimization of HPC jobs. Currently, GEOPM targets
only MPI and OpenMP application. It identifies loops and
determines an optimal RAPL (Running Average Power Level)
setting for the loop according to a set optimization policies.
GEOPM can optimize power usage, performance under a given
power cap, and trade off performance for energy savings. As
GEOPM does not consider job histories, it has to run the
detection for every loop again leading to the recommendation
to run GEOPM on a dedicated core. Currently, GEOPM has no
feature to manage power at a system level. It expects a given
application power cap per job and manages the job inside this
cap.

Another competitive approach is the Bull Dynamic Perfor-
mance Optimizer (BDPO [5] [6]) by ATOS. It aims to optimize
an application’s energy consumption at runtime. BDPO uses
a simple hardware performance counter threshold to set a low
or high execution frequency depending on compute load. The
low and high frequency to use are defined in a configuration
file. Currently, BDPO cannot manage a job according to a
power constraint and is not able to manage a system power
budget.

III. SOLUTION AND DISTRIBUTION ALGORITHMS

The approach presented in this paper enables a system
administrator (SysAdmin) to set a system power cap without
needing to understand the intricacies of heterogeneous system
architecture. It provides an automatic mechanism to intelli-
gently set node power caps according to a specified system
power cap and power allocation policy. The system power
cap is distributed into individual node power caps according
to system/node characteristics and SysAdmin defined trade-
offs providing the best possible node power distribution for
homogeneous and heterogeneous system using the out-of-band
(OOB) system control.

A. High level solution

Figure 1 shows the high-level representation of the proto-
type solution. The solution is able to determine the best node
power cap distribution for homogeneous and heterogeneous
HPC systems with a homogeneous or heterogeneous node
architecture according to user definable policies and extensible
distribution algorithms. The system can apply the power
cap to each individual compute node inside a HPC system.
The proposed system and solution can be used by in-band
application aware power and energy management software,
e.g. GEOPM , in combination with hardware provided power
control interfaces and hardware-based node power distribu-
tion logic (static and dynamic), to set optimal node power
guardrails according to a system power cap and application
power requirements.

While using the Out-of-Band (OOB) interfaces, the potential
rate of change is limited by the speed and quality of service
provided by the OOB interfaces, for the systems in question,
Redfish. While Redfish-based controls can be employed mul-
tiple times per minute, the exact implementation varies across
vendors, and sub-second timing control is usually not feasible,
which is common for HTTP-based protocols. Given that the
average job duration for HPC applications exceeds an hour [7],
a constraint on the order of seconds is considered acceptable.

Calculate power cap for
controllable consumers
from system power cap

Get all power cap
ranges per component

Compute power cap
solution

Apply power cap
solution per component

Input:
Required: Requested_Power_Cap,
Optional: list of components to target

Distribution
algorithms

Context: Configuration,
environment, & policy

Compute Solution

Apply Solution

Fig. 1: overall solution algorithm

The overall solution algorithm (Figure 1), works as follows:
1) From the input of Requested Power Cap and an op-

tional list of components to target

2) Determine the execution context: configuration, cus-
tomer distribution policy, and the current environment
(universe of not controllable consumers & controllable
consumers)

a) Enumerate the individual power cap ranges for
each component and calculate the Sum Min (sum
of minimum allowed power caps) & Sum Max
(sum of maximum allowed power caps) for the
system

3) Compute the solution, using the various compute power
cap algorithms (described subsequently)

4) Apply the solution to the set of controllable consumers
within the list of components target

This algorithm has the potential to be applied to the whole
data center recursively down to an individual compute node.
All levels can be broken down into a component that rep-
resents the maximum power consumption of not controllable
consumers and a component that represents all controllable
components. Therefore, solutions for one level have the po-
tential of being applied recursively to other levels of the power
management hierarchy.

Equations 2, 3, 4 depict that fundamentally each power
distribution is comprised of controllable consumers and not
controllable consumers. Furthermore the equations describe
that power control is nested across levels of granularity and
controlability. The facility management can control the power
of the installed systems, the system management can control
the power of the compute nodes in the system, and the
compute node management can control the compute unit
power limit. The approach described in this paper is generic
enough that it could be applied at any defined level in the
power hierarchy. The prototype implementation targets system
power and compute node power.

