

Power Capping of Heterogeneous Systems

lainki. Finla

Andrew Nieuwsma, Principal Cloud Developer Dr. Torsten Wilde, Master System Architect

Cray User Group 2023

Agenda

• Background

- Changing Landscape
- Customer Concerns
- Algorithm & Solution
- Methodology & Results
- Conclusion & Future Work

Changing Landscape

- Raising energy prices
- Expected increase in system power consumption
 - Frontier at ORNL consumes 21MW running Linpack
- Regulatory concerns around data center sustainability
 - Reduction of carbon footprint
 - Heat re-use

Why is heterogeneous power capping complex to solve?

• The equation looks simple.

• The implementation is complex because of heterogeneous systems with heterogeneous node architecture.

	Node Type 1	Node Type 2		
Node Architecture	Homogeneous	Heterogeneous		
Node Composition	2 CPU, 0 GPU	1 CPU, 4 GPU		
Min Power Cap in Watts	350	764	Total Node Count	4,096
Max Power Cap in Watts	925	2754	Sum_Max	8,471,040 watts
Max - Min Power Cap	575	1990	Sum_Min	2,493,440 watts
(Delta) in Watts			TAB	LE II
# nodes in system	1536	2560	EXAMPLE SYST	TEM: SUMMARY
L	TABLE I	•	,	
$\mathbf{E}_{\mathbf{X}}$	CENEOUS UNDER	DE DOUVED GADDING		

EXAMPLE SYSTEM: HETEROGENEOUS HARDWARE POWER CAPPING

RANGES

• Different node types have very little overlap, which means that a uniform power distribution is not appropriate.

Solution Space and Algorithm

Methodology & Results

- Implementation of 8 distinct example distribution algorithms to set a system power cap.
- Using the example system simulated setting power caps across 70 different input values (from below SUM_MIN to above SUM_MAX)

• Conclusion:

• If Solution Utilization is the deciding criteria for a power distribution algorithm to apply, three algorithms provide 100% of the available power.

Com	norison of Solution Litilizations	Node	Node
Com		Type 1	Туре
Inde	<u>x</u> <u>Algorithm</u>	(W)	2 (W)
1	base_solution	350	764
2	count_down	350	1444
3	delete_by_component_count_least-to-most	925	764
4	delete_by_component_count_most-to-least	350	764
5	delete_by_delta_largest-to-smallest	350	764
6	delete_by_delta_smallest-to-largest	925	764
7	delete_by_max_power_cap_largest-to-smallest	350	764
8	delete_by_max_power_cap_smallest-to-largest	925	764
9	delete_by_min_power_cap_largest-to-smallest	350	764
10	delete_by_min_power_cap_smallest-to-largest	925	764
11	equal_percentage	517	1343
12	even_split	775	1189

Algorithms

Name	Description
	This algorithm mirrors the compute solution decision graph. It
base_solution	determines if any solution is possible (is in range between
	Sum Min and Sum Max).
over enlit	This algorithm take the difference between Requested Power
even_split	Cap and Sum Min and divides it evenly among all nodes.
	For each node type calculate the range (max – min) and split
	it up into 10,000 discrete steps. Then starting from Max for
	each node, decrease all nodes values by 1/10,000th until the
equal_percentage	e sum of the power caps is less than or equal to Requested
	Power Cap. It is likely the value will be a decimal, which is then
	truncated to an integer, which is required for the hardware
	setting.
	For each node, decrease power cap value by 1W from Max
count_down	until the sum of the power caps is less than or equal to
	Requested Power Cap.
	A collection of algorithms that group the nodes by power
delete_by_*	capping characteristics and then systematically set each
	group to minimum until an overall solution is found.

- Prototype for managing heterogeneous & homogeneous systems power cap
- Static solution
- Various compute power cap algorithms to choose from
 - Additional algorithms can be added

High Level Power and Energy Management Concerns

- <u>Making stranded power available</u> actual power usage is less than 'name plate' power
- <u>Demand / response</u> involves shifting or shedding electricity demand
- <u>Time of use costs</u> energy costs may vary based on the time of day
- <u>Energy efficient system operation</u> reduces OPEX and carbon impact
- <u>Regulatory efforts</u> various regulatory efforts to improve IT system sustainability

Multi-datacenter support

(N-Level Power Capping Hierarchy)

- Concept can apply across n-depth data center hierarchy
 - System of systems
- Concept of pools to manage system power semistatic and dynamically

$$\begin{aligned} FacilityPower = \\ \sum_{i=1}^{C} notControllableConsumers_{i} + \sum_{j=1}^{S} SystemPower_{j}) \end{aligned}$$

$$\sum_{i=1}^{C} notControllableConsumers_{i}$$

$$\sum_{j=1}^{N} ComputeNodePower_{j})$$

$$ComputeNodePower = \sum_{i=1}^{C} notControllableConsumers_i + \sum_{j=1}^{U} ComputeUnit_j)$$

Pool Power Cap Pool Power Cap Sum_Min: J Enforced_Limit: I Sum_Max: k Requested_Limit: m Image: Sum_Mine of the second limit in
Sum_Min: / Enforced_Limit: I Sum_Max: k Requested_Limit: m Image: Comparison of the second limit. Sum_Min: / Enforced_Limit: I Sum_Max: k Requested_Limit: m Image: Comparison of the second limit. Image: Comparison of the second limit. Pool Power Cap Pool Power Cap Sum Min: / Enforced_Limit. Image: Comparison of the second limit.
Pool Power Cap Pool Power Cap Fund Minit Sum Minit Sum Minit Sum Minit Sum Minit Sum Minit
Pool Power Cap Pool Power Cap Sum Minu / Enforced Limitul
Sum_win. J Enforced_Limit. 1 Sum_win. J Enforced_Limit. 1

N-Level Power Cap Hierarcy

Future Work

- Reducing stranded power/cooling capacity
 - Reliable dynamic system power capping (e.g supporting hardware over-provisioning)
- Supporting dynamic system power management based on jobs
 - Per pool (job) power cap
- Power management algorithms per pool
 - Power can be distributed based on hardware and job
- Pool priorities
 - Power Rationing and Power Starvation of pools

Thank you

<u>Andrew.Nieuwsma@hpe.com</u> <u>Wilde@hpe.com</u>