FacilityPower =
C∑
i=1

notControllableConsumersi +

S∑
j=1

SystemPowerj)

(2)

SystemPower =
C∑
i=1

notControllableConsumersi+

N∑
j=1

ComputeNodePowerj)

(3)

ComputeNodePower =
C∑
i=1

notControllableConsumersi +

U∑
j=1

ComputeUnitj)

(4)
The compute solution decision graph (Figure 2) to deter-

mine power distribution works as following:

Sum_Max

Sum_Min

Current Power Usage

Unsettable Range

If Requested_Power_Cap
is in the unsettable

range (r < Sum_Min) the
requested power cap
cannot be supported

If Requested_Power_Cap
is in the effective settable
range (Sum_Min <= r <=

Sum_Max) the power cap
is computable

If Requested_Power_Cap
is in the non consumable
range (r > Sum_Max) the
power cap should be set
to MAX, no computation

necessary

Non Consumable Range

Eff
ec

tiv
e

Se
tta

bl
e

Ra
ng

e

w
at

ts

0

∞

Fig. 2: Compute solution decision graph

1) IF Requested Power Cap is greater than Sum Max: Set
to max for all components

2) ELSE IF Requested Power Cap is less than Sum Min:
Return an error because minimum power for all compo-
nents is not available.

3) ELSE Requested Power Cap is between Sum Max and
Sum Min: For the set of components, compute a power
cap value. Possible power distribution varies by algo-
rithm and policy.

B. Distribution Algorithms

The prototype has an extensible system power distribu-
tion algorithm. The prototype has eight different algorithms
implementations, some with multiple configurations, for a
total count of twelve unique ways to distribute system power
cap. The algorithms are modular so they could be modified
or extended as necessary. Table III describes in detail the
various algorithms developed for the prototype. The various
algorithms have a similar base, they all start with the full list
of the controllable consumers selected for power capping, and
knowledge of the individual node MaxW & MinW. From this,

the algorithms can calculate the Sum Max & Sum Min and
determine if any base solution is possible (Figure 2).

After a power cap distribution has been calculated for
the system and validated that it is within specification, the
prototype calls the power control service provided as part of
the system management layer. The power control service is the
entity actually responsible for communicating with the OOB
hardware controls (via Redfish). The prototype will confirm
with the power control service that the power caps have been
set on the individual nodes.

IV. METHODOLOGY AND RESULTS

The prototype implementation has multiple distribution al-
gorithms that it can use to compute potential node power
distributions. As part of developing the prototype, the multiple
distribution algorithms were evaluated and tested.

The optimal distribution algorithm was determined by calcu-
lating different power distributions and selecting the algorithm
that provided the best total solution utilization. For the pro-
totype implementation total solution utilization was defined
by algorithm solution utilization, which is defined as how
close to Requested Power Cap the sum of the node power

Name Description Notes
base solution This algorithm mirrors the compute solution decision graph.

It determines if any solution is possible (is in range between
Sum Min and Sum Max).

This is the default algorithm that all other algorithms first call. If this
algorithm identifies no valid solution, then no other algorithms could
find a valid solution.

even split This algorithm take the difference between
Requested Power Cap and Sum Min and divides it evenly
among all nodes.

This assumes all components are homogeneous, or that their power
cap ranges overlap significantly.

equal percentage For each node type calculate the range (max – min) and split it
up into 10,000 discrete steps. Then starting from Max for each
node, decrease all nodes values by 1/10,000th until the sum of
the power caps is less than or equal to Requested Power Cap.
It is likely the value will be a decimal, which is then truncated
to an integer, which is required for the hardware setting.

The hardware implementation only allows whole watt settings, in
increments of one. 10,000 discrete steps, also referred to as the
‘decrease quantum’ was chosen to ensure a high enough resolution
such that all discrete steps for all ‘likely to be encountered’ hardware
types would be not larger than 1W. If the stepping was larger than 1W,
e.g. decrease by 2W the application would most likely not be able to
consume total available watts. This algorithm is the default algorithm
selected for the prototype implementation (called cray-power-capping)
of the presented solution.

count down For each node, decrease power cap value by 1W from Max
until the sum of the power caps is less than or equal to
Requested Power Cap.

This is similar to equal percentage, but instead of all hardware types
having an equal number of discrete steps the hardware has different
numbers of available steps (equal to their delta), such that hardware
with smaller ranges get to MinW before those with larger ranges. In
our example the homogeneous node with a delta of 575W is exhausted,
set to min, before the heterogeneous node with a delta of 1990W.

delete by * A collection of algorithms that group the nodes by power
capping characteristics and then systematically set each group
to minimum until an overall solution is found.

The nodes are all grouped by similar power cap controls (same
Max, Min). Then the groups can be processed by one of several
characterizations: count of components that have similar controls (e.g.
same Min Max), delta for component (i.e. Max - Min), maximum
power cap, minimum power cap. The characterized groups can be
’consumed’, i.e. set to minimum, by either the largest or smallest
group first.

TABLE III: Partial list of distribution algorithms developed for the proof of concept.

Algorithm Utilization
Mean

Utilization
STDDEV

Utilization
Variance

base solution 6.35e-01 2.64e-01 6.97e-02
count down 1.00e+00 2.04e-04 4.18e-08
delete by component count least-to-most 6.02e-01 2.17e-01 4.73e-02
delete by component count most-to-least 6.49e-01 1.78e-01 3.17e-02
delete by delta largest-to-smallest 6.02e-01 2.17e-01 4.73e-02
delete by delta smallest-to-largest 6.49e-01 1.78e-01 3.17e-02
delete by max power cap largest-to-smallest 6.49e-01 1.78e-01 3.17e-02
delete by max power cap smallest-to-largest 6.02e-01 2.17e-01 4.73e-02
delete by min power cap largest-to-smallest 6.49e-01 1.78e-01 3.17e-02
delete by min power cap smallest-to-largest 6.02e-01 2.17e-01 4.73e-02
equal percentage 1.00e+00 2.71e-04 7.37e-08
even split 9.99e-01 3.40e-04 1.16e-07

TABLE IV: Per algorithm solution utilization metrics across all tested percentages of system power limit (29% - 101%)

Algorithm Node Type 1
(W)

Node Type 2
(W)

base solution 350 764
count down 350 1444
delete by component count least-to-most 925 764
delete by component count most-to-least 350 764
delete by delta largest-to-smallest 350 764
delete by delta smallest-to-largest 925 764
delete by max power cap largest-to-smallest 350 764
delete by max power cap smallest-to-largest 925 764
delete by min power cap largest-to-smallest 350 764
delete by min power cap smallest-to-largest 925 764
equal percentage 517 1343
even split 775 1189

TABLE V: Comparison of solution utilization algorithm at 4.24MW (50%) system power limit

ba
se

_s
ol

ut
io

n

co
un

t_
do

wn

de
le

te
_b

y_
co

m
po

ne
nt

_c
ou

nt
_le

as
t-t

o-
m

os
t

de
le

te
_b

y_
co

m
po

ne
nt

_c
ou

nt
_m

os
t-t

o-
le

as
t

de
le

te
_b

y_
de

lta
_la

rg
es

t-t
o-

sm
al

le
st

de
le

te
_b

y_
de

lta
_s

m
al

le
st

-to
-la

rg
es

t

de
le

te
_b

y_
m

ax
_p

ow
er

_c
ap

_la
rg

es
t-t

o-
sm

al
le

st

de
le

te
_b

y_
m

ax
_p

ow
er

_c
ap

_s
m

al
le

st
-to

-la
rg

es
t

de
le

te
_b

y_
m

in
_p

ow
er

_c
ap

_la
rg

es
t-t

o-
sm

al
le

st

de
le

te
_b

y_
m

in
_p

ow
er

_c
ap

_s
m

al
le

st
-to

-la
rg

es
t

eq
ua

l_p
er

ce
nt

ag
e

ev
en

_s
pl

it

0.0

0.2

0.4

0.6

0.8

1.0

Ut
iliz

at
io

n
Pe

rc
en

ta
ge

Solution Utilization

Fig. 3: Solution utilization

caps can be allocated without exceeding. The reasoning being
that customers would like to take maximum advantage of the
Requested Power Cap. In the future, total solution utilization
could be defined according to the customer power management
goal (for example, as a trade off between efficiency and
performance), the customer distribution policy (for example,
prioritizing high power consumers over low power consumers),
and the nature of the hardware (for example, provide more
power to better utilized node architectures).

For the prototype implementation, the algorithm solution
utilization (ratio of how close the computed power cap is to
the Requested Power Cap) used the node profiles enumerated
in Table I. The test methodology was to generate a series of
tests across the range of system power cap limits (Sum Min
to Sum Max), from just below the minimum valid power cap
solution (all nodes set to min, aka Sum Min) to just above the
maximum valid power cap solution (all nodes set to max, aka
Sum Max) split into whole percentages leading to 70 separate
tests cases (70 unique possible Requested Power Cap values).
Then each algorithm was executed using the 70 test cases
and the per algorithm solution utilization (per test case) was
determined. Finally for each algorithm the mean, standard
deviation (STDDEV), and variance across the population of
solution utilization for the test cases were calculated (see
Figure 3 and Table IV for more details). Mean demonstrates

how effective an algorithm was across all test cases, a score
of 1.0 would mean that the algorithm allocated 100% of the
Requested Power Cap. The STDDEV is the spread of the
solution utilization from the mean. The variance measures the
average degree to which each solution utilization varies from
the mean. For both STDDEV and Variance, a lower score is
better.

The conclusion of the prototype implementation was that
equal percentage or count down are the algorithms that pro-
vide the most complete (efficient) algorithm solution utiliza-
tion (Table IV). Even though both distribution algorithms
provide almost the same utilization of the available power
they have different application performance implications (Ta-
ble V). The equal percentage distribution provides a more
even performance reduction across all node types since the
power reduction is based on the same percentage from the
maximum node power limit . Whereas the count down method
reduces the power by a fixed quantity independent of the node
maximum power limit. count down will exhaust Node Type
1 power cap before Node Type 2, setting it to its minimum
performance earlier than in the equal percentage distribution.
Therefore count down favors Node Type 2. Alternatively,
equal percentage will always ensure that all computes (Node
Type 1 and Node Type 2) will have at least some power
above minimum, unless the Requested Power Cap is below
Sum Min. Furthermore, while the prototype implementation
optimized for maximum solution utilization, it is possible that
sites may optimize for different criteria, such as providing
maximum power to nodes with accelerators versus nodes
with CPUs only (see Conclusion and Future Work for a
more in-depth discussion on possible customer optimizations).
Ultimately, it is likely ideal to optimize for some combination
of performance and power trade-off between the different
system nodes as well as the power distribution inside a node.

V. FUTURE WORK

The current prototype implementation, called cray-power-
capping, is a standalone application that runs to completion
and exits providing a static solution for system power capping.
The future version, called System Power Capping, will be
a RESTful API micro-service that, first, can be triggered
by system events (such as job start), and second, will run
continually to enable dynamic system power management.

System Power Capping introduces a new concept, called
pools. A pool is a grouping of nodes that should share a power
limit. Pools may be created by SysAdmins, but would most
likely be created by workload managers to represent the set
of nodes that are part of batch queues or jobs. Compute jobs
are likely to have different relative priorities compared to each
other on the system. Therefore it is likely that it is desirous
to distribute power among different jobs differently, and to
’favor’ some jobs more highly than others. By utilizing the
pool concept the system can group nodes by shared purpose,
imply or define a higher priority for some pools than others,
and have much more fine grained control of the total system
power limit and individual component limits.

System Power Capping will reduce the total number of
distribution algorithms from eight to four, removing the
Delete By * algorithms. The overall solution utilization for
the Delete By * algorithms is significantly lower than the
count down, equal percentage, even split algorithms. The
Delete By * algorithms are close to the performance of
base solution, but are not as useful, because base solution is
called by every other algorithm to determine if any solution,
regardless of performance, is possible. With the introduction
of pools System Power Capping can compensate better for
heterogeneous or disparate counts of hardware, removing the
need for the Delete By * algorithms.

System Power Capping introduces several other new con-
cepts rationing, upper and lower limits per pool, and the
notion of starvation.

Rationing is the concept that if there is insufficient
power available, which is always the case when the Re-
quested Power Cap is less than Sum Max, the system actors
may want to set a priority order for which pools (and nodes)
are impacted first. This concept could be used to help ensure
that a high-priority pool is the last pool to experience rationing,
thereby retaining maximum available performance for the
pool.

Upper and lower limits allow system actors more fine-
grained control on the amount of available power to distribute
to a pool. The upper and lower limits are within the max min
window for the pool. An upper limit requires that even if more
power is available, do not allow this pool to exceed the upper
bound; this may be particularly useful if running hardware at
TDP violates resource constraints. A lower limit requires that
even if the pool could sacrifice more power, that it should
not do so; this may be particularly useful if the system actor
knows that a minimum power limit above Sum Min is needed
to get necessary job performance.

Starvation is the concept that if there is still insufficient
power available, after components have been set to MinW,
that the only remaining alternative is to power down nodes.
This extreme action may be needed to keep the data center
operational in a degraded power event. The concept of starva-
tion is an extreme response, which could be needed, but it is
ultimately up to the system actors to define if pools should be
allowed to be starved.

cray-power-capping is a ’one shot’ application; either the
solution works and is applied, or is invalid. However System
Power Capping is a continually processing solution with
eventual consistency. As pools are created or deleted, as new
hardware is added to the system, or as the overall site power
limit is adjusted, System Power Capping will respond to total
environment (the model) and take a best effort to reconcile
the model of the system to the world. It is likely that at
some points in time, the requested world state will not be
possible, this may be due to user error, or because the system
environment is too severely constrained, e.g. the data center
needs to reduce power below Sum Min because of a power
failure, in this case System Power Capping will return a model
validation failure, which indicates that despite best efforts the

system cannot completely conform to the desired state of the
world. In such cases the SysAdmins should take the necessary
steps to either reduce load or increase capacity.

VI. CONCLUSION

The presented solution is the first step towards an optimal
management of the system power consumption of heteroge-
neous HPC systems that use OOB management system. The
solution enables hardware over-provisioning in order to make
stranded and/or trapped power and/or cooling capabilities
available for use to an HPC data center. In its first implemen-
tation it uses different power distribution algorithms to select
the best static power distribution according to customer needs.

The next version, called System Power Capping, will be
used to set compute node guard rails. Those guard rails can
be considered starting node power set-points if an application
aware in-band component is available. A combination of OOB
control and in-band application awareness could be used to,
for example, manage node power caps according to running
application needs (e.g., application needs only two GPUs from
the four on each job node – shift power from those nodes of
the job to other nodes in the system).

ACKNOWLEDGMENT

The authors would like to thank Larry Kaplan and Andy
Warner for reviewing this paper and providing feedback.

The authors would also like to thank Michael Jendrysik for
helping with the first prototype implementation of the solution.

REFERENCES

[1] Corbalan, Julita, and Luigi Brochard, ”EAR: Energy management
framework for supercomputers.”, Barcelona Supercomputing Cen-
ter (BSC) Working paper. 2019, https://www.bsc.es/sites/default/files/
public/bscw2/content/software-app/technical-documentation/ear.pdf.

[2] Barcelona Supercomputing Center, ”EAR: Energy
management framework for HPC”, https://www.bsc.es/
research-and-development/software-and-apps/software-list/
ear-energy-management-framework-hpc, as of October 2021.

[3] GEOPM Consortium, ”GEOPM Service Documentation”, https://geopm.
github.io/, as of October 2021.

[4] Eastep, Jonathan, et al., ”Global extensible open power manager: a ve-
hicle for HPC community collaboration on co-designed energy manage-
ment solutions.”, https://dl.acm.org/doi/10.1007/978-3-319-58667-0 21
International Supercomputing Conference. Springer, Cham, 2017.

[5] Ferrero, Fabio; Reorda, Matteo Sonza, ”Analysis and dynamic optimiza-
tion of energy consumption on HPC applications based on real-time
metrics.”, https://webthesis.biblio.polito.it/6423/1/tesi.pdf, doctor thesis,
2017.

[6] ATOS, ”Atos High Performance Computing Soft-
ware Suites”, https://atos.net/wp-content/uploads/2020/11/
HPC-Software-Suite-position-paper.pdf, as of October 2021.

[7] Tang, Desai, Buettner, Lan. ”Job scheduling with adjusted runtime
estimates on production supercomputers”. 2013, http://www.cs.iit.edu/
∼lan/publications/jpdc 2013 wei.pdf.

[8] Top500 List (Nov 2022), https://www.top500.org/lists/top500/2022/11/.
[9] Woong Shin, Vladyslav Oles, Ahmad Maroof Karimi, J. Austin Ellis,

and Feiyi Wang, ”Revealing power, energy and thermal dynamics of a
200PF pre-exascale supercomputer”, In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC ’21), Association for Computing Machinery, New York,
NY, USA, Article 12, 1–14, https://doi.org/10.1145/3458817.3476188.

https://www.bsc.es/sites/default/files/public/bscw2/content/software-app/technical-documentation/ear.pdf
https://www.bsc.es/sites/default/files/public/bscw2/content/software-app/technical-documentation/ear.pdf
https://www.bsc.es/sites/default/files/public/bscw2/content/software-app/technical-documentation/ear.pdf
https://www.bsc.es/sites/default/files/public/bscw2/content/software-app/technical-documentation/ear.pdf
https://www.bsc.es/research-and-development/software-and-apps/software-list/ear-energy-management-framework-hpc
https://www.bsc.es/research-and-development/software-and-apps/software-list/ear-energy-management-framework-hpc
https://www.bsc.es/research-and-development/software-and-apps/software-list/ear-energy-management-framework-hpc
https://www.bsc.es/research-and-development/software-and-apps/software-list/ear-energy-management-framework-hpc
https://www.bsc.es/research-and-development/software-and-apps/software-list/ear-energy-management-framework-hpc
https://www.bsc.es/research-and-development/software-and-apps/software-list/ear-energy-management-framework-hpc
https://geopm.github.io/
https://geopm.github.io/
https://geopm.github.io/
https://geopm.github.io/
https://dl.acm.org/doi/10.1007/978-3-319-58667-0_21
https://dl.acm.org/doi/10.1007/978-3-319-58667-0_21
https://webthesis.biblio.polito.it/6423/1/tesi.pdf
https://webthesis.biblio.polito.it/6423/1/tesi.pdf
https://atos.net/wp-content/uploads/2020/11/HPC-Software-Suite-position-paper.pdf
https://atos.net/wp-content/uploads/2020/11/HPC-Software-Suite-position-paper.pdf
https://atos.net/wp-content/uploads/2020/11/HPC-Software-Suite-position-paper.pdf
https://atos.net/wp-content/uploads/2020/11/HPC-Software-Suite-position-paper.pdf
http://www.cs.iit.edu/~lan/publications/jpdc_2013_wei.pdf
http://www.cs.iit.edu/~lan/publications/jpdc_2013_wei.pdf
http://www.cs.iit.edu/~lan/publications/jpdc_2013_wei.pdf
http://www.cs.iit.edu/~lan/publications/jpdc_2013_wei.pdf
https://www.top500.org/lists/top500/2022/11/
https://www.top500.org/lists/top500/2022/11/
https://doi.org/10.1145/3458817.3476188
https://doi.org/10.1145/3458817.3476188

	Introduction and Background
	Existing Solutions
	Solution and Distribution Algorithms
	High level solution
	Distribution Algorithms

	Methodology and Results
	Future work
	Conclusion
	References

